Data Format Description Language (DFDL)

Properties Specification

Revision History

	Latest entry at the top please

	Version
	Author/Contributor
	History
	Date(yyyy-mm-dd)

	004
	Steve Hanson
	Next revision
	2006-xx-xx

	003
	Steve Hanson
	Start of major revisions to properties
	2006-03-14

	002
	Steve Hanson
	Clarifications on decimal properties
	2006-02-14

	001
	Steve Hanson
	Derive initial draft from DFDL spec.
	2006-02-14

4Introduction

5Representation Properties Detail

51.
Properties that describe physical representation

51.1
Properties common to many physical representations

71.2
Properties specific to physical representation ‘text’

71.2.1
Properties specific to ‘text’ string logical types only

91.2.2
Properties specific to ‘text’ number logical types only

91.2.3
Properties specific to ‘text’ calendar logical types only

101.2.4
Properties specific to ‘text’ boolean logical types only

101.3
Properties specific to physical representation ‘binaryInteger’

111.4
Properties specific to physical representation ‘binaryFloat’

111.5
Properties specific to physical representation ‘binaryStream’

111.6
Properties specific to physical representation ‘XXXDecimal’

121.6.1
Properties specific to physical representation ‘zonedDecimal’

131.6.2
Properties specific to physical representation ‘binaryCodedDecimal’

131.6.3
Properties specific to physical representation ‘packedDecimal’

141.7
Properties specific to physical representation ‘xml’

141.8
Number Scheme properties

151.9
Calendar Scheme properties

172.
Properties independent of physical representation

172.1
General properties

182.2
Properties for text markup

202.3
Properties for aligned data

212.4
Properties for repeating data

222.5
Properties for null and default value handling

232.6
Properties for assertions

242.7
Escape Scheme properties

26Properties from earlier spec versions

27OMG/CAM properties

Introduction

This document defines the properties that may be used on DFDL annotations.

Representation Properties Detail
This section lists and specifies the full set of DFDL properties that may be used in DFDL annotations in DFDL Schema to describe non-XML data formats.

The properties are divided into two broad categories:

1. Properties that describe physical representation of data.

2. Properties that are independent of physical representation.
Note that property default values are not specified, because in DFDL there is no concept of DFDL-defined defaults. Instead the user must supply a value for all properties that will be used by the DFDL system, typically by use of a dfdl:defineFormat annotation. For this to be useable in practice, the DFDL standard should provide several DFDL Schema that define such dfdl:defineFormat annotations, suitable for business, scientific and casual use.
Where properties are specific to a physical representation, the property name may choose to reflect this. Where properties are related to a specific logical type ‘group’ (defined below), the property name may choose to reflect this
1. Properties that describe physical representation

The following key property identifies the physical representation of the field. The allowable physical representations for each logical type ‘group’ are also shown, where the logical type ‘groups’ are defined as:
Number: xs:double, xs:float, xs:decimal (and restrictions)
String: xs:string (and restrictions), xs:anyURI, xs:QName, xs:NOTATION
Calendar: xs:dateTime, xs:date, xs:time, xs:duration, xs:gYear, etc
Binary: xs:hexBinary, xs:base64Binary
Boolean: xs:Boolean
	Property Name
	Description

	repType
	Enum

Valid values are dependent on logical type:

Number: ‘text, ‘binaryStream’, ‘binaryInteger’, ‘binaryFloat’, ‘zonedDecimal’, ‘packedDecimal’, ‘binaryCodedDecimal’

String: ‘text, ‘xml’

Calendar: ‘text, ‘binaryInteger’, ‘zonedDecimal’, ‘packedDecimal’, ‘binaryCodedDecimal’

Binary: ‘binaryStream’

Boolean: ‘text, ‘binaryInteger’

Annotation: dfdl:element of simple type

1.1 Properties common to many physical representations
	Property Name
	Description

	byteOrder
	Enum

Valid values ‘bigEndian’, ‘littleEndian’.
Native not allowed.

This also applies to character data for fixed-width multi-byte character sets when the charset identifier is not specific. E.g., UTF-16 and UTF-32.
Annotation: dfdl:element, dfdl:sequence, dfdl:all, dfdl:choice

	encoding
	Enum.

Values are IANA charsets or CCSIDs.

‘Native’ deliberately not allowed.

Annotation: dfdl:element, dfdl:sequence, dfdl:all, dfdl:choice

	bomRequired
	Enum

Valid values ‘always’, ‘never’, ‘onInput’, ‘onOutput’

Policy for handling byte order mark when encoding is Unicode

Annotation: dfdl:element, dfdl:sequence, dfdl:all, dfdl:choice

	lengthKind
	Enum

Controls how the associated length, lengthUnits, justification and paddingCharacter properties are interpreted.

Valid values are ‘fixed’, ‘schema’, ‘xpath’, ‘regularExpression’, ‘prefixed’, ‘nullTerminated’, ‘delimited’.
If ‘schema’ then any xsd:length or xsd:maxLength facet is used.

If ‘nullTerminated’ then any terminator is ignored as this is just a convenience for terminator=x00.

If ‘delimited’ and no separator or terminator defined, end of bitstream is used.

[Includes OMG/CAM properties]

Annotation: dfdl:element of simple type

	length
	Integer.

Only used when lengthKind is ‘fixed’, ‘xpath’ or ‘regularExpression’.
Specifies the length of this field using either a fixed number, an XPATH to refer to a field earlier in the data, or a regular expression.

Annotation: dfdl:element of simple type

	lengthUnits
	Enum

Valid values ‘bytes’, ‘characters’, ‘unicodeCharacters’, ‘bits’, ‘digits’

Specifies the units to be used whenever an actual length is being used to extract or write data. Applicable when lengthKind is ‘fixed’, ‘xpath’, ‘prefixed1’, ‘prefixed2’.

Not all enum values are applicable to all physical types.

