GWD-I

dfdl-wg@ggf.org

Category: INFORMATIONAL

GGF Data Format Description Language Working Group
2009-04-02
GWD-I

Category: Informational

GGF Data Format Description Language Working Group
2009-04-02

Data Format Description Language (DFDL) v1.0

Simplified Escape Scheme
(Internal Committee Working Document)

Status of This Document

This memo provides information to the Grid community regarding the specification of a Data Format Description Language. The specification is currently a working group internal draft. It does not define any standards or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright © Global Grid Forum 2004, 2005,,2006. All Rights Reserved.

Copyright © Open Grid Forum,2009. All Rights Reserved.

Abstract

This document provides a set of supplemental properties that extend the core DFDL specification to add the ability to express additional data formats..
Revision History

	Latest entry at the top please

	Version
	Author/Contributor
	History
	Date(yyyy-mm-dd)

	
	
	
	

	
	
	
	

	002
	Mike Beckerle
	Marked Up
	2009-04-15

	001
	Alan Powell
	Extracted from v1.0 combined spec.
	2009-01-23

Contents

1Data Format Description Language (DFDL) v1.0

1Escape Schemes

1(Internal Committee Working Document)

1Abstract

2Revision History

31
Introduction

32
Properties specific to fields with text representation

33
The dfdl:DefineEscapeScheme Annotation Element

34
The dfdl:EscapeScheme Annotation Element

3The dfdl:EscapeScheme properties

3Contributors

35
Intellectual Property Statement

36
Disclaimer

37
Full Copyright Notice

38
References

1 Introduction

This document is a specification for DFDL v1.0 escape schemes. An escape scheme is a set of DFDL annotations which specify how a DFDL processor should escape characters/strings which would otherwise be interpreted as markup.

An escapeScheme can be used on any field with text representation with the exception of text fields of known length when there are no delimiters in scope.

An escape scheme is defined using the following DFDL format annotations
· dfdl:escapeScheme : Holds the DFDL properties which specify an escape scheme
· dfdl:defineEscapeScheme : Defines a name for an escape scheme, allowing it to be referenced by to elements in the remainder of the DFDL schema.

2 Properties specific to fields with text representation

	Property Name
	Description

	escapeSchemeRef
	QName
The name of the defineEscapeScheme annotation that provides the additional properties used to describe the escape scheme. If the value is the empty string then escaping is explicitly turned off.
See The dfdl:DefineEscapeScheme Annotation Element and The dfdl:escapeScheme Annotation Element .

Annotation: dfdl:element (any text item)

3 The dfdl:defineEscapeScheme Annotation Element
One or more dfdl:defineEscapeScheme annotation elements can appear within the annotation children of the xs:schema element. The dfdl:defineEscapeScheme elements may only appear as annotation children of the xs:schema element.

The order of their appearance does not matter, nor does their position relative to other annotation or non-annotation children of the xs:schema element.

Each dfdl:defineEscapeScheme has a required name attribute and a required dfdl:escapeScheme child element.

The construct creates a named escape scheme definition. The value of the name attribute is of XML type NCName. The name will become a member of the schema’s target namespace. These names must be unique within the namespace among escape schemes. Top level defined escapeSchemes are added to the DFDL processor’s global context using their fully namespace-qualified names as the identifiers.

If multiple escapeScheme definitions have the same 'name' attribute, in the same namespace, then it is a schema definition error.

Each dfdl:defineEscapeScheme annotation element contains an escapeScheme annotation elements as detailed below.
Here is an example of an escapeScheme definition:
<xs:schema ...>

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:defineEscapeScheme
 name=”myescapeScheme”>
 <dfdl:escapeScheme escapeCharacter=’/’ />
 </dfdl:defineEscapeScheme>
 </xs:appinfo>

 </xs:annotation>

...

</xs:schema>
A dfdl:defineEscapeScheme serves only to supply a named definition for a format for reuse from other places. It does not cause any use of the representation properties it contains to describe any actual data.

3.1.1 Using/Referencing a Named escapeScheme Definition

A named, reusable, escape scheme is used by referring to its name from an escapeSchemeRef property on an element. For example:

<xs:element name="foo" type="xs:string" >
 <xs:annotation><xs:appinfo source=”http://www.ogf.org/dfdl/”>

<dfdl:element representation="text"
 escapeSchemeRef="myEscapeScheme"/>

 </xs:appinfo></xs:annotation>
</xs:element>
4 The dfdl:escapeScheme Annotation Element
The escapeScheme annotation is used within a defineEscapeScheme annotation to group the properties of an escape scheme and allows a common set of attributes to be defined that can be reused.

