

[image: image1.png]

XML Schema 1.1 Implications for DFDL
Make this a hyperlink to the Blue Pages entry for the Author

	Revision history: latest at the top please
(If this history gets too big, move it to a separate page.)

	Version
	Author
	History
	Date(yyyy-mm-dd)

	001
	Mike Beckerle
	Started
	2008-11-12

Table of Contents

31
Introduction

2
Change List and Discussion
3
2.1
XML 1.1
3
2.2
Schema language identifiers
3
2.3
Content Models
3
2.3.1 Unique Particle Attribution constraint relaxed
3
2.3.2 Open Content
3
2.3.3 Wildcard Element Name Namespace Flexibility
3
2.3.4 Xsd:all groups
3
2.3.5 XPath Usage
4

1 Introduction
DFDL is based on annotations on the XML Schema language. Now that XML Schema is approaching version 1.1 of its specification, there are changes which would improve DFDL, and other issues that must be understood.

There is a great potential for the XML Schema 1.1 specification to simplify the work of the DFDL group.

By analogy, for XML Schema 1.0, DFDL has been able to largely dispense with any discussion of namespaces. The DFDL specification inherits all that good work without having to spend time on it.

XML Schema 1.1 has the potential to provide the same benefit for:

· XPath language

· Infoset – XML Schema 1.1 defines an XDM instance and exactly how it is contructed.

· Assertions

· Alternative Types – These provide conditional definition of elements and might obviate the need for selectors.

In general the Schema 1.1 specification draws into question the current draft DFDL rules about how data format is separated from validation. E.g., we currently allow for data to be successfully parsed even though the implied XML document that would create would not validate against the implied XML Schema. This rule may have to be revisited if we are to avoid duplication of features between XML Schema 1.1 and DFDL 1.0. For example, it would be very undesirable to retain DFDL’s dfdl:assert annotation element in the presence of XML Schema 1.1’s assert element, DFDL selectors in presence of conditional type alternatives, etc.

This memo goes through the changes, as described in the non-normative http://www.w3.org/TR/xmlschema11-1/#changes which lists the changes since version 1.0 of XML Schema.
2 Change List and Discussion

2.1 XML 1.1

In general XML 1.1 helps DFDL by allowing more of the non-printing codepoints to be considered normal content of a document. (The problem with code point 0 still remains – it’s not legal XML 1.1 content, but could appear within DFDL-described strings.)

2.2 Schema language identifiers

A scheme by which XML Schema versions are properly identified by URIs is provided. DFDL should use these where precision is needed in referring to specific XML Schema specifications.
http://www.w3.org/XML/XMLSchema/v1.1 is the official URL for general reference to XML Schema 1.1, and http://www.w3.org/XML/XMLSchema/v1.0/1e/19990506 is the official URL for reference to the XML Schema 1.0 First edition, May 6 1999 working draft.
2.3 Content Models
2.3.1 Unique Particle Attribution constraint relaxed
This changes the semantics of wildcards to one that is more reasonable, easier to implement, and the same benefits accrue to DFDL-described data as to XML Schema-described documents.
2.3.2 Open Content
A new <openContent> tag has been introduced which adds to simpleContent and complexContent. This is a powerful feature which has broad implications for XML Schema-described documents.

It is unclear if this feature would be beneficial to DFDL. We have open-content situations in DFDL, but they do not necessarily correspond to the same situations that arise in XML-Schema-described documents.

· This feature needs further study, or should be omitted from DFDL 1.0 XML Schema subset.
2.3.3 Wildcard Element Name Namespace Flexibility

These features can be safely ignored for DFDL v1.0.
2.3.4 Xsd:all groups
The semantics of xsd:all have been changed to where they naturally can be used to model unordered collections of data.

This allows DFDL to eliminate the awkward xsd:sequence with dfdl:ordered=”false” property.

As with xsd:sequence, and xsd:all group would be restricted to not have min/maxOccurs specified.