[Includes OMG/CAM property attributeInBit]

Annotation: dfdl:element of simple type.

	storedLengthIncludesSelf
	Boolean

Whether the length given by an XPATH or a prefix includes the size of itself.

Annotation: dfdl:element of simple type.

	prefixLength
	Integer

Length of prefix in bytes. Used for prefixed lengths only.

[OMG/CAM property prefixLength]

Annotation: dfdl:element of simple type.

	offset
	Integer
Offset from the field identified by the offsetFrom property.
[OMG/CAM property offset]

Annotation: dfdl:element

	offsetFrom
	XPATH
Specifies the XPATH to the field from which the offset is measured.

Annotation: dfdl:element

1.2 Properties specific to physical representation ‘text’

	Property Name
	Description

	textCharacterSize
	Integer

Sometimes the character size can not be deduced from the encoding alone.

[OMG/CAM property characterSize]

Annotation: dfdl:element of simple type

	textDBCSOnly
	Boolean.

Sometimes a text item will always occupy double bytes even when the encoding implies mixed bytes.

[OMG/CAM property DBCSOnly]

Annotation: dfdl:element of simple type

1.2.1 Properties specific to ‘text’ string logical types only

	Property Name
	Description

	textStringJustification
	Enum

Valid values ‘left’, ‘right”, ‘none’

Controls what happens on output when the actual length of a text string is different to the specified length.

If ‘none’ the string is expected to match the length.

Otherwise:

- If lengthKind is ‘fixed’: If shorter than the specified length it is padded with the pad character. If longer than the specified length it is truncated.

- If lengthKind is ‘lengthPrefixed’: If the string is longer than any specified maximum length it is truncated.

 [OMG/CAM property justification]

Annotation: dfdl:element of simple type ‘string’

	textStringPadCharacter
	String.

The padding character to used in conjunction with textStringJustification.

May be character or hex or Unicode.

In variable width character sets, this character must be a minimum-width character.
[OMG/CAM property paddingCharacter]
Annotation: dfdl:element of simple type ‘string’

	textStringTrim
	Enum

Valid values ‘none’, ‘padChar’, ‘leadingWhitespace’, ‘trailingWhitespace’, ‘bothWhitespace’

Indicates whether to trim data on input.

Normally only white space may be trimmed in this manner, but if lengthKind is ‘fixed’ then the padding character can be trimmed instead, as controlled by textStringJustification.

Annotation: dfdl:element of simple type ‘string’

	textStringOrientation
	Enum

Valid values ‘LTR’, ‘RTL’, ‘contextual_LTR’, ‘contextual_RTL’.
This property is used to indicate bi-directional text.

[OMG/CAM property orientation]

Annotation: dfdl:element of simple type ‘string’

	textStringBiDiSymmetric
	Boolean.

This property is used in bi-directional text.

[OMG/CAM property symmetric]

Annotation: dfdl:element of simple type ‘string’

	textStringBiDiTextShape
	Enum

Valid values ‘nominal’, ‘shaped’, ‘initial’, ‘middle’, ‘final’, ‘isolated’.

This property is used in bi-directional text.

[OMG/CAM property textShape]
Annotation: dfdl:element of simple type ‘string’

	textStringBiDiTextType
	Enum

Valid values ‘implicit’, ‘visual’.
This property is used in bi-directional text.

[OMG/CAM property textType]
Annotation: dfdl:element of simple type ‘string’

	textStringBiDiNumeralShapes
	Enum

Valid values ‘nominal’, ‘national’, ‘contextual’.

This property is used in bi-directional text.

[OMG/CAM property numeralShapes]

Annotation: dfdl:element of simple type ‘string’

1.2.2 Properties specific to ‘text’ number logical types only
	Property Name
	Description

	textNumberJustification
	Enum

Valid values ‘left’, ‘right”, ‘none’

Controls what happens on output when the actual length of a text number is different to the specified length.

Behaviour as for textStringJustification.

Annotation: dfdl:element of simple type ‘number’

	textNumberPadCharacter
	String.

The padding character to use in conjunction with numberJustification.

Behaviour as for textStringPadCharacter

Annotation: dfdl:element of simple type ‘number’

	textNumberTrim
	Enum

Valid values ‘none’, ‘padChar’, ‘leadingWhitespace’, ‘trailingWhitespace’, ‘bothWhitespace’

Indicates whether to trim data on input.

Behaviour as for textStringTrim.

Annotation: dfdl:element of simple type ‘calendar’

	textNumberScheme
	Indicates that text numbers are described by a defined number scheme.

An anonymous number scheme can be specified as a child element of the annotation element.
See numberScheme definition.
Annotation: dfdl:element of simple type ‘number’

1.2.3 Properties specific to ‘text’ calendar logical types only

	Property Name
	Description

	textCalendarJustification
	Enum

Valid values ‘left’, ‘right”, ‘none’

Controls what happens on output when the actual length of a text calendar is different to the specified length.

Behaviour as for textStringJustification.

Annotation: dfdl:element of simple type ‘calendar’

	textCalendarPadCharacter
	String.

The padding character to use in conjunction with textCalendarJustification.

Behaviour as for textStringPadCharacter

Annotation: dfdl:element of simple type ‘calendar’

	textCalendarTrim
	Enum

Valid values ‘none’, ‘padChar’, ‘leadingWhitespace’, ‘trailingWhitespace’, ‘bothWhitespace’

Indicates whether to trim data on input.

Behaviour as for textStringTrim.

Annotation: dfdl:element of simple type ‘calendar’

	textCalendarScheme
	Indicates that text calendars are described by a defined calendar scheme.