An escape scheme defines the properties that describe the text escaping rules in force when data such as text markup is present in the data. There are three variants on such schemes,
· The use of a single escape character to cause the next character to be interpreted literally. The escape character itself is escaped by the escape escape character.
· The use of a pair of escape strings to cause the enclosed group of characters to be interpreted literally. The closing escape string is escaped by an escape escape character.

· The use of a pair of escape strings to cause the enclosed group of characters to be interpreted literally. An alternate pair of escape strings is used when the data contains the first ending escape string.

DFDL does not provide a substitution mechanism similar to XML which would replace a character entity such as < with its literal value <.

The dfdl:escapeScheme properties

	Property Name
	Description

	escapeKind
	Enum

Valid values ‘escapeCharacter
’, ‘escapeBlock
’, ‘escapeBlock2’

The type of escape mechanism defined in the escape scheme

When ‘escapeCharacter’ on unparsing a single character of the data is escaped by adding an escapeCharacter before it. If the data contains the ‘escapeCharacter’ then it is escaped by adding an escapeEscapeCharacter before the ‘escapeCharacter’. On parsing escapeCharacter’ and escapeEscapeCharacter are removed from the data.
When ‘escapeBlock’ on unparsing the entire data is escaped by adding escapeStartString to the beginning and escapeEndString to the end of the data. If the data contains the escapeEndString then first character of each appearance of the escapeEndString within the data is escaped by the escapeEscapeCharacter. On parsing the escapeStartString is removed from the beginning of the data and escapeEndString is removed from end of the data and any escapeEscapeCharacters are removed.
When ‘escapeBlock2’ on unparsing the entire data is escaped by adding escapeStartString to the beginning and escapeEndString to the end of the data unless the data contains escapeEndString when escapeStartString2 and escapeEndString2 are used instead. On parsing the escapeStartString and escapeStartString2, are removed from the beginning and escapeEndString2 and escapeEndString are removed from end of the data.

Annotation: dfdl:escapeScheme

	escapeCharacter
	String

Specifies one character that escapes the subsequent character.

Used when escapeKind = ‘escapeCharacter’ as described in ‘escapeKind’.
It is an error if escapeCharacter is empty when escapeKind is ‘escapeCharacter’
Can be a path expression or literal as specified by decorated syntax.
Escape characters contribute to the physical length of the field
Annotation: dfdl:escapeScheme

	escapeStartString
	String

The string of characters that denotes the beginning of a sequence of characters escaped by a pair of escape strings.

Used when escapeKind = ‘escapeBlock’ or ‘escapeBlock2’ as described in ‘escapeKind’.
It is an error if escapeStartString is empty when escapeKind is ‘escapeBlock’ or ‘escapeBlock2’
Can be a path expression or literal as specified by decorated syntax.

An escapeStartString string contributes to the physical length of the field

Annotation: dfdl:escapeScheme

	escapeEndString
	String

The string of characters that denotes the end of a sequence of characters escaped by a pair of escape strings.

Used when escapeKind = ‘escapeBlock’ or ‘escapeBlock2 as described in ‘escapeKind’’.
It is an error if escapeEndString is empty when escapeKind is ‘escapeBlock’ or ‘escapeBlock2’
Can be a path expression or literal as specified by decorated syntax.

A escapeEndString string contributes to the physical length of the field

Annotation: dfdl:escapeScheme

	escapeEscapeCharacter
	String
Specifies one character that escapes the subsequent escape character.

Used when escapeKind = ‘escapeCharacter’ as described in ‘escapeKind’. If escapeCharacter is empty then there is no escapeEscapeCharacter.
Can be a path expression or literal as specified by decorated syntax.

If the empty string is specified then no escaping of escape characters occurs.
It is explicitly allowed for both the escapeCharacter and the escapeEscapeCharacter to be the same character.
Annotation: dfdl: escapeScheme

	extraEscapedCharacters
	String
A space separated list of single characters that must be escaped.
Annotation: dfdl: escapeScheme

	escapeStartString2
	String

The string of characters that denotes the beginning of a sequence of characters escaped by a pair of escape strings.

