GWD-I

dfdl-wg@ggf.org

Category: INFORMATIONAL

GGF Data Format Description Language Working Group
2008-07-16
GWD-I

Category: Informational

GGF Data Format Description Language Working Group
2008-07-16

Data Format Description Language (DFDL) v1.0

Advanced Decimal Properties Supplement

(Internal Committee Working Document)

Status of This Document

This memo provides information to the Grid community regarding the specification of a Data Format Description Language. The specification is currently a working group internal draft. It does not define any standards or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright © Global Grid Forum 2004, 2005,,2006. All Rights Reserved.

Copyright © Open Grid Forum,2006, 2008. All Rights Reserved.

Abstract

This document provides a set of supplemental properties that extend the core DFDL specification to add the ability to express additional data formats.
Revision History

	Latest entry at the top please

	Version
	Author/Contributor
	History
	Date(yyyy-mm-dd)

	004
	Steve Hanson
	Updated to remove dfdl:decimalFormat
	2008-07-16

	003
	Steve Hanson
	Updated
	2008-03-28

	002
	Mike Beckerle
	Brought up to date.

Note: this needs simplifying. There's redundant functionality between the BCD stuff and the zoned stuff and the packed stuff.
Fixed bugs in zoned ascii stuff, added citation on the CA Realia 0x20 overpunch.
	2007-11-15

	001
	Mike Beckerle
	Extracted from v1.0 combined spec.
	2006-08-10

Contents

1Data Format Description Language (DFDL) v1.0

1Advanced Decimal Properties Supplement

1(Internal Committee Working Document)

1Abstract

2Revision History

21
Introduction

21.1
Types Usable with Advanced Decimal Representations

21.2
Properties specific to physical representation ‘XXXDecimal’

22
Contributors

23
Intellectual Property Statement

24
Disclaimer

25
Full Copyright Notice

26
References

1 Introduction

This section lists and specifies a set of DFDL v1.0 properties that may be used in DFDL annotations in DFDL Schema to describe non-XML data formats.

This supplement provides properties for decimal data formats. Specifically, when a Number is of type xs:decimal, xs:integer and restrictions, or when a Calendar is of type
1.1

 xs:dateTime, xs:date, xs:time, xs:duration, and the dfdl:numberFormat is ‘text’, ‘zoned’, ‘packed’ or ‘BCD’.
	
	

	
	

	
	

1.2 Properties specific to all decimal formats
These properties are specific to all decimal representations

	Property Name
	Description

	
	

	
	

	decimalCalendarScheme

	Indicates that decimal calendars are described by a defined calendar scheme.

An anonymous calendar scheme can be specified as a child element of the annotation element.
See Section TBD Error! Reference source not found..

1.2.1.1 Properties specific to binary decimal representations

These properties are specific to BCD and packed decimals

	Property Name
	Description

	decimalVirtualPoint
	Integer.

Non-negative integer indicating the virtual position in the data of the decimal point.

1.2.1.2 Properties specific to physical representation ‘zoned’

Zoned decimals are considered to be a text representation, as they are encoding and justification sensitive.
Zoned decimals can be signed, the sign being overpunched onto either the leading or trailing character. Because zoned decimals are text, the following existing properties apply:
· textNumberJustification

· textNumberFormat

· textPadCharacter

· textTrimKind
The numberPattern property of the dfdl:defineNumberFormat identified by the textNumberFormat property indicates the location of any sign and the virtual position of the decimal point.
	Property Name
	Description

	zonedDecimalSignStyle
	Enum

Used only when encoding specifies an ascii-derived character set. This includes all the Unicode character sets, and all variations of ascii and ISO-8859.

Valid values 'asciiStandard', ‘asciiTranslatedEBCDIC', ‘asciiCARealiaModified'

Which characters are used to represent ‘overpunched’ (included) positive and negative signs, varies by encoding, Cobol compiler and system. It is fixed for EBCDIC systems but not for ASCII.
In EBCDIC-based encodings, characters ‘{ABCDEFGHI’ represent a positive sign and digits 0 to 9. (character codes 0xC0 to 0xC9). The characters ‘}JKLMNOPQR’ represent a negative sign and digits 0 to 9. (character codes 0xD0 to 0xD9) This is how overpunched signs are interpreted for all EBCDIC-based character encodings.
asciiStandard: ASCII characters ‘0123456789’ represent a positive sign and the corresponding digit. (Sign nibble for ‘+’ is 0x3, which is the high nibble of these character codes unmodified.) ASCII characters ‘pqrstuvwxy’ represent negative sign and digits 0 to 9. (Character codes 0x70 to 0x79)
translatedEBCDIC: The overpunched character is the ASCII equivalent of the EBCDIC above. So the characters ‘{ABCDEFGHI’ still represent a positive sign and digits 0 to 9. (These are character codes 0x7B, 0x41 through 0x49). The characters ‘}JKLMNOPQR’ still represent negative sign and digits 0 to 9. (These are character codes 0x7D, 0x4A through 0x52). This case comes up if ebcdic zoned decimal data is translated to ascii as if it were textual data.
asciiCARealiaModified

: In this style, the ASCII characters ‘0123456789’ represent positive sign and digits 0 to 9 as in standard. However, ASCII characters from code 0x20 to 0x29 are used for negative sign and the corresponding decimal digit. This doesn't translate well into printing characters. These characters include the space (‘ ‘) for zero, characters ‘!”#$%&’ for 1 through 6, the single quote character “’” for 7, and the parenthesis ‘()’ for 8 and 9.