An anonymous calendar scheme can be specified as a child element of the annotation element.
See calendarScheme definiton.
Annotation: dfdl:element of simple type ‘calendar’

1.2.4 Properties specific to ‘text’ boolean logical types only

	Property Name
	Description

	textBooleanTrueRep
	String

Value to be used for ‘true’

Annotation: dfdl:element of simple type ‘boolean’

	textBooleanFalseRep
	String

Value to be used for ‘false’

Annotation: dfdl:element of simple type ‘boolean’

1.3 Properties specific to physical representation ‘binaryInteger’

Binary integers are considered to be a binary representation.
	Property Name
	Description

	integerSigned
	Boolean.

Indicates that the data is signed.
Note: This is independent of the logical type itself which may or may not be sign-capable.
Eg, an xsd:int can have as its physical rep an unsigned packed decimal number.

Eg, an xsd:unsignedInt can have as its rep a signed packed decimal number (this is equivalent to asserting that there will not be any negative values).

[OMG/CAM property signed]

Annotation: dfdl:element of simple type ‘number’, ‘boolean’, ‘calendar’

	integerSignRep
	Enum

Valid values are ‘twosComplement’, ‘onesComplement’, ‘signMagnitude’, ‘unsignedBinary’, and ‘unsignedDecimal’

[OMG/CAM Property signCoding]

Annotation: dfdl:element of simple type ‘number’, ‘boolean’, ‘calendar’

	integerCalendarRep
	Enum

Valid values ‘secondsSinceEpoch’, ‘millisecondsSinceEpoch’

Annotation: dfdl:element of simple type ‘calendar’

	integerCalendarEpoch
	String

The epoch from which to calculate dates and times, in the format yyyy-MM-dd'T'HH:mm ZZZ. For example “1970-01-01T00:00 +00:00”.

Annotation: dfdl:element of simple type ‘calendar’

	integerBooleanTrueRep
	Integer

Value to be used for ‘true’

Annotation: dfdl:element of simple type ‘boolean’

	integerBooleanFalseRep
	Integer

Value to be used for ‘false’

Annotation: dfdl:element of simple type ‘boolean’

1.4 Properties specific to physical representation ‘binaryFloat’

Floats are considered to be a binary representation.
	Property Name
	Description

	floatType
	Enum

This specifies the encoding method for the float.
Valid values are ‘unspecified’, ‘ieeeExtendedIntel’, ‘ieeeExtendedAIX’, ‘ieeeExtendedOS390’, ‘ieeeExtendedAS400’, ‘ieeeNonExtended’, ‘ibm390Hex’, ‘ibm400Hex’

[OMG/CAM property floatType]
Annotation: dfdl:element of simple type ‘number’

1.5 Properties specific to physical representation ‘binaryStream’

No such properties.
1.6 Properties specific to physical representation ‘XXXDecimal’

These properties are specific to all decimal representations

	Property Name
	Description

	decimalSigned
	Boolean.

Indicates that the data is signed.
Note: This is independent of the logical type itself which may or may not be sign-capable.
[OMG/CAM property signed]

Annotation: dfdl:element of simple type ‘number’, ‘calendar’

	decimalImpliedPlaces
	Integer

Gives the number of digits from the right where a decimal point is assumed to be.

Annotation: dfdl:element of simple type ‘number’, ‘calendar’

	decimalCalendarScheme
	Indicates that decimal calendars are described by a defined calendar scheme.

An anonymous calendar scheme can be specified as a child element of the annotation element.
See calendarScheme table.
Annotation: dfdl:element of simple type ‘number’, ‘calendar’

1.6.1 Properties specific to physical representation ‘zonedDecimal’

Zoned decimals are considered to be a text representation, as they are encoding and justification sensitive.
	Property Name
	Description

	zonedSignFormat
	Enum

Valid values ‘leadingIncluded’, ‘leadingSeparate’, ‘trailingIncluded’, ‘trailingSeparate’
Specifies how the sign is stored with the zoned decimal.
If ‘leadingIncluded’ or ‘trailingIncluded’ and the encoding is ASCII then property zonedIncludedAsciiSignStyle specifies how the sign is included.

Annotation: dfdl:element of simple type ‘number’, ‘calendar’.

	zonedIncludedAsciiSignStyle
	Enum

Valid values ‘ebcdicCustom’, ‘ascii’, ‘asciiCustom1’

The exact behavior, what characters are used to represent included or ‘overpunched’ positive and negative signs, varies by encoding, Cobol compiler and system. It is fixed for EBCDIC systems but not for ASCII.
In EBCDIC, characters ‘}JKLMNOPQR’ represent a negative sign and digits 0 to 9. The characters ‘{ABCDEFGHI’ represent a positive sign and digits 0 to 9.

ebcdicCustom: The overpunched character is the ASCII equivalent of the EBCDIC above. So characters ‘}JKLMNOPQR’ still represent negative sign and digits 0 to 9.

ascii: ASCII characters ‘pqrstuvwxy’ represent negative sign and digits 0 to 9. ASCII characters ‘0123456789’ represent a positive sign and the corresponding digit. (Sign nibble for ‘+’ is 0x3, which is the high nibble of these character codes unmodified.)

asciiCustom1: ASCII characters ‘pqrstuvwxy’ represent negative sign and digits 0 to 9. ASCII characters from code 0x20 to 0x29 are used for positive sign and the corresponding decimal digit. These characters include the space (‘ ‘) for zero, characters ‘!”#$%&’ for 1 through 6, the single quote character “’” for 7, and the parenthesis ‘()’ for 8 and 9.

Annotation: dfdl:element of simple type ‘number’, ‘calendar’

	zonedJustification
	Enum

Valid values ‘left’, ‘right”, ‘none’

Controls what happens on output when the actual length of a zoned decimal is different to the specified length.

Behaviour as for textNumberJustification.

Annotation: dfdl:element of simple type ‘number’, ‘calendar’

	zonedPadCharacter
	String.

The padding character to use in conjunction with numberJustification.

Behaviour as for textNumberPadCharacter

Annotation: dfdl:element of simple type ‘number’, ‘calendar’

	zonedTrim
	Enum

Valid values ‘none’, ‘padCharacter’,

Indicates whether to trim data on input.