Note that xsd:all groups are still top level groups. They cannot be nested inside sequences or choices. However, this has no impact on DFDL-described data since one can always place an element (having no representation implications) inside the sequence or choice, and have a xsd:all group as it’s content model.

2.3.5 XPath Usage

XML Schema 1.1 introduces ways for XPath expressions to be used in XML Schemas, in assertions and other places to refer to other parts of the schema.

This may drastically simplify DFDL if the semantics of the DFDL path language can be made consistent with XML Schema 1.1 rules.

The XML Schema 1.1 specification specifies an XDM instance document which is what the path expressions are referring to. This plays the same role as the DFDL Infoset document.

· This whole feature of Schema 1.1 needs careful study.
2.3.5.1 Check Clauses

· TBD – whole area around paths must be studied.
2.3.5.2 Assertions and the xsd:report and xsd:assert elements

· This must be studied carefully. It allows expression of many constraints, and may have impact on DFDL semantics.

2.3.5.3 XPath

· TBD

2.4 Derivation of Complex Types
Not applicable as we don’t allow type derivation in DFDL v1.0.
2.5 Complex Type Definition
There are small clarifications here which should have no impact on DFDL.
2.6 ID, IDREF and Related Types
Not applicable as DFDL does not allow ID and IDREF in its Infoset. These features in XML Schema 1.1 would not be part of the DFDL subset.
2.7 Simple Type Definitions
The anyAtomicType has been introduced. This may be useful to reference from DFDL specification since we allow only the atomic simple types. We get to say that DFDL only allows atomic simple types, instead of having to define it negatively as disallowing union and list types.
Most of the simple type material in Schema 1.1 is about list and union types which are not in the DFDL subset; hence, this material is not applicable.

2.8 Element Declarations
2.8.1 Type Tables and Alternative Conditional Types
This feature has major potential impact on DFDL because it is very desirable to have the smallest possible number of conditional features.
The semantics needs to be carefully studied to insure that use of this feature does not result in undesirable limitations that remove aggressive DFDL implementation possibilities such as compilation. Remember that one goal of DFDL is about performance.

· The material in XML Schema 1.1 which describes how validation applies in conditional situations basically introduces to XML Schema the concept of a “point of uncertainty” we have in DFDL that is resolved based on evaluating XPath expressions, assertions, and “matching” of the data to the schema.

2.8.2 xsd:error type
· This concept of error type may be useful in DFDL. More study required.
2.8.3 Multiple substitution groups and abstract elements
Not applicable.
2.9 Attributes
Nothing here suggests that we should add attributes back to the DFDL infoset; hence, these changes are not applicable.
2.10 Schema Components

This part of XSD has been enhanced so that the annotations DFDL depends on are found in all the places we need them to be found. Every schema component now carries annotations.

2.11 Validation & PSVI

Changes here appear to have no impact.
2.12 Conformance

‘Must’ and ‘error’ terminology cleanups: DFDL should use these terms consistently with XSD and define other terms where our meanings must differ.

This statement has major implications for DFDL:

· Implementations are now allowed to support primitive datatypes and facets beyond those defined in [XML Schema: Datatypes].

We must study this extensibility mechanism and see if and how it might be used to simplify DFDL.

2.13 Schema Assembly

We didn’t allow xsd:redefine already, which is now deprecated. The replacement, xsd:override, has vastly simpler semantics, and we can support it without concern. The semantics of schema assembly with xsd:override are now simple. DFDL “top level” annotations, that is those on the XSD:Schema element, can only introduce named format definitions. These override eachother in the natural way when xsd:override is used just as an overriding xsd:element declaration with the same name and namespace overrides a prior definition.

2.14 Miscellaneous
TBD: things to check – discussion of “different methods of invoking a schema processor” and that these have been given specific names.

TBD: use of terms “implementation defined” and “implementation dependent” – we should be consistent with this.

Page 1 of 6
Version of 2008-11-12T07:31