	
	

	
	

	
	

	
	

	
	

1.2.1.3 Properties specific to physical representation ‘BCD’

BCD decimals are considered to be a binary representation.

BCD decimals are always unsigned. 8421 coding assumed.
There are no properties specific to BCD decimals.

	
	

	
	

	
	

	
	

1.2.1.4 Properties specific to physical representation ‘packed’

Packed decimals are considered to be a binary representation.
Like a BCD but carry a sign in the lower nibble of the least significant byte.

A convention sometimes used is that zero is indicated by all bytes being hex zero, even though this is not technically a valid packed decimal number. On parsing, whether to tolerate this is governed by the numberCheckPolicy property. On unparsing, this convention is not used.
	Property Name
	Description

	packedDecimalSignCodes
	Character

A space separated string giving the hex nibbles to use for the positive signed, negative signed, and unsigned packed decimals, in that order.
Valid values for positive sign: A, C, E, F

Valid values for negative sign: B, D, F

Valid values for unsigned ‘sign’: A, C, E, F

Example: ‘C D F’ – this distinguishes positive, negative and unsigned
Example: ‘F F F’ – this forces unsigned for all data values
On parsing, whether to accept all valid values is governed by the numberCheckPolicy property. On unparsing, the specified values are always used.

	
	

	
	

	
	

2

3

4

5

6 References

TBD: GGF requires that only permanent documents should be cited as references. Other materials, such as Web pages or working groups, should be cited inline (i.e., see the Global Grid Forum, http://www.ggf.org). References should conform to a standard such as used by IEEE/ACM, MLA, Chicago or similar. Include an author, year, title, publisher, place of publication. For online materials, also add a URL

�Note: this precludes things like logical floats having decimal implementations on purpose.

That forces loss of information, and that raises the whole issue of writing out what you read in faithfully. We can dodge by just saying decimal rep is for decimal types.

�XSD uses 'fractionDigits' for this. Should we use the name 'decimalFractionDigits' to be consistent?

Aso below it says that number schemes using digits/fractions must be consistent with XML Schema facets for the same or it's a schema-defiinition error. So I think this property is similar?

Do we need this proeprty still now that we have number schemes?

�CalendarFormat would be the new name for this.

�It is not known if this scheme is always used by CA Realia compilers, or only specific versions and only on specific platforms.

�It is not known if this scheme is always used by CA Realia compilers, or only specific versions and only on specific platforms.

�If we're only supporting 8421 for now, and since that's the normal interpretation for packed decimal and unpacked/zoned, there's no need for this property and to be conservative, we should leave this out for V1.0

�redundant with decimalFormat=zoned, packed, binaryCodedDecimal.

�ditto

I like this idea of saying what is in the zones better than assuming zoned is "F", and having other whole types.

I think we end up with decimalFormat=packed or unpacked

unpackedZone="F", '0', '3', or '2' (2 is the obscure case of a weird Cobol system). I don't want to just allow any nibble here at all.

we still need sign nibbles as below for packed, and leading/trailing overpunched or separate signs., and the hair around what ascii overpunched signs look like.

�

�Should '0' (zero) also be an allowed nibble specification?

�If there is no sign nibble at all do we define this to be empty string?

� Reference for this CA Realia 0x20 overpunch for negative sign is the article: "EBCDIC to ASCII Conversion of Signed Fields" at http://www.discinterchange.com/TechTalk_signed_fields_.html, where it says:

COBOL compilers that run on ASCII platforms have a "signed" data type that operates in a similar manner to the EBCDIC Signed field -- that is, they over punch the sign on the LSD. However, this is not standardized in ASCII, and different compilers use different overpunch codes. For example, Computer Associates' Realia compiler uses a 30 hex for positive values and a 20 hex for negative values, but Micro Focus and Microsoft use 30 hex for positive values and 70 hex for negative values.

� Reference for this CA Realia 0x20 overpunch for negative sign is the article: "EBCDIC to ASCII Conversion of Signed Fields" at http://www.discinterchange.com/TechTalk_signed_fields_.html, where it says:

COBOL compilers that run on ASCII platforms have a "signed" data type that operates in a similar manner to the EBCDIC Signed field -- that is, they over punch the sign on the LSD. However, this is not standardized in ASCII, and different compilers use different overpunch codes. For example, Computer Associates' Realia compiler uses a 30 hex for positive values and a 20 hex for negative values, but Micro Focus and Microsoft use 30 hex for positive values and 70 hex for negative values.

File: ggf-dfdl-supplement-advanced-decimal-properties-v1 0-004.doc

Page 1 of 7
dfdl-wg@ggf.org

Page 2 of 7