If lengthKind is ‘fixed’ then the padding character can be trimmed, as controlled by zonedJustification.

Annotation: dfdl:element of simple type ‘number’, ‘calendar’

1.6.2 Properties specific to physical representation ‘binaryCodedDecimal’

BCDs are considered to be a binary representation. A BCD is by definition unsigned but there look to be several variations on the packing and the coding (see http://en.wikipedia.org/wiki/Binary-coded_decimal).
	Property Name
	Description

	bcdKind
	Enum

Valid values ‘8421’.

There are other bit weightings but they are not (yet) supported

Annotation: dfdl:element of simple type ‘number’, ‘calendar’

	bcdIsPacked
	Boolean

Whether the BCD is packed or not.

Annotation: dfdl:element of simple type ‘number’, ‘calendar’

	bcdUnpackedRep
	Enum

Valid values ‘zeros’, ‘ebcdic’, ‘ascii’

Specifies the value used for the unused top nibble of each byte when the BCD is unpacked. This can be 0000, FFFF (ebcdic) or 0011 (ascii)

 Annotation: dfdl:element of simple type ‘number’, ‘calendar’

1.6.3 Properties specific to physical representation ‘packedDecimal’

Packed decimals are considered to be a binary representation. Like a BCD but always uses 8421 coding and incorporates a sign into the last nibble.
	Property Name
	Description

	packedPlusSignRep
	Character

Valid values A, C, E, F

Specifies a hex nibble to use for the plus sign for signed packed decimals.
Annotation: dfdl:element of simple type ‘number’, ‘calendar’

	packedMinusSignRep
	Character

Valid values B, D

Specifies a hex nibble to use for the minus sign nibble for signed packed decimals.

Annotation: dfdl:element of simple type ‘number’, ‘calendar’

	packedUnsignedRep
	Character

Valid values A, C, E, F

Specifies a hex nibble to use for the sign nibble for unsigned packed decimal numbers.
Annotation: dfdl:element of simple type ‘number’, ‘calendar’

	packedAllowZeroSign
	Boolean

If ‘true’ then if all bytes are zero, the number should be assumed to be zero even though technically it’s not valid signed or unsigned packed.

Not used on output.

Annotation: dfdl:element of simple type ‘number’, ‘calendar’

1.7 Properties specific to physical representation ‘xml’
XML is considered to be a special variety of text representation.
Properties to be identified.

1.8 Number Scheme properties

A number scheme defines the properties that together describe how a number is to be interpreted. It contains a formatting pattern property plus properties that qualify the pattern.

It can be used when a number has a repType of ‘text’.

The scheme described below is derived from the ICU DecimalFormat class described here: http://icu.sourceforge.net/apiref/icu4c/classDecimalFormat.html#_details
We omit the padding, percentage and currency options. Padding is a function of length and percentage/currency symbols are typically modeled separately.

Extensions are number base, allowing blank to be treated as zero, strict versus lenient checking, and allowing a virtual decimal point.

If the pattern uses digits/fractions then these must match any XML Schema facets.
	Property Name
	Description

	numberPattern
	String.

Defines the ICU pattern that describes the format of the text number. The pattern defines where grouping separators, decimal separators, exponents, positive signs and negative signs appear. It permits definition by either digits/fractions or significant digits.

The pattern comes in two parts separated by a semi-colon. The first is mandatory and applies to positive numbers, the second is optional and applies to negative numbers.

The actual grouping separator, decimal separator and exponent characters are defined independently of the pattern.

The actual positive sign and negative sign are defined within the pattern itself.

Can be XPATH expression or literal as specified by decorated syntax.

Annotation: dfdl:numberScheme

	numberGroupingSeparator
	String.

Defines the actual character that will appear in the data as the grouping separator.

Can be XPATH expression or literal as specified by decorated syntax.

Annotation: dfdl:numberScheme

	numberDecimalSeparator
	String.

Defines the actual character that will appear in the data as the decimal separator.

Can be XPATH expression or literal as specified by decorated syntax.

Annotation: dfdl:numberScheme

	numberExponentCharacter
	String.

Defines the actual character that will appear in the data as the exponent indicator.

Can be XPATH expression or literal as specified by decorated syntax.

Annotation: dfdl:numberScheme

	numberStrictChecking
	Boolean.

Indicates how lenient to be when parsing against the pattern.

If ‘false’ then grouping separators can be omitted, decimal separator can be either ‘.’ or ‘,’ (as long as this is unambiguous), exponent can be mixed case, leading positive sign can be omitted, and blank is treated as zero.

On output the pattern is always followed.

Annotation: dfdl:numberScheme

	numberInfinityRep
	String

The value used to represent infinity.

Annotation: dfdl:numberScheme

	numberNaNRep
	The value used to represent NaN.

Annotation: dfdl:numberScheme

	numberBase
	Integer
Indicates the number base.
Annotation: dfdl:numberScheme

	numberImpliedPlaces
	Integer

Allowed if pattern does not specify a decimal separator. Gives the number of digits from the right where a decimal point is assumed to be.

Annotation: dfdl:numberScheme

1.9 Calendar Scheme properties

A calendar scheme defines the properties that together describe how a calendar is to be interpreted. It contains a formatting pattern property plus properties that qualify the pattern.

It can be used when a calendar has a repType of ‘text’, ‘zonedDecimal, ‘packedDecimal’ or ‘binaryCodedDecimal’.

The scheme described below is derived from the ICU SimpleDatetimeFormat class described here: http://icu.sourceforge.net/apiref/icu4c/classSimpleDateFormat.html
Extensions are two formatting symbols I and T, which mean accept any ISO 8601 compliant datetime and time, respectively, and the acceptance of the ‘Z’ character to mean UTC.
	Property Name
	Description

	calendarPattern
	String.

