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1 Introduction

Data interchange is critically important for Grid computing. Grid computing is about getting distributed software and hardware resources to work together. Inevitably these resources read and write data in different formats. General tools for data interchange are essential to solving such problems. Grid computing is also at least partly about high-performance including high-performance data handling. DFDL enables powerful data interchange as well as very high-performance data handling for the Grid.
We envisage 3 dominant kinds of data in the future: 

· Textual XML data.

· Binary data in standard formats. 

· Data with DFDL descriptors 

Textual XML data is the most successful data interchange standard to date. All such data is by definition new. That is, created in the XML era. In addition it is usually small data because of the large overhead that XML tagging imposes. Standard binary data is also relatively new, and is more reasonable for larger data because of the reduced costs of encoding and more compact size. Examples standard binary formats are data described by modern versions of ASN.1, or the use of XDR. These techniques lack the self-describing nature of XML-data. Scientific formats such as NetCDF and HDF are used in some communities provide self-describing binary data. In the future there may be binary-encoded XML data as there is a w3c working group that has been formed on this subject. Both XML format and standard binary formats are prescriptive in that they prescribe a representation of the data. To use them your applications must be written to conform to their encodings and mechanisms of expression.

DFDL suggests an entirely different scheme. The approach is descriptive in that one chooses an appropriate data representation for an application based on its needs and one then describes the format using DFDL so that multiple programs can directly interchange the described data. DFDL descriptions can be provided by the creator of the format, or developed as needed by third parties intending to use the format. That is, DFDL is not a format for data; it is a way of describing any data format. DFDL is intended for data commonly found in all kinds of calculations including scientific and numeric computations as well as the record-oriented representations found in commercial data processing.
DFDL can be used to describe legacy data files, to simplify transfer of data across domains without requiring global standard formats, or to allow third-party tools to easily access multiple formats. DFDL can also be a powerful tool for supporting backward compatibility as formats evolve. 

DFDL is designed to provide this flexibility but to admit implementations to achieve very high levels of performance. DFDL descriptions are separable and native applications do not need to use DFDL libraries to parse their data formats. DFDL parsers can also be highly efficient. The DFDL language is designed to admit implementations that use lazy evaluation of formats and to support seekable, random access to data. The following goals are achievable by DFDL implementations:

Density: fewest bytes to represent information content (without resorting to compression). Fastest possible I/O.

Optimized I/O. Applications can write data aligned to byte, word, or even page boundaries and to use memory-mapped I/O to insure access to data content with the smallest number of machine cycles for common use cases without sacrificing general access. 

DFDL can describe the same kinds of abstract data that other binary or textual data formats can describe, but can go further and describe almost any possible representation scheme for them, For example, multiple representations that are optimized for specific uses. It is the spirit of DFDL to support canonical data descriptions that correspond closely to the original in-memory representation of the data, and also to provide sufficient information to write as well as to read the given format.
2 Notational Conventions
The key words must, must not, required, shall, shall not, should, should not, recommended, may, and optional in this Working Draft are to be interpreted as described in [RFC 2119]. Note that for reasons of style, these words are not capitalized in this document.

(TBD: uniform way to talk about suppressibility of warnings/errors?)

Herein where the phrase "must be consistent with" is used, it is assumed that a conforming DFDL implementation must check for the consistency and issue appropriate diagnostic messages and fail when an inconsistency is discovered.
3 Glossary

DFDL – Data Format Description Language

Byte - The term “byte” herein refers to an 8-bit octet.

DFDL Processor - A program that uses DFDL descriptors in order to process data described by them.

DFDL Schema - an XML Schema containing DFDL annotations to describe data format.

TBD fix this - : Array - An XML element whose XSD element declaration specifies either maxOccurs > 1, or minOccurs = 0 and maxOccurs >= 1. That is, not only are elements with multiple occurrances arrays, but an optional element is viewed as a variable length array. 

Implied XML Schema - The XML Schema that results from erasing all DFDL annotations in an DFDL Schema. An obvious application of DFDL technology is to convert data back and forth between a DFDL-described format and XML data described by the corresponding implied XML schema.

“Rep. Prop.” Or “Rep property” – an abbreviation of “representation property”.
Aggregate - In XSD the constructs which can have multiple children are xsd:sequence groups, xsd:all groups, and the vectors implied by use of multiple-occurrences. Collectively these are referred to as aggregate constructs or aggregates.

Physical layer – A DFDL Schema adds format annotations onto a XSD language schema. The annotations describe the physical representation or physical layer of the data. 

Logical layer -  A DFDL Schema with all the DFDL annotations erased is an ordinary XSD language schema. The logical structure described by this XSD is called the DFDL logical layer.

Contiguous representation – When all the bits that make up a data item are found adjacent to each other then that data item is said to have a contiguous representation. Note that alignment padding is allowed between bits and we would still think of the representation as contiguous, but bits containing the representation of any other data item are not allowed in between. 

Discontiguous representation – When some of the bits making up the representation of an item are not adjacent to the others and are separated from them by part or all of the representation of other data items, then the item is said to have a discontiguous representation.

'must fail' – There are certain error situations when all conforming DFDL processors should behave consistently. These are often in situations where the DFDL schema is ambiguous or incorrect. In these cases, if some DFDL processors went forward with processing and others did not then the DFDL standard would be weakened since users would not be able to rely on DFDL schemas to specify formats independently of the characteristics of specific DFDL processor implementations. In these cases, when we require a DFDL processor to NOT process data we say that it 'must fail'. Usually, such 'must fail' situations also will entail providing appropriate diagnostic support, such as an error message. The means for providing diagnostic support is beyond the scope of this specification.  

Referential transparency – When a definition can be named and moved to another location and referenced from the original location without changing the meaning of the schema, then the schema is said to be referentially transparent. That is, whether something is included directly or referenced doesn't matter. Referential transparency must take into account that you can't literally take the XSD referenced definition/declaration text and move it without taking into consideration the namespaces may change from the referenced schema to the referencing schema. (Could have different target namespaces.) But conceptually, if you keep all the symbols in the right namespaces, moving the definition from point of definition to the point of reference should not change the meaning of the schema. 

Format Annotations - the syntactic elements by which format information is decorated onto XML Schemas

Format Properties - the attributes on format annotations which specify characteristics of data format. These are distinguished from the control attributes on format annotations which control whether the annotations are to be used as a whole, or the scoping of those annotations over what parts of the XML Schema.
4 Outline of the Specification

This document is organized as follows:

Introduction section

·         What is DFDL?

·         Model 

Language basics

· syntax

· scoping and context

· guards and selectors on annotations

· basic arrays

· variables

· layering (hidden layers and value calc/referencing)

Detailed semantics

· properties and conversions

Arrays

Built-in specifications

Extensions
(
TBD: where does the big list of properties go? 

Where does the stuff on defaults, nulls, optionals, etc. go?
Where does stuff on Wildcards and Opaque go?

)
5 What is DFDL?

TBD
6 DFDL Information Model

When using DFDL, the format of data in a data stream or file is described by means of a DFDL Schema. Data described by DFDL schemas obeys the DFDL Information Model.
The DFDL Information Model is shown in conceptual UML below.
TBD: picture showing elements with complex (seq, all, choice) and simple types, and dimensionality.
TBD: description of picture: including that strings can contain any character at all (none are reserved, and precision of numbers is specified exactly)
We express the DFDL Information Model for data using a subset of the XML Schema Description Language (XSD). XSD provides a standardized schema language suitable for capturing hierarchical data models such as the DFDL Information Model. 
A DFDL Schema is an XML Schema containing only a subset of the constructs available in full W3C XML Schema Description Language. Within this XML Schema, special DFDL annotations are distributed which carry the information about the data format or representation.

A DFDL Schema is a valid XML Schema. However, the converse is not true since the DFDL Information Model does not include many concepts that appear in XML Schema.
6.1 DFDL Subset of XML Schema

The DFDL subset of XSD is a general model for hierarchically-nested data. It lacks most of the XSD features used to describe the peculiarities of XML as a syntactic textual representation of data.

The following lists detail the similarities and differences between general XSD and this subset.

DFDL Schemas consist of:

· standard XSD namespace management

· standard XSD import and include management for multiple file schemas

· complexType definitions

· local element declarations with optional dimensionality via maxOccurs and minOccurs.

