1. The DFDL Data Model

The data model used by XSLT is the XPath 2.0 and XQuery 1.0 data model (XDM) as defined in “XQuery 1.0 and XPath 2.0 Data Model (XDM)”. Where no additional information is provided, this DFDL Data Model follows the structure and features of the XDM. Where additional items or properties need to be added to the XDM to support features of DFDL, they will be indicated and information will be provided about their mapping from a PSVI and to an XML Infoset. Where the two data models are contradictory, this specification will indicate so and provide a description of how to resolve such differences so that the DFDL Data Model can be mapped to and from an XDM.
1.1. Data Model Construction

The data model can be created during parsing as a stream of data is processed and consumed (in which case the data model represents the output of DFDL parsing). A partially constituted instance of the data model that contains all the previously parsed content from the data stream is available at any given point in the parsing process. DFDL expressions are evaluated against the current state of the partially constituted data model at the time of evaluation and unparsed content not yet processed is unavailable to the expression. This form of data model construction is the foundation of DFDL and must be supported by an implementation.
The data model can also be created from a PSVI following validation of an XML Infoset against a given DFDL Schema (in which case the data model represents the input to the DFDL processor for unparsing). In this case, the full data model is available to DFDL expressions as they are evaluated during the unparsing process. This form of data model construction should be supported by implementations that consume XML data for unparsing, though it is not strictly required. Construction of a DFDL Data Model directly from an XML Infoset is not explicitly supported.
Other methods of creating the DFDL Data Model may be provided by a given implementation.
1.2. Serialization

Serialization is the process of converting a data model instance into a sequence of octets. The general framework for serialization is described in “XSLT 2.0 and XQuery 1.0 Serialization”.
A DFDL implementation is not required to provide a serialization interface. For example, an implementation may only provide a DOM interface (see “Document Object Model”) or an interface based on an event stream. In these cases, serialization is outside of the scope of this specification.
If an implementation does support serialization, it should generally follow the pattern and functionality specified in “XSLT 2.0 and XQuery 1.0 Serialization”.

1.3. Document Order

The XDM defines the concept of “Document Order” to be “…the order in which nodes appear in the XML serialization of a document.” This generally holds true, but for the purpose of this specification, Document Order is defined to be the order in which items are defined in the DFDL Schema.
1.4. Processing Symmetry

The DFDL Data Model contains enough information to support round-tripping. That is, for a given DFDL Data Model instance I created by a DFDL parser from DFDL-described data D using DFDL Schema S, it must be possible to re-create DFDL Data Model I by first invoking a DFDL unparser to create DFDL-described data D’ using S, then re-invoking a DFDL parser to re-parse D’ using S.
1.5. Nodes

The DFDL Data Model supports all of the nodes types in the XDM. However, not all node types (such as processing instruction or comment) are required for DFDL. The same is true of node properties. The nodes and properties explicitly required are listed below. A DFDL implementation must provide them as specified. All other XDM nodes may be provided by a given DFDL implementation (though if not provided, other optional functionality such as serialization to an XML Infoset may not be available). In cases where they are provided, they should follow the XDM specification.

Nodes and properties that are potentially in conflict with XDM are indicated by a ‘*’ while nodes and properties that are new to the DFDL Data Model (and not defined in XDM) are indicated by a ‘+’.
1.5.1. Document Nodes
· * children, less permissive than XDM. There must be at least one child and there must be one and only one child element node (the root of the tree).
· + dfdl version, the version of the DFDL specification to which this information set conforms.

· + schema, a reference to a DFDL schema associated with this document, if any. If not empty, the value must be an absolute Schema Component Designator [http://www.w3.org/TR/xmlschema-ref].
1.5.1.1. Construction from an XDM instance

· children, if no children exist or the implementation does not define a single root element node when more than one exist, the XDM instance cannot be mapped to a DFDL data model instance.
· dfdl version, populated with the version of the DFDL specification supported by the DFDL processor used to construct the data model.
· schema, empty.
1.5.1.2. Mapping to an XDM instance