Defines the ICU pattern that describes the format of the text calendar. The pattern defines where the year, month, day, hour, minute, second, fractional second and time zone components appear.

When the repType is one of the decimal number reps then the pattern can contain only characters that correspond to numerics.

Can be XPATH expression or literal as specified by decorated syntax.

Annotation: dfdl:calendarScheme

	calendarPatternKind
	Enum

Valid values ‘explicit’, ‘schema’

‘Explicit’ means the pattern is given by calendarPattern, ‘schema’ means the pattern is derived from the XML schema date/time type.

Annotation: dfdl:calendarScheme

	calendarStrictChecking
	Boolean.

Indicates how lenient to be when parsing against the pattern.

If ‘false’ then the parser will convert out-of-band dateTime values to the appropriate in-band value, and will tolerate and skip white space. For example, a date of 2005-05-32 will be converted to 2005-06-01.

Annotation: dfdl: calendarScheme

	calendarTimeZone
	Enum

Valid values are the list of time zone designations.

The time zone that will be assumed if no time zone explicitly occurs in the data.

Annotation: dfdl: calendarScheme

	calendarObserveDST
	Boolean

Whether the time zone given in calendarTimeZone observes daylight savings time.

Annotation: dfdl: calendarScheme

	calendarUseZForUTC
	Enum

Valid values ‘Always’, ‘Never’, ‘OnInput’, ‘OnOutput’

Applies when a time zone appears in the data with pattern ZZZ (that is, +hh:mm) and the time zone is UTC (that is, GMT+00:00). Specifies whether ‘Z’ or ‘+00:00’ should be used.

Annotation: dfdl: calendarScheme

	calendarFirstDayOfWeek
	Enum

Valid values ‘Monday’ … ‘Sunday’

The day of the week upon which a new week is considered to start.

Annotation: dfdl: calendarScheme

	calendarDaysInFirstWeek
	Integer

Valid values 1 to 7

Specify the number of days of the new year that must fall within the first week.
The start of a year usually falls in the middle of a week. If the number of days in that week is less than the value specified here, the week is considered to be the last week of the previous year; hence week 1 starts some days into the new year. Otherwise it is considered to be the first week of the new year; hence week 1 starts some days before the new year.
Annotation: dfdl: calendarScheme

	calendarCenturyStart
	Integer

Valid values 0 to 99.

This property determines how two-digit years are interpreted. Specify the two digits that start a 100-year window that contains the current year. For example, if you specify 89, and the current year is 2006, all two-digit dates are interpreted as being in the range 1989 to 2088.
Annotation: dfdl: calendarScheme

2. Properties independent of physical representation

The use of the following properties is independent of physical representation.
2.1 General properties

	Property Name
	Description

	regularExpression
	RegExp

Used to identify an object. If the data matches the regular expression, the object has been found.

The regular expression need not match the entire object.

Annotation: dfdl:element, dfdl:sequence, dfdl:choice, dfdl:all

	unresolvable
	Boolean.

If ‘true’ then it is not possible for the parser to reliably identify the object from the DFDM model and the data.

Annotation: dfdl:choice, dfdl:any, dfdl:element (substitution group head only)

	modeled
	Boolean

If ‘true’ only modeled global elements can appear in place of this element wildcard.

Annotation: dfdl:any

	guard
	XPATH expression that evaluates to true or false

If true then the DFDL annotation is considered when parsing or writing.

Annotation: all DFDL annotations

	useSchemaDiscriminator
	Boolean

If true then the DFDL Schema containing the element to match this wildcard is determined dynamically using a DFDL assertion.

Annotation: dfdl:any

	outputValueCalc
	XPATH expression

An expression that performs the inverse of the element’s inputValueCalc expression.

Some elements that derive their value via an inputValueCalc expression will have no representation in the output. These elements need not specify an outputValueCalc. In many cases, however, the elements from which the value of the current element is derived are hidden. In these cases, the output representation will have to be calculated from the value of this element using an outputValueCalc expression.
Annotation: dfdl:element of simple type

	inputValueCalc
	XPATH expression

An expression that performs some operation to derive the value of the current element.
An element that specifies an inputValueCalc expression has no representation in the underlying data. It simply manipulates other elements to derive its own value.
Annotation: dfdl:element of simple type

2.2 Properties for text markup
The following properties apply to all elements and groups that use text markup to initiate, terminate and/or separate fields. Text markup applies equally well to binary data.
	Property Name
	Description

	escapeScheme
	Indicates that this group is quoted/escaped by a named, previously defined escape scheme.

An anonymous escape scheme can be specified as a child element of the annotation element.
See escapeScheme definition.
Annotation: dfdl:sequence, dfdl:all, dfdl:choice

	initiator
	String.

Specifies a text string that marks the beginning of a field or group of fields.
Can be XPATH expression or literal as specified by decorated syntax. If literal, decorated syntax to allow hex versus text.

If set to empty then no initiator is expected.

Annotation: dfdl:element, dfdl:sequence, dfdl:all, dfdl:choice

	initiatorIgnoreCase
	Boolean

Whether mixed case data is accepted when matching initiator on input.

On output always use the initiator as specified.

Annotation: dfdl:element, dfdl:sequence, dfdl:all, dfdl:choice

	initiatorEncoding
	Enum.

Values are IANA charsets or CCSIDs.

‘Native’ deliberately not allowed.

Annotation: dfdl:element, dfdl:sequence, dfdl:all, dfdl:choice

	initiatorByteOrder
	Enum

Valid values ‘bigEndian’, ‘littleEndian’.
Native not allowed.

Byte order when initiator encoding is UTF-16 and UTF-32.
Annotation: dfdl:element, dfdl:sequence, dfdl:all, dfdl:choice

	initiatorBomRequired
	Enum

Valid values ‘always’, ‘never’, ‘onInput’, ‘onOutput’

Policy for handling byte order mark when initiator encoding is UTF-16 and UTF-32.