· global element declarations

· DFDL appinfo annotations describing the data format

· These simple types: string, float, double, decimal, long, int, short, byte, unsignedLong, unsignedInt, unsignedShort, unsignedByte, boolean, date, time, dateTime, duration

· TBD: others? - hexBinary, base64Binary for opaque types?

· 'sequence' groups 
· TBD: for all the groups, can we stipulate they are without occurs on them? Can we reserve occurs for elements?

· TBD: 'all' groups

· 'choice' groups

· TBD: ? a subset of type derivation capabilities
· Reusable Groups: named model groups

· Element references

· Group references

The following constructs from XML Schema are not used as part of the DFDL Information Model of DFDL v1.0 schemas, however, the data model may be extended to use them in future versions of DFDL.

· Attribute declarations

· Fully general type derivations

· Union and list simple types

· These atomic simple types: normalizedString, token, Name, NCName, QName, language, positiveInteger, nonPositiveInteger, negativeInteger, nonNegativeInteger, gYear, gYearMonth, gMonth, gMonthDay, gDay, ID, IDREF, IDREFS, ENTITIES, NMTOKEN, NMTOKENS, NOTATION, anyURI

· Reusable Groups: attribute groups

· Identity Constraints (TBD: currently uniqueness constraints are used  used in an array example)

· Substitution Groups 

· Attribute references
· Redefine - This version of DFDL does not support xsd:redefine. DFDL schemas may not contain xsd:redefine directly or indirectly in schemas they import or include.

Note that the syntax of the DFDL annotations is XML syntax and it may use concepts from the above list. We distinguish the DFDL data model use of an XSD concept from its syntactic use in describing a DFDL annotation's textual syntax.
7 Syntax

DFDL annotations appear wherever annotations are allowed in the XML Schema. To distinguish DFDL annotations from other annotations the xs:appinfo source URI http://dataformat.org/ is used. 

The content of the DFDL annotations, that is, the attributes and sub-elements of the DFDL annotation elements, are specified by an XML schema which is described in this document, and available for validation at http://dataformat.org/dfdl-1.0/dfdl.xsd 

TBD: someday it will be available there.

7.1 DFDL Annotation Elements

DFDL specifies 2 primary annotation elements where format properties can be expressed:

· dfdl:format - establishes use of format properties for parts of a schema.

· dfdl:defineFormat - defines reusable format definitions

In addition there are a set of construct-specific annotation elements; however, these are just syntax assistance and are equivalent to dfdl:format annotations and so are orthogonal to scoping. See the section on construct-specific annotation elements below.

There are several other definitional annotation elements in the DFDL annotation syntax. These are:

· dfdl:defineVariable

· dfdl:defineProperty

· dfdl:defineConversion

· dfdl:useConversion

· dfdl:setVariable

· dfdl:useTypeAlias (TBD: still doing this?)

· dfdl:property

· TBD: elements for escape/quoting sequences

· TBD: others?

7.2 dfdl:format: Putting Formats to Use

A data format  can be 'used' or put into effect for a part of the schema by use of the dfdl:format annotation element. 

The dfdl:format annotation element is not allowed at the top level of a schema, that is as an annotation on the xs:schema element. However, it can appear as an annotation on any declaration or definition of the schema (element, type, group) local or global:

<xs:schema ...>

...

 <element name="foo">

  <complexType>

    <xs:annotation>

      <xs:appinfo source=”http://dataformat.org/”>

        <dfdl:format applies="toScope" 

                     ref=”aBaseConfig” 

                     repType="text" 

                     encoding="UTF-8"/>
      </xs:appinfo>

   </xs:annotation>

...everything here will have the specified representation properties ...

</element>

...

</xs:schema>
Note that besides dfdl:format, there are other DFDL annotations (e.g., dfdl:setVariable) which can also be found in the same annotation locations.

7.3 Special Attributes and Representation Properties

dfdl:format has several special attributes:

· 'applies' with values 'hereOnly' or 'toScope'

· 'ref' used to reference named formats (see dfdl:defineFormat below)

· TBD: attributes for selectors/guards

All other attributes on dfdl:format annotation elements are representation property bindings. The concept of scoping in this document applies only to representation property bindings and to representation properties inherited via the 'ref' attribute.
7.4 Representation Property Bindings

Within the dfdl:format annotation elements are bindings for representation properties of the form:

 Property="Value" 
For example:

repType="text" 

       separator=","
The Property is the name of the representation property. The Value is an XML string literal corresponding to a value of the appropriate type. 

See Appendix: About Literal String Values in DFDL. 

See also Appendix: About XML-Disallowed Character codes in Literal String Values in DFDL.

7.5 Dynamic Representation Properties

It is possible for a representation property to be determined at runtime from the data. For example, in some data formats, the delimiter to be used to separate elements is stored as a value of an element of a header record. This allows the delimiter to vary from one data set to another so as not to interfere with characters used in the data. 

This is expressed by use of the curly brace characters ‘{“ and ‘}’. 

· Single braces are interpreted as surrounding an expression which will be evaluated to obtain the property value. Single braces should be matched.

· Double braces are used to insert literal braces and do not have to be matched.

The expression language is used for specifying paths to other element values and parts of the data as well as to compute values. See section 7.6 Expression language for further details on expressions.

Some representation properties, such as inputValueCalc are defined to always have an expression as their value. In this case the single-braces are optional.
7.6 Expression language

TBD: There are a number of reasons to move to an XQuery basis for the expression language. Currently we're describing only an XPath-like expression language here, but we expect to have to replace this in the future. TBD: the examples which motivate this XQuery need have to go in the rationale sections/appendices.
7.6.1 Paths and inter-element reference

The language used to address elements and attributes in data described by a DFDL schema is called DPath. Though DPath is based on XPath, there are several key differences that must be understood. The terminology used in this chapter will mirror that used in the W3C’s XPath Specification document (http://www.w3.org/TR/xpath). 

Except where stated, DPath and XPath behave in exactly the same manner.

7.6.1.1 Expression Language Data Model

DPath has a more restrictive data model than XPath because it is designed specifically for DFDL documents and not for XML documents in general. Whereas XPath can handle seven different types of nodes, DPath only handles two types of nodes: Element nodes and attribute nodes. This obviates the need for Path Steps based on the type of node. The expression /a/child::text() is legal in XPath but not in DPath. The only node test supported by DPath is the node() test, which matches any node type in XPath.
7.6.1.2 Location Paths

Location Paths are the most frequently used DPath construct. Location Paths are used to select a set of nodes from the DFDL document. As in XPath, Location Paths consist of one or more Path Steps separated by the ‘/’ character. They may be absolute or relative.

Location Paths are evaluated with respect to their Initial Context. The Initial Context is the Context before any of the path’s steps have been evaluated. Each step in the path selects the set of nodes that have the specified relationship to the current Context node. Independent Location Paths are always evaluated with respect to the Initial Context. This is one of the primary differences between XPath and DPath. In XPath, independent Location Paths are evaluated with respect to the current Context. The example below illustrates the difference.  

TBD: It would be better to be consistent with XPath, but it makes expressions quite hard to work with the way XPath's rules work. If we had XQuery like 'let' variable binding this issue goes away. So we need XQuery, or at least XPath with 'let' added to it if we want to avoid this digression from the way XPath works. 

	Location Path

	<xs:element name=”top”>

  <xs:element name=”foo” type="xs:int"/>

  <xs:element name=”bar” type="xs:int"

    dfdl:valueCalc="{ /top/foo[position()] }"/>

  </xs:element>

</xs:element>

	XPath Interpretation
	DPath Interpretation

	The position() function is evaluated on the element “foo” because it is the context node.
	The position() function is evaluated on the element “bar” because it is the Initial Context node.


7.6.1.3 Path Steps

The syntax of DPath Path Steps is slightly more restrictive than that of their XPath cousins. Due to the smaller data model, most node tests are no longer necessary. For this reason, processing-instruction(), comment(), and text() are not valid in DPath. The only allowed node test is node(). All of the XPath axes are supported, including attribute:: and its abbreviation @.

