DFDL Bits

Properties:
alignmentUnits
alignment
lengthUnits
length
byteOrder
binaryBooleanTrueRep

binaryBooleanFalseRep

Definition: Bit position

The data stream is assumed to be a collection of consecutively numbered unsigned bytes. Each byte is a numeric value, and bit position within an individual byte is given by numeric behavior. The bits within each byte are numbered, with the most significant bit having position 1, and the least significant bit having position 8.

This gives every bit in the data stream a specific bit position. Furthermore, the bit position of the least significant bit of byte N is numerically adjacent to the bit position of the most significant bit of byte N-1.

Definition: Bit string

For types boolean, unsignedByte, unsignedShort, unsignedInt, and unsignedLong, it is possible to specify dfdl:lengthUnits='bits', dfdl:lengthKind='explicit', and then provide a dfdl:length expression.

This expression must be a literal integer, the value of which is between (inclusively) 1 and 32, 8, 16, 32, and 64 respectively for these types. Such an element is called a bit string for brevity.

If the dfdl:length expression contains a value out of range then it is a schema definition error.
When parsing, if the data stream ends without enough bits to parse a bit string, that is, N bits are required based on the dfdl:length, but only M < N bits are available, then it is a processing error.
(Note: This is not specific to bit strings. Any binary type whose length cannot be satisfied from the data will cause a processing error. Similarly, when parsing text, if a text character is expected but not enough bits are available in the data to make up the representation of a whole character codepoint as encoded, then it is a processing error.)
Bit strings, Alignment, and dfdl:fillByte

The dfdl:alignmentUnits="bits", and dfdl:alignment="1" can be used to position a bit string anywhere in the data stream without regard for any other grouping of bits into bytes.
The numeric value of the unsigned integer represented by a bit string is unaffected by alignment.
When unparsing a bit string, alignment may cause the bits of the bit string to occupy only some of the bits within a byte of the data stream. The bits of data in the alignment fill region are unspecified by the elements of the DFDL schema, and are not found in the DFDL infoset. Such unspecified bits are filled in using the value of the dfdl:fillByte property. Corresponding bits from the dfdl:fillByte value are used to fill in unspecified bits of the data stream. That is, if bit K (K will be 1 or greater, but less than or equal to 8) of a data stream byte is unspecified, its value will be taken from bit K of the dfdl:fillByte property value.
Since the value of any bit string element is unaffected by alignment, the logical integer value for a bit-string is always computed as if the first bit were at position 1 of the bit stream. If the dfdl:length for the bit-string evaluates to M, then the bit-string conceptually occupies bits 1 to M of a data stream for purposes of computing its value.
Bits within Bit Strings of Length <= 8

Any time the length in bits is < 8, then when set, the bit at position Z supplies value 2^(M-Z), and the value of the bit string as an integer is the sum of these values for each of its bits.
Bits within Bit Strings of Length > 8

Call M the length of the bit string element in bits. In general, when M > 8 the contribution of a bit in position i to the numeric value of a bit string is given by a formula specific to the dfdl:byteOrder.
For dfdl:byteOrder='bigEndian' the value of bit i is given by 2^(M - i).
For dfdl:byteOrder='littleEndian' the value of bit i is given by a somewhat more complex formula. The following pseudo code computes the value of a bit in a littleEndian bit string. It is really just a very big expression, but is spread out over many local variables to illustrate the various sub-calculations clearly. DFDL implementations may use any way of converting bit strings to the corresponding integer values that is consistent with this:
(I do not claim the formulation below is the simplest possible expression, but it is correct – it passes various tests.)

In the pseudo code below:

· '%' is modular division (division where remainder is returned)
· '/' is regular division (quotient is returned)

· the expression 'a ? b : c' means 'if a is true, then the value is b, otherwise the value is c'
 littleEndian(bitPosition, bitStringLength) {
 assert bitPosition >= 1;
 assert bitStringLength >= 1;
 assert bitStringLength >= bitPosition;
 numBitsInFinalPartialByte = bitStringLength % 8;
 numBitsInWholeBytes = bitStringLength - numBitsInFinalPartialByte;
 bitPosInByte = ((bitPosition - 1) % 8) + 1;
 widthOfActiveBitsInByte = (bitPosition <= numBitsInWholeBytes)
 ? 8 : numBitsInFinalPartialByte;
 placeValueExponentOfBitInByte = widthOfActiveBitsInByte - bitPosInByte;
 bitValueInByte = 2^placeValueExponentOfBitInByte;

 byteNumZeroBased = (bitPosition - 1)/8;

 scaleFactorForBytePosition = 2^(8 * byteNumZeroBased);

 bitValue = bitValueInByte * scaleFactorForBytePosition;
 return bitValue;
 }
Examples