Annotation: dfdl:element, dfdl:sequence, dfdl:all, dfdl:choice

	initiatorSeparator
	String.

Used with initiator. This string is found after the initiator, but before the value.
Annotation: dfdl:any

	discriminatingInitiator
	Boolean

If ‘true’ the initiator is unique within the current group and can be used to identify an object. If the stream matches the initiator, the object has been found.

Annotation: dfdl:element, dfdl:sequence, dfdl:all, dfdl:choice

	terminator
	String.
Specifies a text string that marks the end of a field or group of fields.
Can be XPATH expression or literal as specified by decorated syntax. If literal, decorated syntax to allow hex versus text.

If set to empty then no terminator is expected.

Annotation: dfdl:element, dfdl:sequence, dfdl:all, dfdl:choice

	terminatorIgnoreCase
	Boolean

Whether mixed case data is accepted when matching terminator on input.

On output always use the terminator as specified.

Annotation: dfdl:element, dfdl:sequence, dfdl:all, dfdl:choice

	terminatorEncoding
	Enum.

Values are IANA charsets or CCSIDs.

‘Native’ deliberately not allowed.

Annotation: dfdl:element, dfdl:sequence, dfdl:all, dfdl:choice

	terminatorByteOrder
	Enum

Valid values ‘bigEndian’, ‘littleEndian’.
Native not allowed.

Byte order when terminator encoding is UTF-16 and UTF-32.
Annotation: dfdl:element, dfdl:sequence, dfdl:all, dfdl:choice

	terminatorBomRequired
	Enum

Valid values ‘always’, ‘never’, ‘onInput’, ‘onOutput’

Policy for handling byte order mark when terminator encoding is UTF-16 and UTF-32

Annotation: dfdl:element, dfdl:sequence, dfdl:all, dfdl:choice

	finalTerminatorCanBeMissing
	Boolean.

Specifies if the terminator can be missing when the object appears as the last member of a group or when the object repeats.
On input, true means the terminator is optional.

On output, true means the terminator will not appear.

	separator
	String.

Specifies a text string that appears between two fields in a group.

Can be XPATH expression or literal as specified by decorated syntax. If literal, decorated syntax to allow hex versus text.

If set to empty then no separator is expected.

Annotation: dfdl:sequence, dfdl:all

	separatorEncoding
	Enum.

Values are IANA charsets or CCSIDs.

‘Native’ deliberately not allowed.

Annotation: dfdl:sequence, dfdl:all,

	separatorByteOrder
	Enum

Valid values ‘bigEndian’, ‘littleEndian’.
Native not allowed.

Byte order when separator encoding is UTF-16 and UTF-32.
Annotation: dfdl:element, dfdl:sequence, dfdl:all, dfdl:choice

	separatorBomRequired
	Enum

Valid values ‘always’, ‘never’, ‘onInput’, ‘onOutput’

Policy for handling byte order mark when separator encoding UTF-16 and UTF-32.

Annotation: dfdl:element, dfdl:sequence, dfdl:all, dfdl:choice

	separatorPosition
	Enum

Valid values ‘infix’, ‘prefix’, ‘postfix’
Annotation: dfdl:sequence, dfdl:all.

	finalSeparatorCanBeMissing
	Boolean.
Specifies that a postfix separator can be missing when the object appears as the last member of a group

On input, true means the separator is optional.

On output, true means the separator will not appear.

Annotation: dfdl:sequence, dfdl:all

Note: what does this provide over ‘infix’ ?

	separatorPolicyForMissingElements
	Enum

Valid values ‘keep’, ‘suppress’, ‘suppressAtEnd’

Specifies whether to expect a separator when an element is absent.

‘Suppress’ would typically be used where elements have initiators.

‘Keep’ or ‘SuppressAtEnd’ would typically be used where elements do not have initiators.

Annotation: dfdl:sequence, dfdl:all

2.3 Properties for aligned data
The following properties are used to define alignment rules.
	Property Name
	Description

	alignment
	Positive integer.

Gives the alignment required for the beginning of the item.
Values are usually 1, 2, 4, 8, 16 to match memory word alignment boundaries, 8096 to match page alignment boundaries. However, any integer 1 or greater is allowed
Annotation: dfdl:element

	fillByte
	Byte.

Used on output to fill space between two aligned elements.

Annotation: dfdl:element

	leadingSkipCount
	Positive integer

Number of bytes to skip before alignment applied

Annotation: dfdl:element

	trailingSkipCount
	Positive integer

Number of bytes to skip before alignment applied

Annotation: dfdl:element

2.4 Properties for repeating data

These properties are additionally used when fields in the data are repeating, that is, the data is in the form of an array.
Note: This set of properties will need revising to handle multi-dimensional arrays and sparse arrays.
	Property Name
	Description

	occursKind
	Enum

Valid values ‘fixedd’, ‘xpath’, ‘stopValue’, ‘markup’

Specifies how the actual number of occurrences is to be established. ‘fixed’ means use the value of schema property maxOccurs, ‘xpath’ means use the value of a named field earlier in the data, ‘stopValue’ means there is a special terminating value, ‘markup’ means that separators and/or initiators dictate the number.

Annotation: dfdl:element, dfdl:choice, dfdl:all, dfdl:sequence

	occursPath
	XPATH

An XPATH expression referencing another field that provides the number of occurrences.

Annotation: dfdl:element, dfdl:choice, dfdl:all, dfdl:sequence

	occursPathUnits
	Enum

Valid values ‘bytes’, ‘bits’, ‘items’

Specifies the units to be used when interpreting the number of occurrences given by occursPath. Typically this would be ‘items’ but sometimes the space is allocated as a block in which case the number of items is the number that fit in the block.

Annotation: dfdl:element, dfdl:choice, dfdl:all, dfdl:sequence

	occursStopValueKind
	Enum

Valid values ‘literal’, ‘logical’, ‘empty’

When a stop value indicates the end of the array, this specifies the nature of that value.