7.6.1.4 Predicates

In XPath, Path Steps are allowed to have Predicates. Predicates may contain any valid expression and are used to filter node sets. DPath also supports predicates on Path Steps, but they are used to index arrays instead. An error will be reported if a Path Step with a Predicate does not evaluate to an array element. This means that numeric access to the children of sequences is not allowed in DPath. DPath also breaks the XPath convention of 1-based indexing. In DPath, the first element of an array is at index 0.
7.6.1.5 Expressions and calculations

DPath supports all of XPath’s mathematical operations.. DPath also implements XPath’s standard function library, which provides string manipulation capabilities.

TBD: XPath says all math is done in double precision. It is likely that this is insufficient for our needs. E.g., you can’t accurately compute an unsignedLong using double precision.
7.7 Scope Control

When a dfdl:format annotation has applies="toScope" the annotation provides scoped properties. That is, it places the property bindings into the context so that they can be referenced by all constructs within the scope of the annotated construct.

There can be nests of schema constructs with dfdl:format on them, These are added to a new local context in the order visited, and the usual rules of precedence apply, which is to say that a property defined by an annotation in an inner local context takes precedence over one from any predecessor context.

Conversely, when a dfdl:format carries the applies="hereOnly" attribute, then the representation properties on it (and those obtained via the 'ref' attribute) are applied only to the annotated construct and are not scoped over anything it encloses.
7.7.1 Default for 'applies' attribute of dfdl:format

If omitted, the default value for the applies attribute is 'hereOnly'. 

7.8 dfdl:defineFormat - Reusable Data Format Definitions

One or more dfdl:defineFormat annotation elements can appear within the annotation children of the xsd:schema element. The order of their appearance does not matter, nor does their position relative to other non-annotation children of the xsd:schema element. Each dfdl:defineFormat has a required name attribute and an optional baseFormat attribute. The construct creates a named data format definition. The value of the name attribute is of XML type NCName. The format name will become a member of the schema’s target namespace. These names must be unique within the namespace. Top level defined formats are added to the DFDL processor context using their namespace-qualified names (QNames) as the identifiers. 

If multiple format definitions have the same 'name' attribute, in the same namespace, then it is an error and DFDL processors must fail.
The dfdl:defineFormat elements may only appear as annotation children of the xs:schema element.
Each dfdl:defineFormat annotation element contains format annotation elements as detailed below.

Here is an example of a format definition:

<xs:schema ...>

  <xs:annotation>

    <xs:appinfo source=”http://dataformat.org/”>

      <dfdl:defineFormat name=”myConfig”            

                         baseFormat="someOtherFormat">

        <dfdl:format encoding="utf-8"

                     separator="\n" />

    </xs:appinfo>

</xs:annotation>

...

</xs:schema>
TBD: is dfdl:defineFormat also used to contain things like dfdl:defineProperty or conversion declarations? A named "format definition" can also include these things.
A dfdl:defineFormat serves only to supply a named definition for a format for reuse from other places. It does not cause any use of the representation properties it contains to describe any actual data. 

The contents of the defineFormat element are restricted forms of the dfdl:format annotation elements which provide representation properties. The restrictions prohibit use of the 'ref' attribute, the 'applies' attribute, and TBD test/guard attributes. 

7.9 Inheritance for dfdl:defineFormat

(TBD: move to semantics section?)
A dfdl:defineFormat declaration can inherit from another named format definition by use of the 'baseFormat' attribute. This allows a single-inheritance hierarchy which reuses definitions. When one definition extends another in this way, any property definitions contained in its elements override those in any inherited definition. 

Conceptually, the baseFormat inheritance chain can be flattened and removed by copying all inherited property bindings and then superseding those for which there is a local binding. Throughout this document we will assume baseFormat inheritance is fully flattened. That is, all baseFormat inheritance is first removed by flattening before any other examination of properties occurs.

7.10 Using a Format Definition

A named, reusable, format definition is reused by referring to its name from a dfdl:format annotation using the 'ref' attribute. For example:

<dfdl:format applies="hereOnly" ref=”reusableDef" encoding="ebcdic-cp-us" />

The behavior of this format definition is as if all representation properties defined by the named format definition were instead written directly on this dfdl:format annotation; however, these are superceded by any representation properties that are defined here such as the encoding property in the example above. The scope control applies attribute controls the scoping of the combined set of property definitions. 
7.11 Empty Bindings

Setting a representation property's value to the empty string doesn't remove the setting, but sets it to the empty string value. If a property is found in the context and the empty string is the value, that halts the search for the value and the returned value of the binding is the empty string value.

This is only legal for some string-valued properties. For example, in delimited text representations, it is sensible for the separator to be defined to be the empty string. This turns off use of separator delimiters. For other string-valued properties, it is an error to assign them the empty string value. For example the character set encoding property cannot be set to the empty string. DFDL processors must detect these errors and must fail.

TBD: the above clarification belongs elsewhere in the spec. In addition, any property that can have empty string as its value must say so in the documentation of the property. E.g., separator.
7.12 Additional Specialized Annotation Elements

Given the large number of properties, it is useful to have some specialized annotation elements which do not accept all possible representation properties, but which instead accept only the subset of the representation elements that are suitable for the annotated XSD construct. DFDL provides these additional specialized annotation elements:

· dfdl:sequence

· dfdl:all

· dfdl:choice

· dfdl:element

· dfdl:any
These are equivalent to writing a dfdl:format annotation containing the same representation property bindings. The table below indicates the subset of representation properties allowed on each of the specialized annotation elements.

	Schema Construct
	Matching Annotation Element
	Allowed properties

	xs:sequence
	<dfdl:sequence ... />
	encoding, separatorEncoding,

separator

separatorKind

(others TBD)

	xs:choice
	<dfdl:choice ... />
	TBD

	xs:all 
	<dfdl:all ... />
	same as for dfdl:sequence

	xs:element declaration or reference without occurrences
	<dfdl:element ... />
	initiator, terminator

(TBD: everything meaningful for elements, without occurrence properties)

	xs:element declaration or reference with 2 or more possible occurrences
	<dfdl:element .../>
	occursSeparator

initiator, Terminator

(TBD: everything meaningful for elements, including occurance properties)

	xs:any
	<dfdl:any ... />
	(TBD: suitable for any wildcards)

	all other locations
	<dfdl:format .../> That is, there is no helper annotation element
	All properties


Note that the DFDL extensibility mechanisms (TBD reference) allow the set of properties to be expanded. By default a new property binding can be placed on any of the construct-specific annotations as well as on dfdl:format or used in short form as a non-native attribute. The extensibility mechanism also provides a means to restrict which construct-specific annotations on which the property can be bound. (TBD reference to section on how to do this.)

7.13 Representation Property Binding Syntax: Element Form

The representation properties can sometimes have complex syntax, so two forms are provided for expressing them syntactically. 

Attribute form is shown in all the above examples. 

Element form looks like this:

<xs:schema ...>

  <xs:annotation>

    <xs:appinfo source=”http://dataformat.org/”>

      <dfdl:defineFormat name=”myConfig”>

        <dfdl:format ref=”someOtherConfig”>

          <dfdl:property name='encoding'>utf-8</dfdl:property>

          <dfdl:property name='separator'>\n</dfdl:property>

        </dfdl:format> 

      </dfdl:defineFormat>

    </xs:appinfo>

</xs:annotation>

...

</xs:schema>

All representation properties can have their bindings expressed in attribute form or element form. Element form is mostly used for properties that themselves contain the quotation mark characters and escape characters so that they can be expressed without concerns about confusion with the XSD syntax use of these same characters.

It is an error if the same property is expressed both as an attribute and using a dfdl:property sub-element of a format annotation. DFDL processors must detect this error and fail.

There are also some representation 'properties' which always need element-based syntax. See the specification  for Escape Sequences (Cross reference TBD). 

The dfdl:format attributes 'applies', 'ref', and TBD: selectors/guard attributes, must be expressed as attributes since they are not considered to be ordinary representation properties.

7.14 Short Form for Format Annotations
To save textual clutter, a short-form syntax for format annotations is also allowed. Non-native attributes are examined by the DFDL processor. Those which correspond to the QNames of built-in or user-declared DFDL properties are are assumed to be equivalent to specific kinds of DFDL long-form annotations.

7.14.1 Short Form Syntax 

Short form annotations are equivalent to long-form annotations. For example the two forms below are equivalent. The first is a short-form of the second:

<xs:element name="foo">

  <xs:complexType>

     <xs:sequence dfdl:separator="\t" >

      ...