Used when escapeKind = ‘escapeBlock2’ as described in ‘escapeKind’.
It is an error if escapeStartString is empty when escapeKind is ‘escapeBlock2’
Can be a path expression or literal as specified by decorated syntax.

An escapeStartString string contributes to the physical length of the field

Annotation: dfdl:escapeScheme

	escapeEndString2
	String

The string of characters that denotes the end of a sequence of characters escaped by a pair of escape strings.

Used when escapeKind = ‘escapeBlock2 as described in ‘escapeKind’’.
It is an error if escapeEndString is empty when escapeKind is ‘escapeBlock2’
Can be a path expression or literal as specified by decorated syntax.

A escapeEndString string contributes to the physical length of the field

Annotation: dfdl:escapeScheme

	generateEscape
	Enum

Valid values ‘always’, ‘whenNeeded’
Controls when escaping is used.
If ‘always’ then escaping is always used.

· when escapeKind = 'escapeCharacter' on unparsing following are escaped as described in ’escapeKind’

· The first character of any in-scope terminating markup.
· escapeCharacter

· any extraEscapedCharacters

· When escapeKind = 'escapeBlock' on unparsing the data is escaped as described in ‘escapeKind’. On parsing it is an error if escapeStartString is not at the beginning and escapeEndString is not at the end of the data.

· When escapeKind = 'escapeBlock2' on unparsing the data is escaped as described in ‘escapeKind’. On parsing it is an error if escapeStartString is not at the beginning and escapeEndString is not at the end or escapeStartString2 is not at the beginning and escapeEndString2 is not at the end of the data.

If ‘whenNeeded’ then escaping occurs in the following cases

· when escapeKind = 'escapeCharacter' on unparsing the following are escaped as described in ’escapeKind’

· The first character of any in-scope terminating markup.
· escapeCharacter

· any extraEscapedCharacters

· when escapeKind = 'escapeBlock' on unparsing the following are escaped as described in ‘escapeKind’
· any in-scope terminating markup

· escapeStartString
· escapeEscapeCharacter

· any extraEscapedCharacters
· when escapeKind = 'escapeBlock2' on unparsing the following are escaped as described in ‘escapeKind’
· any in-scope terminating markup

· escapeStartString or escapeStartString2
· escapeEscapeCharacter

· Any extraEscapedCharacters.
Annotation: dfdl:escapeScheme

	
	

5

6

7

8 References

TBD: GGF requires that only permanent documents should be cited as references. Other materials, such as Web pages or working groups, should be cited inline (i.e., see the Global Grid Forum, http://www.ggf.org). References should conform to a standard such as used by IEEE/ACM, MLA, Chicago or similar. Include an author, year, title, publisher, place of publication. For online materials, also add a URL

�There’s a tricky and complex Rationale for this having to do with scannability, etc.

I suggest to avoid revisiting this repeatedly we put an Appendix discussing this rationale (and those of other tricky design points), which we retain in the spec until we go to a formal draft/final.

�Rationale – this style seems awkward relative to just having a name attribute on dfdl:escapeScheme, but it makes it clearer where these names must be defined, and that there is no scoping of dfdl:escapeSchemes relative to each other. (Lexical scoping). Finally, it is consistent with other define forms in DFDL.

� One could use string processing in the path expression language to substitute various substrings. With valueCalc this could achieve the needed effect here.

�Prefer prefixChar

�Prefer surround

�Prefer dualSurround or surround2

�Not sure this is sufficient. This should be a superset of escapeBlock. I.e.,

“this is \” a quote inside a quoted string”

Should parse regardless of escapeBlock or escapeBlock2.

EscapeBlock2 gives you the option of instead writing

‘this is “ a quote inside a quoted string’

But it shouldn’t force you to do it that way, nor should that be preferred and generated. XML string literals allow either single or double quotes, and interior escape character. Cannonical form always uses double quotes and escapes the interior double quotes with what we call the escapeEscape character.

�I don’t believe this restriction is needed, but it is conservative to leave it in. We could remove it later.

�Ditto.

�I’m pretty sure you need this, as this is what would be used to escape the first character of the escapeStartString.

�Ditto.

�Let’s leave out all this boilerplate cruft., particularly since we’re not maintaining it.

File: ggf-dfdl-simplified-escape-scheme-v1 0 1 (2).doc

Page 1 of 8
dfdl-wg@ggf.org

Page 2 of 8