If ‘literal’ then compare item value with stop value as-is.

If ‘logical’ then compare item value with stop value after type conversion.

If ‘empty’ then an empty item terminates the array.

Annotation: dfdl:element, dfdl:choice, dfdl:all, dfdl:sequence

	occursStopValue
	String

If the value of an item in the array matches this value, the array is terminated

Annotation: dfdl:element, dfdl:choice, dfdl:all, dfdl:sequence

	occursSeparator
	String.

Specifies a text string that appears between two items in the array.

Can be XPATH expression or literal as specified by decorated syntax. If literal, decorated syntax to allow hex versus text.

If set to empty then no occurs separator is expected.

Annotation: dfdl:element, dfdl:choice, dfdl:all, dfdl:sequence

	occursSeparatorEncoding
	Enum.

Values are IANA charsets or CCSIDs.

‘Native’ deliberately not allowed.

Annotation: dfdl:element, dfdl:choice, dfdl:sequence, dfdl:all

	occursSeparatorByteOrder
	Enum

Valid values ‘bigEndian’, ‘littleEndian’.
Native not allowed.

Byte order when occurs separtaor encoding is UTF-16 and UTF-32.
Annotation: dfdl:element, dfdl:sequence, dfdl:all, dfdl:choice

	occursSeparatorBomRequired
	Enum

Valid values ‘always’, ‘never’, ‘onInput’, ‘onOutput’

Policy for handling byte order mark when occurs separator encoding is UTF-16 and UTF-32.

Annotation: dfdl:element, dfdl:sequence, dfdl:all, dfdl:choice

	occursSeparatorPosition
	Enum

Valid values ‘infix’, ‘prefix’, ‘postfix’
Annotation: dfdl:element, dfdl:choice, dfdl:sequence, dfdl:all.

2.5 Properties for null and default value handling
These properties are used to control when any XML Schema ‘default’ attribute is used, and, if the XML Schema ‘nillable’ attribute is set, when and how values are interpreted as having the logical meaning ‘null’.

	Property Name
	Description

	defaultWhenMissing
	Enum

Valid values ‘never’, ‘always’, ‘input’, ‘output’

Controls when missing mandatory fields are defaulted on input and output.

Annotation: dfdl:element of simple type

	nullValueKind
	Enum

Valid values ‘literalValue’, ‘logicalValue’, ‘literalCharacter’, ‘missing’

Specifies the nature of null processing. Only acted upon if nillable set to true

If ‘literalCharacter’ then nullValues must be any single char. On input the field value is null if all chars in the data match the nullValues char. On output if the field value is null the nullValues char is output to the required length. Only applicable to fixed length fields
.

If ‘literalValue’ then nullValues must be any string value that can fit in the field. On input the field value is null if the data matches nullValues literally without any conversion. On output if the field value is null nullValues is output.

If ‘logicalValue’ then nullValues must be any value that matches the simple type. On input the field value is null if the data, converted to its logical type, matches nullValues. On output if the field value is null, nullValues is converted to its physical rep and output.

If ‘missing’ nullValues is not used. On input the field value is null if it is not present in the data. On output if the field value is null, no data is output. For fields with an initiator the initiatedFieldMissingWhen property is used to determine when the field is missing.

Annotation: dfdl:element of simple type

	nullValues
	String

The null value of the field.

For ‘literalValue’ and ‘logicalValue’ several null values may be specified in this property. On output the first value in the list is used
.

Annotation: dfdl:element of simple type

	nullIndicatorPath

	XPATH expression

An XPath expression referencing another field that provides the value to compare with nullValues.

On input, the field value is null if the provided value if the field value is null, no attempt will be made to parse data from the input stream for this field, otherwise the data will be parsed normally.

On output, ???

Annotation: dfdl:element of simple type

	useNullValueForDefault
	Boolean

If true then nullValues is used when a field is missing on output rather than the default value.

Annotation: dfdl:element of simple type

	initiatedFieldMissingWhen
	Enum

Valid values ‘optional’, ‘empty’, ‘optionalOrEmpty’

Specifies when a field with an initiator is treated as missing, and therefore when default value processing can be applied.

If ‘optional’ then field is missing if the initiator is missing (optional fields only).

If ‘empty’ then field is missing if initiator is present but value is not.

If ‘optionalOrEmpty’ then field is missing if either of the above apply.

Annotation: dfdl:element of simple type

2.6 Properties for assertions

These properties can be used to assert truths about a DFDL model when parsing the data. They are separate from validation rules. This distinction is needed to ensure that switching validation on/off does not affect the parsing of uncertainty.
	Property Name
	Description

	test
	XPATH expression that evaluates to true or false

If true then the assertion is true.

Annotation: dfdl:assert

	timing
	Enum

Valid values ‘before’, ‘after’

When to evaluate the assertion.

Annotation: dfdl:assert

	discriminator
	Boolean

If true then the assertion is true, speculative parsing of uncertainty will stop, and the current branch taken as the resolution of the uncertainty.

Annotation: dfdl:assert

2.7 Escape Scheme properties

An escape scheme defines the properties that together describe the text escaping rules in force when text markup is present in the data. There are two variants on such schemes, the use of escape character(s) to switch off interpretation of a subsequent character, or the use of opening and closing quote character(s) to switch off interpretation of a contiguous group of characters. The variants can be used together, for example, MS Excel CSV use double quotes to surround data that includes a comma, and uses another double quote to escape a double quote in the data. Nested quotes not supported.
	Property Name
	Description

	openQuote
	String

Specifies the characters that open the quoting.

If empty, quoting is not used.

If not empty, closeQuote must also be not empty.

Can be XPATH expression or literal as specified by decorated syntax.

Annotation: dfdl:escapeScheme

	closeQuote
	String

Specifies the characters that close the quoting.

If not empty, openQuote must also be not empty.

Can be XPATH expression or literal as specified by decorated syntax.