     </xs:sequence>

  </xs:complexType>

</xs:element>

<xs:element name="foo">

  <xs:complexType>

    <xs:sequence>

      <xs:annotation><xs:appinfo source=”http://dataformat.org/”>

        <dfdl:format separator="\t" /> 

      </xs:appinfo></xs:annotation>

      ...

    </xs:sequence>

  </xs:complexType>

</xs:element>

Another example:. 

<xs:element name="foo" type="xs:int" maxOccurs="unbounded"

                       dfdl:repType="text" 

                       dfdl:occursSeparator=","/>

<xs:element name="foo" type="xs:int" maxOccurs="unbounded">

      <xs:annotation><xs:appinfo source=”http://dataformat.org/”>
        <dfdl:format repType="text" occursSeparator=","/> 

      </xs:appinfo></xs:annotation>

</xs:element>

7.14.2 Error cases for Short-Form Annotations

TBD: attribute support

In order to preserve the ability to use attribute declarations as part of the logical model in a future version of DFDL, we currently reserve the use of applies='hereOnly' on complexType declarations.

A short-form annotation with applies="hereOnly" on a complexType definition (global or local) is currently always an error. DFDL processors must detect this and fail, just as they must for the equivalent long-form annotation:
<xs:element name="foo">

<xs:complexType dfdl:separator="\t" 

                dfdl:applies="hereOnly" > <!-- ERROR -->
     <xs:sequence>

      ...

     </xs:sequence>

  </xs:complexType>

</xs:element>

<xs:element name="foo">

<xs:complexType>

      <xs:annotation><xs:appinfo source=”http://dataformat.org/”>

        <dfdl:format separator="\t"

                     applies="hereOnly" /> <!-- ERROR -->

      </xs:appinfo></xs:annotation>

    <xs:sequence>

      ...

    </xs:sequence>

  </xs:complexType>

</xs:element>

8 Context: Concepts

We describe the semantics of DFDL in terms of a logical description of how a parser might proceed to operate on the data. Any implementation that provides operations with consistent behavior is valid.

For example, a parser might well use a lazy strategy, and evaluate only the parts of a large source needed by the application. Also, there are many ways that the context might be managed, using efficient data structures, caching, and so on. These details are left to implementations.
8.1  DFDL parser

DFDL provides a way to add annotations to an XML schema such that the schema can be used to describe the format of a non-XML data source, formatted for example in ASCII text or binary representations.

A DFDL Parser is an application or code library which can take as input:

1. XML Schema annotated with DFDL annotations and 

2. One or more data sources

It is able to use the DFDL description to interpret the data sources and realize an XML data model. The XML data model can then be written out (as XML) or accessed through an API. 

Throughout this document we will describe the behavior of a logical DFDL Parser. Any implementation of a DFDL Parser with equivalent behavior is valid. For example, for efficiency reasons a real implementation of a DFDL Parser is likely to be lazy in its evaluation of a large data source and only realize those parts of the data which are required by the application it is servicing.
Similarly there is a notion of a DFDL Unparser the unparser works from an XML document, a DFDL annotated schema and possibly additional information and writes out to one or more sources in non-XML formats. 

Often both parser and unparser would be implemented in the same piece of code and so we do not always distinguish them. (Although they may, of course, be different pieces of code).

The term DFDL schema simply refers to a DFDL annotated schema.

The logical DFDL parser’s state consists of:

· The DFDL schema and its position in it.

· the context.

· a data stream this is a typed, cursor based stream from which data is pulled (or to which it is pushed) when required.

TODO

· There is a technical issue with establishing namespaces in annotations (and indeed the context) which needs to be addressed.
· Term for describing the input is undecided candidates include: feed, source, stream
· The term for the application that writes data out was discussed candidates include:  Unparser, Serializer or Writer
8.2 Context

The context of the logical DFDL parser is a logical store of values which is dynamically modified as the parser processes a DFDL schema. It is conceptually organized as an XML document, this allows us to store structured, typed values and to use XPath expressions to reference them. The concept of a context is limited to being a value store and as indicated above it represents part of the state that the DFDL parser uses when processing a document.

For example let us suppose a very simple context were to look like:

<context>

  <numberOfFields>3</numberOfFields>

</context>

From within DFDL we could have an annotation that referenced that value using an XPath. We adopt the convention that any XPath string preceded by a ‘$’ refers to an entry in the context. This we could refer to the value of this element within a DFDL annotation using the XPath: “$numberOfFields”.

Entries in the context will be referred to as context entries, context values or properties. The terms are synonymous.

We can add data to the context from DFDL directly:

<xs:annotation><xs:appinfo>

  <dfdl:setGlobal name=”numberOfFields” type=”xs:integer” value=”3”/>

</xs:appinfo></xsannotation>

We can also copy values from the output into the context. Suppose we have an element in the document called “zipCode”, represented as an integer. We can place a copy of this into the global context using:

<xs:element name=”numberOfFields” type=”xs:int”           

            dfdl:setGlobal=”GlobalNoFields” />

This will add a new element of type xs:int to the context. The element will be called “GlobalNoFields”. It will be populated it with the same value that as the output element “zipCode”. The global context element can be referenced from anywhere below this point in the document using the XPath “$GlobalNoFields”.

Before the logical DFDL parser begins processing a DFDL schema it builds the default context
. It CAN make arbitrary modifications or additions to the default context (e.g. based on command-line flags) to construct the global context for the document. This mechanism allows the processor to pass in values and/or set properties etc. to influence the processing of the document. A critical value to set is to define the root element of the document.

Once processing begins the global context can be added to by the parser, but values in the global context cannot be modified or deleted i.e. the global context is write once.

As the parser visits an annotation in a branch of the tree of a DFDL schema, the annotations can write to the local context for that branch. Values in the local context can obscure any settings from higher up the tree from the perspective of any actions taken by the parser at that point in the document or at any place lower down that branch of the document tree. This process could be thought of as extending and overriding the data object. 
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Figure 1 Illustrating how the local context is constructed by each parent annotation obscuring values in the global or proceeding contexts. The values in the context at any point in the document are found by looking for them first in the immediate local context and then in its parent and so on.

To set a local context value we can do one of the following:

<dfdl:set name=”$numberOfFields” value=”5”/>

or (if it does not yet exist):

<dfdl:set name=”$numberOfFields” value=”5” type=”xs:int”/>

The local contexts are treated like a stack that follows the DFDL schema tree. When the parser enters a node N of the XML Schema tree a local context c(N) is created for that branch. That local context builds on the local context from the N’s parent. Any children of N will construct local contexts built on c(N). When all the children of N have been parsed the parser and the parser  leaves N, c(N) is destroyed.

8.3 Test attribute

The “dfdl:set” and “dfdl:setGlobal” statement has an optional attribute “test”. The test contains an XPath. If this is included the set statement is only applied if the XPath evaluates to a non-Null value that is not FALSE. 

This can be used to set values conditionally. For example, the following sets the value of numberOfFields to 5 if and only if it has a sibling called size which evaluates to the string “small”:

<dfdl:set name=”$numberOfFields” value=”5” type=”xs:int” 

       test=”../size=’small’”/>

It also allows set statements that only apply if the value they refer to has not, already been set:


<dfdl:set name=”$numberOfFields” value=”5” type=”xs:int” 

       test=”not($numberOfFields)”/>

8.4 Data independent attribute

A data independent property is a value in the context that has been declared static:

<dfdl:set name=”$numberOfFields” value=”5” type=”xs:int” 

       dataIndependent=”true”/>


A data independent property may not be set with reference to any values which are dependant on the data i.e. its value may not be set with an XPath that points to an element from the data or to a value derived from the data such as position().

Data independent properties can be evaluated entirely from the DFDL Schema itself with no reference to the data.

TODO default state could be data independent and data dependent must be declared 

8.5 Position attribute

The “dfdl:set” and “dfdl:setGlobal” has a further optional attribute “position”. When a context value is part of a structured property and it being placed into a sequence the “position” attribute can be used to set its position.

The position attribute is an XPath that must evaluate to the strings “first”, “last” or a number from 0..N where N is the current length of the sequence. If the value is “first” the new element is placed first in the sequence. If the value is “last” the new element is placed last in the sequence. If the value is a number the new value is inserted into the sequence so that the number is its new position.