· children, copied.
· dfdl version, no mapping.
· schema, mapped to corresponding schema definition attributes in the resultant XDM instance for the document element.
1.5.1.3. Construction from a PSVI
· children, same as XDM.
· dfdl version, populated with the version of the DFDL specification supported by the DFDL processor used to construct the data model.
· schema, the XML Schema that was used to validate this document and produce the PSVI.
1.5.1.4. Mapping to an XML Infoset
· children, same as XDM.
· dfdl version, not mapped to Infoset.
· schema, mapped to corresponding schema definition attributes in the resultant infoset for the corresponding root element information item.
1.5.2. Element Nodes

· + schema component, A reference to a schema component associated with this element node, if any. If not empty, the value must be an absolute or relative Schema Component Designator.
· parent, same as XDM.
· node-name, same as XDM.
· * type-name, one of the XML Schema 1.0 data types supported by DFDL.

· * children, the children property is as described in XDM with the added requirement that the set is ordered with respect to the ordering of elements in the DFDL Schema referenced in the schema property. If no schema is referenced, the ordering is as defined in XDM. The children property can also contain Unresolved nodes.
· namespaces, same as XDM.
· string-value, same as XDM.
· typed-value, same as XDM.
1.5.2.1. Construction from an XDM instance

· schema component, empty.
· parent, copied.
· node-name, copied.
· type-name, copied. If the type-name is not of a type supported by DFDL, then the type-name property should contain ‘xs:untyped’.
· children, copied.
· namespaces, copied.
· string-value, copied.
· typed-value, copied.
1.5.2.2. Mapping to an XDM instance

· schema component, no mapping. It should be noted that converting to an XDM instance and back again will therefore result in the loss of schema component data.
· parent, copied.
· node-name, copied.
· type-name, copied.
· children, copied. Any Unresolved nodes are treated as Element nodes and mapped accordingly.
· namespaces, copied.
· string-value, copied.
· typed-value, copied.
1.5.2.3. Construction from a PSVI
· schema component, the schema component that validated this element node in the PSVI.
· parent, same as XDM.
· node-name, same as XDM.
· type-name, same as XDM. If the type-name is not of a type supported by DFDL, then the type-name property should contain ‘xs:untyped’.
· children, same as XDM.
· namespaces, same as XDM.
· string-value, same as XDM.
· typed-value, same as XDM.
1.5.2.4. Mapping to an XML Infoset

· schema component, not mapped.
· parent, same as XDM.
· node-name, same as XDM.
· type-name, same as XDM.
· children, same as XDM.
· namespaces, same as XDM.
· string-value, same as XDM.
· typed-value, same as XDM.
1.5.3. + Unresolved Nodes

There is an Unresolved node for each unresolvable choice in the DFDL Schema. An unresolvable choice is a choice that cannot be resolved by inspecting the data stream alone. This node type allows an external application to resolve the choice outside the scope of the parsing process.

An Unresolved node contains the unparsed section of the of the bit stream that represents the items of the choice. It contains the same properties as the Element node type. Mapping and conversion likewise behave the same as an Element node.
Unresolved nodes can be mapped out of the DFDL Data Model (for example, to XDM or an XML Infoset), but there is no explicit capability to map an Unresolved node into a DFDL Data Model. It is therefore impossible to round-trip via XML (parse a stream of data, convert the resultant DFDL Data Model to an XML Infoset, validate the XML Infoset against the DFDL Schema, convert the validated infoset back to a DFDL Data Model, and unparsed to a stream of data) if the original DFDL Data Model contains Unresolvable nodes that are not resolved before converting back to a DFDL Data Model.

· schema component, A reference to a schema component associated with this Unresolved node, if any. If not empty, the value must be an absolute or relative Schema Component Designator.
· parent, same as Element nodes.
· node-name, same as Element nodes.

· type-name, always ‘hexBinary’.

· children, empty.
· namespaces, same as Element nodes.
· string-value, same as Element nodes.
· typed-value, the value in the value space of ‘hexBinary’.
1.5.3.1. Construction from an XDM instance
Unresolved nodes cannot be constructed from an XDM instance.
1.5.3.2. Mapping to an XDM instance

Unresolved nodes are treated as Element nodes when mapping to an XDM instance.
1.5.3.3. Construction from a PSVI
Unresolved nodes cannot be constructed from a PSVI.
1.5.3.4. Mapping to an XML Infoset

Unresolved nodes are treated as Element nodes when mapping to an XML Infoset.