Annotation: dfdl:escapeScheme

	escape
	String

Specifies the characters that escape the subsequent character.

If empty, escape is not used.

If quoting is in use, escape is only active within quotes.

Can be XPATH expression or literal as specified by decorated syntax.

Annotation: dfdl:escapeScheme

	generateQuotes
	Enum

Valid values ‘always’, ‘whenNeeded’

When to quote on output.

If ‘whenNeeded’ the characters that cause quotes to be generated are any in-scope separator or terminator.

Annotation: dfdl:escapeScheme

	generateEscape
	Boolean

Whether to escape on output.

If quoting is in use, only the first character of openQuote and closeQuote are escaped.

If quoting is not in use, the first character of any in-scope separator, occursSeparator or terminator character is escaped.

Annotation: dfdl:escapeScheme

Properties from earlier spec versions

The table below contains properties from earlier spec versions that have not yet had an equivalent created in this document, usually because there is some degree of uncertainty surrounding that functional area.
	stride
	????

	strideInBit
	????

	upperBound
	Integer.

The highest allowed index for this array dimension.

	lowerBound
	Integer.

The lowest allowed index for this array dimension.

	dimensionOrder
	Valid values are ‘firstDimensionChangesFirst’ and ‘lastDimensionChangesFirst’. Specifies the order in which dimensions of an array are stored.

OMG/CAM properties

The OMG/CAM properties are listed here along with their manifestation, if any, in DFDL.

	OMG/CAM property
	Description
	DFDL manifestation

	offset
	Integer
	offset

	accessor
	Enum
	<n/a>

	format
	String

PIC XXX etc for COBOL
	<n/a>

	baseWidth
	Integer.
	<n/a>

	baseInAddr
	Integer.
	<n/a>

	baseUnits
	Integer.
	<n/a>

	bigEndian
	Boolean
	byteOrder

	codepage
	String.

Specifies the active codepage.
	encoding

	DBCSOnly
	Boolean.

Used to indicate SI/SO needed.
	textDBCSOnly

	addrUnit
	Valid values are ‘bit’, ‘byte’, ‘word’, ‘doubleWord’, ‘halfWord’, and ‘quadWord’. Specifies the units for the width property.
	lengthUnits

	width
	Integer.

Specifies the size of the rep for the element. Should be used in conjunction with the addrUnit property.
	length

	lengthEncoding
	Enum

Whether string is null terminated, prefixed
	lengthKind

	prefixLength
	Integer
	prefixLength

	contentSize
	String.
	<n/a>

	size
	String.
	<n/a>

	attributeInBit
	Boolean.

If ‘true’, the size property is measured in bits. If ‘false’, the size property is measure in bytes.
	lengthUnits

	characterSize
	Integer.

Specifies the size of characters.
	textCharacterSize

	hostCodepage
	String

Denotes the code page used to for the decimal's representation.
	Encoding

	stride
	????
	???

	strideInBit
	????
	???

	upperBound
	Integer.

The highest allowed index for this array dimension.
	???

	lowerBound
	Integer.

The lowest allowed index for this array dimension.
	???

	stringJustification
	Enum

	textStringJustification, textCalendarJustification, textNumberJustification

	paddingCharacter
	String.

	textStringPadCharacter, textCalendarPadCharacter, textNumberPadCharacter

	numeralShapes
	Enum

Valid values ‘nominal’, ‘national’, ‘contextual’.

This property is used in bi-directional text.
	textStringBiDiNumeralShapes

	orientation
	Enum

Valid values ‘LTR’, ‘RTL’, ‘contextual_LTR’, ‘contextual_RTL’.
This property is used in bi-directional text.
	textStringBiDiOrientation

	symmetric
	Boolean.

This property is used in bi-directional text.
	textStringBiDiSymmetric

	textShape
	Enum

Valid values ‘nominal’, ‘shaped’, ‘initial’, ‘middle’, ‘final’, ‘isolated’.

This property is used in bi-directional text.
	textStringBiDiTextShape

	textType
	Enum

Valid values ‘implicit’, ‘visual’.
This property is used in bi-directional text.
	textStringBiDiTextType

	signed
	Boolean
	integerSigned

	signCoding
	Enum
	integerSignRep

	virtualDecimalPoint
	Integer
	decimalImpliedPlaces, numberImpliedPlaces

	signFormat
	Enum
	zonedSignFormat

	externalDecimalSign
	Enum
	zonedIncludedAsciiSignStyle

	floatType
	Enum
	floatType

	language
	String
	???

	defaultCodepage
	String
	<n/a>

	defaultBigEndian
	Boolean
	<n/a>

	defaultFloatType
	Enum
	<n/a>

	defaultExternalDecimalSign
	Enum
	<n/a>

	defaultHostCodepage
	String
	<n/a>

�Note that in the MRM model there is a nullPadFill property value which matches a field with the padding character (paddingCharacter) but this can be handled by nullLiteralFill by putting the paddingCharacter value in the nullValues property.

�This is equivalent to the nullReservedValues property described in the Draft DFDL proposal 013.

�I am not that comfortable with this property and would like some more motivating examples. I believe a specific example of where this functionality is required is a format where there is a bitmap in the input stream prior to the data elements with each bit indicating whether a data field is present or is null. This would require a an XPath location path to access the bitmap with a calculation on the value to determine whether the relevant bit is set or not. Should the element representing the bitmap be hidden?

Should the nullIndicatorPath just support this scenario or should it be a general mechanism that allows an XPath expression to determine whether a value is null or not?

�Rename to nullPath or perhaps nullIndicatorPath

�This is equivalent to the nullFlagDef property described in Draft DFDL proposal 013.

�How does this work on output

�I am not certain how this will work on output. See comment in section 8. What do you think?

File name: DFDL_Properties_v004.doc

Page 8 of 29
Last saved: 2006-03-22T10:19:00 (ET.US)