<dfdl:set name=”$listOfFields/zipCode” value=”94118” type=”xs:int” 

       position=”last”/>

8.6 Rules

The following rules apply to setting and referring to values in the context:

· No forward references – XPaths that refer to values in the document must refer to values that have already been parsed and instantiated, i.e. ones higher up the document.

· When an element is added to any level of context it must have a unique (fully qualified) name.

· Values in the context have types associated with them, whenever a value is set at a local level it must conform to the type of its parent value

8.7 Parser traversal of DFDL schema

The behaviour of the logical DFDL Parser is to start its operation at the root node of the XML Schema. It proceeds to work down the XML Schema tree. At each node it visits there can be an annotation. Each annotation can change the local context (details below). When the parser reaches a simple type it evaluates it updates its context with respect to the local annotation and then attempts to populate the output data model with a value of the appropriate type.

When visiting a globally declared type the parser will proceed to visit the annotations of that type after visiting the annotations up to its point of inclusion in the main XML tree. 

When visiting a derived type, the parser will visit any annotations in the root of the type first. 

Consider Example 1 below. The comments describe the order in which the annotations are visited. In evaluating testElement1 testProp will have the value 4 because this is the last thing to be added to the local context before the type is evaluated. In evaluating testElement2 testProp will have the value 3.
Example 1
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:simpleType name="otherNewType">



<xs:annotation>



<!-- Visit this annotation sixth -->




<xs:appinfo>





<dfdl:property name="testProp" value="4"/>




</xs:appinfo>



</xs:annotation>



<xs:restriction base="newType">




<xs:maxInclusive value="5"/>



</xs:restriction>


</xs:simpleType>

<xs:simpleType name="newType">



<xs:annotation>




<xs:appinfo>




<!-- Visit this annotation third and fifth-->




<dfdl:property name="testProp" value="3"/>




</xs:appinfo>



</xs:annotation>



<xs:restriction base="xs:integer">




<xs:maxInclusive value="10"/>



</xs:restriction>


</xs:simpleType>

<xs:element name="root">



<xs:complexType>




<xs:annotation>





<xs:appinfo>





<!-- Visit this annotation first -->






<dfdl:property name="testProp" value="1"/>





</xs:appinfo>




</xs:annotation>




<xs:sequence>




<xs:element name="testElement1" type="newType">






<xs:annotation>







<xs:appinfo>







<!-- Visit this annotation second -->








<dfdl:property name="testProp" value="2"/>







</xs:appinfo>






</xs:annotation>





</xs:element>




<xs:element name="testElement2" type="otherNewType">






<xs:annotation>







<xs:appinfo>







       <!-- Visit this annotation fourth -->








<dfdl:property name="testProp" value="5"/>







</xs:appinfo>






</xs:annotation>





</xs:element>



</xs:sequence>



</xs:complexType>


</xs:element>
</xs:schema>
8.8 Variable examples

These examples of the use of context are borrowed from the document by Geoff Judd on variables. They demonstrate how the semantics required by the variables in that document can be supplied by the concept of “context” described here. The syntax is essentially equivalent, although I am using tag and attribute names that are more suggestive of the semantics I have given than Geoff’s were.

A simple example where the number of repeats of an element is given by the previous element is shown below:
<xsd:element name=”outerElem”>

<xsd:complexType>
    <xsd:sequence>

    

<xsd:element name=”numberOfEntries” type=”xsd:int” dfdl:setGlobal=”COUNT”/>

    

<xsd:element name=”repString” type=”xsd:string” 

                 
minOccurs=”0” maxOccurs=”unbounded” 

                
 dfdl:repeatCount=”$COUNT”/>

  

</xsd:sequence>

</xsd:complexType>
</xsd:element>
Below is the same example used in the Choices document but modified to use wildcards and variables.    
  <xsd:element name=”envelope”>


<xsd:complexType>

           <xsd:choice dfdl:resolutionMethod=”useInitiator”> 


   <xsd:element name=”envA” dfdl:initiatorPattern=”aaa”>



<xsd:complexType>



  <xsd:sequence>




.......

                   <xsd:element name=”metaData”>

                     <xsd:complexType>

                       <xsd:sequence>

                         <xsd:element name=”messageType” type=”xsd:string”

    dfdl:setGlobal =”MSG_ID”>

                         ......




    </xsd:sequence>




  </xsd:complexType>




</xsd:element>




.......




<xsd:element name=”textBlock”>




  <xsd:complexType>





<xsd:any dfdl:resolutionMethod=”useCalc”

                         dfdl:aliasId=”$MSG_ID”/>




  </xsd:complexType>




</xsd:element>



   </xsd:sequence>

               </xsd:complexType>



.......



</xsd:element>



......

            </xsd:choice>


</xsd:complexType>

</xsd:element>

<xsd:element name=”mess1” dfdl:alias=”1”>


<xsd:complexType>


.......


</xsd:complexType>

</xsd:element>

<xsd:element name=”mess2” dfdl:alias=”2”>


<xsd:complexType>


.......


</xsd:complexType>

</xsd:element>

            <xsd:element name=”mess3” dfdl:alias=”3”>


<xsd:complexType>


.......


</xsd:complexType>

</xsd:element>
8.9 Inclusions in the context

Here is a list of standard elements that SHOULD always be present in the context

· <rootElement>nameOfRootOfSchemaTree</rootElement >

· <parseDirection>unparsing</parseDirection>

· …

What should be in this list?
9 Composition of Multiple Schemas

A DFDL schema can include or import another schema in the usual manner for XML schemas.

Data format definitions (the dfdl:defineFormat annotations) define names which are in the target namespace of the schemas where they reside.  

Data format definitions that extend others, and data format uses that extend definitions must reference using the 'baseFormat' or 'ref' attributes respectively. The value provided for the referenced definition is a QName, and must be interpreted with respect to the proper namespace as specified in a namespace qualifier.

10 Scoping Behavior

To understand the behavior of scoping in DFDL it is useful to look at some examples. Consider the following:

<xs:schema ...>

...

<!—no top level dfdl:format allowed. Only dfdl:defineFormat. -->

 <xs:element name="foo">

  <xs:complexType>

    <xs:annotation><xs:appinfo source=”http://dataformat.org/”>

        <dfdl:format applies="toScope"

                     ref=”aBaseConfig" 

                     encoding="ebcdic-cp-us" />

    </xs:appinfo></xs:annotation>

    <xs:sequence>

        <xs:element name="F1" type="xs:int"/> 

        <xs:sequence>

          <xs:annotation>
            <xs:appinfo source=”http://dataformat.org/”>

              <dfdl:format applies="toScope" 

                           repType="text" encoding="us-ascii" />

            </xs:appinfo></xs:annotation>

          <xs:element name="F2" type="xs:int" />

          <xs:element name="F3" type="xs:int">

            <xs:annotation>

              <xs:appinfo source=”http://dataformat.org/”>

                  <dfdl:format applies="hereOnly" 

                               repType="text" encoding="utf-8" />

              </xs:appinfo>

            </xs:annotation>

        </xs:element>

    </xs:sequence>

  </xs:complexType>

</xs:element>

...

</xs:schema>
In the above example, element F1 has character set encoding ebcdic-cp-us specified by the enclosing dfdl:format construct. This is overridden for the inner sequence elements F2 and F3, where the dfdl:format construct at that tier specifies character set encoding of us-ascii. However, element F3 has a dfdl:format annotation which further supersedes that with the definition of character set encoding is utf-8.

The exact position of an enclosing dfdl:format annotation having applies="toScope" doesn't matter to constructs contained within it. Consider the following example:
<xs:element name=”myElement”>

  <xs:annotation><xs:appinfo source=”http://dataformat.org/”>

    <dfdl:format applies="toScope" ref=”ebcdicRep” length=”2”/>

  </xs:appinfo></xs:annotation>

  <xs:complexType>

    <xs:sequence>

        <xs:element name=”f1” type=”xs:int”/>

        <xs:element name=”f2” type=”xs:string”/>

    </xs:sequence>

The elements f1 and f2 will have their representation properties drawn from the format named ebcdicRep, as will the sequence containing them.