Example: consider the first three bytes of the data stream. Imagine their numeric values as 0x5A 0x92 0x00.
Positions:
00000000 01111111 11122222
12345678 90123456 78901234
Bits:
01011010 10010010

 00000000
Hex values
 5 A 9 2 0 0

Beginning at bit position 1, (the very first bit) if we consider the first two bytes as a bigEndian short, the value will be 0x5A92.
 <element name="num" type="unsignedShort"
 dfdl:alignment="1"
 dfdl:alignmentUnits="bytes"
 dfdl:byteOrder="bigEndian"
 dfdl:representation="binary"/>
As a littleEndian short, the value will be 0x925A.
 <element name="num" type="unsignedShort"
 dfdl:alignment="1"
 dfdl:alignmentUnits="bytes"
 dfdl:byteOrder="littleEndian"
 dfdl:representation="binary"/>
Now let us examine a bit string of length 13, beginning at position 2.
<sequence>
 <element name="ignored" type="unsignedByte"
 dfdl:alignment="1"
 dfdl:alignmentUnits="bits"
 dfdl:lengthUnits="bits"
 dfdl:length="1"
 dfdl:representation="binary"/>
 <element name="x" type="unsignedShort"
 dfdl:alignment="1"
 dfdl:alignmentUnits="bits"
 dfdl:byteOrder="bigEndian"
 dfdl:lengthUnits="bits"
 dfdl:length="13"
 dfdl:representation="binary"/>
 ...
Let's examine the same data stream and consider the bit positions that make up element 'x', which are the bits at positions 2 through 14 inclusive.
Positions:
00000000 01111111 11122222
12345678 90123456 78901234
Bits:
 1011010 100100

Since alignment does not affect logical value, we will obtain the same logical value as if we realigned the bits. That is, the value is the same as if we began the bits of the element's representation with bit position 1.
Realigned Positions:
00000000 01111111 11122222
12345678 90123456 78901234
Bits:
10110101 00100
The DFDL schema fragment above gives element ‘x’ the dfdl:byteOrder='bigEndian' property. In this case the place value of each position is given by 2^(M – i)
PlaceValue positions 2^(M - i)
...11110 00000000
...21098 76543210
Bit values
...10110 10100100
Hex values
 1 6 A 4
The value of element 'x' is 0x16A4. Notice how it is the most-significant byte -- which is the first byte when big endian -- that becomes the partial byte (having fewer than 8 bits) in the case where the length of the bit string is not a multiple of 8 bits.

For dfdl:byteOrder="littleEndian". The place values of the individual bits are not as easily visualized. However there is still a basic formula (given in the Java code above).

Looking again at our realigned positions:

Realigned Positions:
00000000 01111111 11122222
12345678 90123456 78901234
Bits:
10110101 00100
The place values of each of these bits, for little endian byte order can be seen to be:

PlaceValue positions
00000000 ...11100
76543210 ...21098
Bit values
10110101 ...00100
Hex values
 B 5 0 4
We must reorder the bytes for little endian byte order. The value of element 'x' is 0x04B5. In little endian form, the first 8 bits make up the first byte, and that contains the least-significant byte of the logical numeric unsignedShort value. The additional bits of the partial byte are once again the most significant byte; however, for little endian form, this is the second byte. The second byte contains only 5 bits, those make up the least significant 5 bits of that byte, but that logical 5-bit value makes up the most-significant byte of the unsignedShort integer.
Booleans

The properties dfdl:binaryBooleanTrueRep and dfdl:binaryBooleanFalseRep are unsigned integers. Specifically, their numeric ranges are restricted as if of type xs:unsignedInt, with additional restriction in range when the dfdl:lengthUnits=’bits’ and dfdl:length are used to specify fewer than the maximum of 32 bits.
�SKK -- The string should be 01001001 - ie it needs to be shifted right by 1 position.

This change does affect your follow on examples..

�I decided to fix this by changing the hex, and leaving the bits as I had them.

�SKK -- It would be 0100100

�Fixed by changing the hex, so that the original bits work right.