Note that the exact position of the format annotation doesn't matter in this case in that moving the annotation inward onto the complexType construct or the sequence construct is entirely equivalent. Hence, the fragment below is equivalent to the one just shown above:

<xs:element name=”myElement”>

<xs:complexType>

    <xs:annotation><xs:appinfo source=”http://dataformat.org/”>

      <dfdl:format applies="toScope" ref=”ebcdicRep” length=”2”/>

    </xs:appinfo></xs:annotation>

    <xs:sequence>

        <xs:element name=”f1” type=”xs:int”/>

        <xs:element name=”f2” type=”xs:string”/>

    </xs:sequence>

      ...

Note : The above illustration is specific for anonymous / local types but clearly not for a similar situation involving a reference to a global complex type.  In case there was an annotation defined at global complex type then we cannot push the annotation defined at the element onto the complex type as that would change the meaning for other locations referencing that same named complex type.

10.1 Non-Scoped Format Annotations

When a dfdl:format annotation carries the applies="hereOnly" attribute then it applies only to that annotated construct and not to any contained constructs. 

There are some situations where this behavior is very important. Notice the following example:

<xs:element name="myElement">

  <xs:annotation><xs:appinfo source=”http://dataformat.org/”>

       <dfdl:format applies="toScope" 

                    separator=";" />  <!-- default is ";" -->

  </xs:appinfo></xs:annotation>

  <xs:complexType>

    <xs:sequence>

      <xs:annotation><xs:appinfo source=”http://dataformat.org/”>

        <dfdl:format applies="hereOnly" 

                     separator="\t"/> <!-- separator is "\t" -->

      </xs:appinfo></xs:annotation>

      <xs:sequence> <!—- this sub-sequence separator is ";" -->
         ...

      </xs:sequence>

    </xs:sequence>

      ...

In the above, the first format annotation establishes that the default separator to be used for sequences is a semicolon. The first nested sequence inside the element specifies an override of the terminator to use "\t" or tab. However, because it is provided with applies="hereOnly" this does not change the default separator which is the semicolon which will be used for the second nested sequence. 

Multiple dfdl:format annotations are allowed on the same item to allow different format annotation elements to be used to organize the various representation property bindings into logical categories as the author of the DFDL schema deems appropriate.

Some of these dfdl:format elements can setup applies="toScope" properties and others can setup applies="hereOnly" properties. The meaning is as if the applies="toScope" annotation was on an immediately surrounding construct. That is, the specific applies="hereOnly" format annotation takes precedence over the annotation with applies="toScope" for this construct itself.

When multiple dfdl:format annotations occur at the same annotation point, those with applies='toScope' are combined, and those with applies="hereOnly'" are combined separately. Within these two groups, there cannot be any duplicate properties specified within that group. In addition there can be only one use of 'ref' in each group. DFDL processors must detect this error (the duplicate properties) and fail. 

In DFDL Version 1.0, a dfdl:format annotation with applies="hereOnly" is only valid as an annotation on element references, element declarations, group references, sequences, all groups, and choice groups. DFDL processors must detect the error and fail if these are incorrectly positioned.

(Note: this version 1.0 restriction reserves the ability for later versions of DFDL to add support for XML Schema attribute declarations.)
There are several more important cases to clarify. The first has to do with repeating elements (occurances):

<xs:element name="myElement" maxOccurs="10">

<xs:annotation><xs:appinfo source=”http://dataformat.org/”>

  <dfdl:format  applies="hereOnly"

                repType="text"

                encoding="ascii"

                initiator="("

                terminator=")"

                occursSeparator=","

                integerSigned="true"/> <!--ERROR -->

    <dfdl:format applies="toScope" 

                 terminator=";" />  <!-- default is ";" -->

  </xs:appinfo></xs:annotation>

  <xs:complexType>

    <xs:sequence>

       ... <!-- separated by ";" -->

    </xs:sequence>

      ...

In the above we see that the dfdl:format annotation  carrying the applies="hereOnly" attribute does apply to this element's occurrences, that is its dimensionality. In addition, the initiator and terminator apply to the element as a whole (the entire array, not each occurrence) so they are also valid. However, since the type is a complex type, the integerSigned binding is ignored when processing the constructs within the complex type since it was not setup as a scoped default. Hence, integerSigned here can only be about this specific element construct itself, not anything it contains. Since the type is complex, not an integer, this is an error.

DFDL processors are required to detect this error and fail.

(Note: could be a warning, but it is best to make things strict and then back off later. If you make it lax you can never tighten it.)

Another example:

<xs:element name="myElement">

<xs:annotation><xs:appinfo source=”http://dataformat.org/”>

  <dfdl:format applies="hereOnly"

               occursSeparator=","

               byteOrder="bigEndian"/>

  </xs:appinfo></xs:annotation>

  <xs:simpleType>

    <xs:extension base="int"> <!-- will be bigEndian -->
       ....

    </xs:extension>

      ...

In the above we see that the byteOrder property applies to the simple type even though it is expressed using a type derivation (extension in this case) and the applies="hereOnly' is specified.. 

10.2 Scoped Properties on Simple Types

Because DFDL allows for the possibility of a complex representation for a simple type, it can be meaningful for a format annotation on a simple type to specify applies="toScope".

For example:

<xs:element name="myElement" type="xs:string">

<xs:annotation><xs:appinfo source=”http://dataformat.org/”>

  <dfdl:format applies="toScope"

                byteOrder="bigEndian"

                complexRepType="cleverStringType"

                inputValueCalc="{ ./contents }"/>

</xs:appinfo></xs:annotation>

</xs:element>

In the above, the complexRepType property is used to refer to an XSD complex type definition called "cleverStringType" which is used as the representation of the string named myElement. The inputValueCalc expression reaches into this type definition to obtain the value of it. 

In this situation. the byteOrder="bigEndian" property is scoped over the cleverStringType complex type definition so that any binary data used in that complex type will be interpreted as bigEndian unless otherwise specified in the type definition itself.

TBD: expand the example, or reference the section of the spec on layering and layered representations.

10.3 Selector/Guard Orthogonal to Scoping

TBD: example to illustrate that selectors/guards can be used to choose different baseFormats. Example should be of the envelope payload idiom with radically different baseFormats. Alternative: reference the section of the spec. on selectors/guards an dput the example there.
10.4 Complex Type References

When a dfdl:format annotation with a applies="hereOnly" appears on an element declaration which references a complex type definition, then properties sensible for the element itself will apply to the element itself; however, the properties will not apply to the referenced type. 

DFDL processors are required to detect specification of any properties other than those that are sensible and fail if any are specified.

TBD: could be a warning, but I like to make things strict and then back off later. If you make it lax you can never tighten it.

Conversely, annotations that are inside a dfdl:format annotation with applies="toScope" will apply to the element itself and to the contents of the type definition for that instance of the use of the type definition. This is consistent with the principle of referential transparency, in that if you replaced the type reference by an inline copy of the type, the behavior is the same.

This example illustrates this sometimes unanticipated behavior:

<xs:simpleType name="sType">

   <xs:extends base="xs:int"/>

</xs:simpleType>

<xs:complexType name="cType">

  <xs:sequence>

    <xs:element name="f1" type="xs:int"/>

  </xs:sequence>

</xs:complexType>

<xs:element name="myElement">

  <xs:annotation><xs:appinfo source=”http://dataformat.org/”>

       <dfdl:format applies="toScope" 

                    repType="binary"

                    byteOrder="bigEndian"/> <!-- default bigEndian -->

  </xs:appinfo></xs:annotation>

  <xs:complexType>

    <xs:sequence>

      <xs:element name="a" type="sType">

         <xs:annotation><xs:appinfo source=”http://dataformat.org/”>

            <dfdl:format applies="hereOnly" 

                         byteOrder="littleEndian"/> <!-- USED -->

         </xs:appinfo></xs:annotation>

      </xs:element>

      <xs:element name="b" type="cType">

         <xs:annotation><xs:appinfo source=”http://dataformat.org/”>
            <dfdl:format applies="hereOnly" 

                         byteOrder="littleEndian"/> <!-- ERROR -->

         </xs:appinfo></xs:annotation>

      </xs:element>

      <xs:element name="c">

         <xs:annotation><xs:appinfo source=”http://dataformat.org/”>

            <dfdl:format applies="hereOnly" 

                         byteOrder="littleEndian"/> <!-- ERROR -->

         </xs:appinfo></xs:annotation>

         <xs:complexType>

           <xs:sequence>

             <xs:element name="f1" type="xs:int"/> <!-- bigEndian -->

           </xs:sequence>

         </xs:complexType>

      </xs:element>

    </xs:sequence>

 </xs:complexType>

</xs:element>

In the above. Consider element a inside myElement. Here the dfdl:format annotation applies to the referenced definition of sType since sType is a simple type; hence, the integer which is the base of the sType definition will be interpreted as littleEndian.
To contrast with this, in the above example, consider element "b" inside the "myElement" element. Because this element has complex type, the non-scoped dfdl:format annotation is incorrect. It does not have any effect at all on the data format used for the named type cType. To change the byteOrder used throughout the complex type one must change the applies="hereOnly" attribute to applies="toScope" in the dfdl:format annotation. This is true whether or not the type is named and referenced as for element "b" above, or is included as an anonymous type definition as for element "c" above. 

DFDL processors must detect the error on elements 'b' and 'c' above, and fail.
10.5 Override behavior for Element References and Group References

The behavior of format annotations for element references and group references is different than that for type references. An annotation on an element or group reference overrides any top-level annotation on the element or group declaration being referenced. 

Consider the following example:
<xs:element name="s">

  <xs:annotation><xs:appinfo source=”http://dataformat.org/”>

       <dfdl:format alignment="4"/> <!-- can be overridden -->

  </xs:appinfo></xs:annotation>

<xs:simpleType>

    <xs:annotation><xs:appinfo source=”http://dataformat.org/”>

       <dfdl:format byteOrder="bigEndian"/> <!--cannot be overridden-->

    </xs:appinfo></xs:annotation>

    <xs:restriction base="xs:int">

       ….

    </xs:restriction>

  </xs:simpleType>

</xs:element>

<xs:element name="c">

  <xs:annotation><xs:appinfo source=”http://dataformat.org/”>

        <dfdl:format alignment="4""/> <!-- can be overridden -->

  </xs:appinfo></xs:annotation>

  <xs:complexType>

    <xs:annotation><xs:appinfo source=”http://dataformat.org/”>

       <dfdl:format byteOrder="bigEndian"/><!--cannot be overridden-->

    </xs:appinfo></xs:annotation>

    <xs:sequence>

      <xs:element name="f1" type="xs:int"/>

    </xs:sequence>

  </xs:complexType>

</xs:element>

In the above, we see that these are top-level element declarations, one for a simple type and one for a complex type element. The top level annotations on these constructs can be overridden at the point of reference to these declarations. However, any annotations further into the structure of those element declarations cannot be overridden. 

Consider the example below which references the above global element declarations:
<xs:element name="myElement">

  <xs:annotation><xs:appinfo source=”http://dataformat.org/”>

       <dfdl:format byteOrder="bigEndian"/> 

  </xs:appinfo></xs:annotation>

  <xs:complexType>

    <xs:sequence>

      <xs:element ref="s">

         <xs:annotation><xs:appinfo source=”http://dataformat.org/”>

            <dfdl:format 

                  alignment="8"/> <!-- OVERRIDE: stricter alignment -->

         </xs:appinfo></xs:annotation>

      </xs:element>

      <xs:element ref="c" maxOccurs="10">

         <xs:annotation><xs:appinfo source=”http://dataformat.org/”>

            <dfdl:format 

                  applies="hereOnly"

                  occursStopValue="0"     <!-- USED -->

                  integerSigned="false"/> <!-- ERROR: Complex Type -->

            <dfdl:format 

                  alignment="8""              <!-- OVERRIDE -->

                  byteOrder="littleEndian" /> <!-- DOESN’T OVERRIDE!--> 

         </xs:appinfo></xs:annotation>

      </xs:element>

    </xs:sequence>

 </xs:complexType>

</xs:element>

In the above, the element reference to 's', overrides the alignment declaration provided on the declaration of element 's'. 

In the reference to element 'c', the top level annotation's occursStopValue property is used since it is about the occurrences expressed directly on the element reference; however, the integerSigned property is an error as this element reference is to an element declaration having complex type. However, the next dfdl:format annotation's contents override any definitions given in the element declaration for 'c'. Note also how the attempt to override the byteOrder property will be ignored as the declaration for 'c' specifies the byteOrder property not at top level, but further inside the declaration where it cannot be overridden.

This override behavior is consistent with a specific mechanism for substituting declarations for their references. Let's first consider the element 's'. There is a DFDL annotation on the element declaration and also on the element reference. If we were textually substituting the declaration's contents for the reference we would have to somehow combine these two annotations together because the resulting XSD does not have two separate places to put two annotations. The override semantics comes from combining the two annotations in a manner that prefers the bindings from the element reference to those on the element declaration; though only those at the top level of the element declaration.

The semantics of element references can be expressed in terms of textual substitution as follows:

<xs:element name="d" type="dType">

<!-- annotation 1 -->

</xs:element>

<xs:element name="myElement">

  <!-- annotation 2 -->

<xs:complexType>

  <!-- annotation 3 -->

   ....<xs:sequence> 

          <!-- annotation 4 -->

          ....

         <xs:element ref="d">

            <!-- annotation 5 -->

        </xs:element>

         ...

      </xs:sequence>

</xs:complexType>

</xs:element>

We are interested in the interaction of annotations 1 and 5. The above can be rewritten as follows:

<xs:element name="myElement">

  <!-- annotation 2 -->

<xs:complexType>

  <!-- annotation 3 -->

   ....<xs:sequence> 

          <!-- annotation 4 -->

          ....

         <xs:sequence> <!-- introduced to let us annotate -->

           <!-- annotation 1 with applies="toScope"-->

           <xs:element name="d" type="dType"

              <!-- annotation 5 -->

           </xs:element>

         </xs:sequence>

         ...

      </xs:sequence>

</xs:complexType>

</xs:element>

In the above we eliminated the top level elements that are referenced, and substituted their definitions; however, we also introduced a sequence to surround the point of reference. This gives us a place to hang the annotation 1 which was previously on the element declaration. Notice how annotation 5, from the reference, is now placed in such a way that it will naturally override any format definitions in annotation 1 by way of the ordinary means by which annotations are resolved.

Top level DFDL properties in global element and group declarations can be thought of as parameters with default values. At the point of reference to these declarations, one can specify (think "pass" parameters) bindings which will override the defaults.
10.6 Linked Properties

TBD: are linked properties needed. That is, is generality needed here, or can the conversions that use these linked properties provide the back-down strategy that says if separatorEncoding is not found in scope then it will use encoding instead. Perhaps there is no general 'linking' mechanism needed.

Some properties are linked. For example, separatorEncoding is linked to the ordinary 'encoding' property in that if there is no definition found for separatorEncoding, then we would like to use the encoding property as its value.

This is achieved by use of an expression which explicitly links the two. 

    <dfdl:format separatorEncoding='{ $dfdl:encoding }' />

This property definition indicates that separator encoding is to get its value from the encoding property. A definition like the above frequently exists in a base format specification. Bindings of new values for the separatorEncoding property are very infrequently used; hence, it is most convenient to have just one property to control the character set encoding for all text in the data.

Linked properties bring up the issue of when the link is followed. When the original property value is determined to be a link to another property (via the normal context lookup rules described below), then the linked property's value is then determined starting all over from the innermost context where the original lookup began. 
This is easy to clarify with an example:

  <xs:annotation><xs:appinfo source=”http://dataformat.org/”>
     <dfdl:defineFormat 

           name="myFormat 

           separatorEncoding='{ $dfdl:encoding }'/> 

  </xs:appinfo></xs:annotation>

 <xs:complexType name="myType">

    <xs:annotation><xs:appinfo source=”http://dataformat.org/”>

       <dfdl:format encoding="ascii" ref="myFormat"/>

    </xs:appinfo></xs:annotation>

    <xs:sequence separator=","> <!-- separator encoding is ascii -->
      ...

    </xs:sequence>

</xs:complexType>

In the above, the top level format definition named 'myFormat' defines the separatorEncoding property to be linked to the regular 'encoding' property.  Now, inside the type definition 'myType' the sequence has a separator specified. The separatorEncoding property is not defined, so it will be looked up in the context. The only place it will be found in the context is via the baseFormat reference to 'myFormat' where it will be determined to be a link to the encoding property. The value for the encoding property is then determined starting from the point of the original sequence. Since there is no encoding property specified directly, the encoding is looked up in the context. There a definition is found which was provided by the annotation on the complexType 'myType'. So that binding value for encoding is used as the value for separator encoding.

Note: The base format definitions supplied with DFDL will likely link all variations of encoding to 'encoding', all variations of byteOrder to 'byteOrder', all variations of bomRequired to 'bomRequired', and so forth.

10.7 Resolution Rules for Format Properties

As a DFDL processor walks the DFDL schema, it maintains the current information about what representation properties are in effect and what values they have by way of the context. The global context contains named sets of property bindings created by the dfdl:defineFormat annotations. The local contexts contain individual property bindings created by dfdl:format.

A property binding is a pair (name, value). The name is the property name. The value is either a literal value, or is a string corresponding to an expression to be evaluated to obtain the value. Since the expression can contain paths including relative path components, we depend on the maintenance of a context element containing the current absolute path at the level of that context so as to give meaning to relative path expressions when evaluated. 
10.7.1 Context Manipulations for dfdl:defineFormat

The DFDL processor first processes all dfdl:defineFormat annotations contained in the schema, including all those in all included/imported schema files. When a DFDL processor encounters a dfdl:defineFormat annotation, it places a named set of property bindings into the global context. The new set of property bindings is associated in the global context with the QName of the defined format which comes from the name attribute on the dfdl:defineFormat element, and also the target namespace of the schema in which it is defined. 

In each named set of property bindings, the baseFormat inheritance chain is flattened as described above in the section on inheritance.

10.7.2 Context Manipulations for dfdl:format Annotations

This specification describes a full traversal of the data, but implementations are free to optimize and only parse or write data corresponding to a subset of all data as required to satisfy the demands of an application using DFDL processing. 

The top level element of the schema and its format annotation are either explicit in the schema, or implicit as described below in section 7.2. 

At this point we have a schema where there is conceptually a distinguished top-level element declaration, and we have a global context, and a dfdl:format annotation which is actually or conceptually on the top level element.

The DFDL processor begins at the top level element and descends over its structure. 

At annotation locations, there can be one or multiple DFDL annotations, some with applies="hereOnly", and others with applies="toScope". Hence, each time the DFDL processor encounters a DFDL annotation, it creates two new local contexts associated with the annotated construct. 

A local context is created first for all the applies="toScope" annotations. This is called the default local context. 

Another local context is created for all the applies="hereOnly" annotations. This is called the specific local context, and it is 'inside' the default local context, that is, it refers to the default local context as a predecessor.

If there is only a single annotation at this annotation location, then only one or the other of the default and specific local contexts will contain property bindings depending on the 'applies' attribute setting. The other local context conceptually exists, but contains no property bindings. 

When the annotated schema item is an element declaration with simple type, or a model-group (sequence, all, choice), then the specific local context is used first to obtain representation property values. The new default local contexts are pushed onto a stack in the usual manner as the schema is traversed, each new default local context's property bindings supercede those of the preceding default local contexts. 

A property value is determined by looking for it in the default and specific contexts as just described. If a binding for it is found, then that value is used. If not then we move down the stack of default local contexts to the predecessor and look for the binding there, repeating until a value is found. 

Note that the global context does not contain individual property bindings, (rather, only named sets of bindings referenced by the 'ref' attributes) so it is not searched.
If no value is found it is an error and DFDL processors must fail.

Note also the section above on 'linked properties'.
When the annotated schema item is an element declaration with complex type, then the specific local context (if it exists) is used for the occurrence and other immediate properties of the item. Only the stack of default local contexts is used for the contents inside the complex type.

When the annotated schema item is an element or group reference, then the annotations at the reference and those of the declaration are combined as in section 10.5, and then the element reference is treated as if it were an equivalent element declaration.

Consider this example. We'll refer to the lines by number below.

1 <xs:complexType name="ty" dfdl:applies="toScope" 

                            dfdl:separator=";"

                            dfdl:terminator="$" >

2
<xs:sequence dfdl:applies="hereOnly" 

                   dfdl:separator="!"

                   dfdl:terminator="" > <!-- empty string -->
3

<xs:element "a"  type="xs:int">

3.5

4

<xs:element "b"  type="xs:int">

4.5

5

<xs:sequence dfdl:applies="toScope" terminator="*" >

6


<xs:element name="x" type="xs:string"/>

6.5

7


<xs:element name="y" type="xs:string"/>

8

</xs:sequence>

8.5

9

<xs:element "c"  type="xs:int">

9.5

10
</xs:sequence>

10.5

11 </xs:complexType>

Some data matching the above description might be:


3$!4$!line6data*;line7data**!9$

In the above, let's examine what property bindings are in the specific local context and default local context as we process each element.

	line number
	default local context
	specific local context
	discussion
	data from above example data 

	1
	((separator = ";"

terminator="$"))
	nothing
	applies="toScope" means we push a new default local context
	

	2
	((separator = ";"

terminator="$")) 
	separator="!"

terminator=""
	applies="hereOnly" so we create a specific local context. When processing the sequence itself, we will use this specific local context.
	

	3
	((separator = ";"

terminator="$"))
	nothing
	element "a" is terminated by "$" because we find terminator in the context.
	3$

	3.5
	((separator = ";"

terminator="$"))
	separator="!"

terminator=""
	we're now between elements of the sequence. This sequence has a specific local context. In that there is a separator, so we use it. In other words, we expect to see "!"
	!

	4
	((separator = ";"

terminator="$"))
	nothing
	element "b" is terminated by "$" like element "a" was.
	4$

	4.5
	((separator = ";"

terminator="$"))
	separator="!"

terminator=""
	Like line 3.5, we expect to see "!"
	!

	5
	new default local context extended with new binding

((terminator="*")

(separator = ";"

terminator="$"))
	nothing
	notice there is no specific local context. So this sequence's separator will come from the default local context. and the default terminator for elements will now be "*"
	

	6
	same

((terminator="*")

(separator = ";"

terminator="$"))
	nothing
	after element "x" we expect its terminator which is "*". This is found in the default local context as the specific local context is empty as we process the element. 
	line6data*

	6.5
	same

((terminator="*")

(separator = ";"

terminator="$"))
	nothing
	After the element we expect this sub-sequence's separator which is ";" coming from the default local context.
	;

	7
	same

((terminator="*")

(separator = ";"

terminator="$"))
	nothing
	similarly for element "y" we expect its terminator from the default local context, and then the sequence separator from the sequence's specific local context.
	line7data*

	8
	same

((terminator="*")

(separator = ";"

terminator="$"))
	nothing
	(TBD: check this)

the terminator "*" is in scope for this sequence, so we'll get an additional "*" for termination of the sequence
	*

	8.5
	pop stack back to

((separator = ";"

terminator="$"))
	separator="!"

terminator=""
	after this sub-sequence we get the separator for the enclosing sequence, which is "!" since at line 2 which is the beginning of the sequence we had a specific local context.
	!

	9
	same

((separator = ";"

terminator="$"))
	nothing
	element "c" is followed by its terminator "$"
	9$

	9.5
	same

((separator = ";"

terminator="$"))
	separator="!"

terminator=""
	no separator since we're at the end of the sequence, 
	

	10
	same

((separator = ";"

terminator="$"))
	separator="!"

terminator=""
	(TBD check this!)

terminators is empty string in the specific local context so we don't get another "$" here at the termination of the sequence.

Contrast this with line 8.
	

	11
	nothing
	nothing
	back to whatever context this type was being used in.
	


TBD: see TBD's in the above table. Current properties document as of 2006-06-02 says that terminator applies to sequences as well as elements; hence, we get the double terminator at line 8, one for the element and one for the sequence holding it. 

11 Guards and Selectors on Annotations

12 Basic Arrays

Arrays are a ubiquitous and critical computer science data structure. The fundamental logical data structure is a contiguous (in memory) list of elements, where each element has a specific data type. 
Arrays are used in many ways, so there are a great variety of logical views and interpretations of such one-dimensional arrays, including matrices, multidimensional tables, "images",  "maps” (e.g. of Illinois), and "points in an n-dimensional physical space". 
In addition, arrays may be implemented by a variety of mechanisms. A given one dimensional array need not be stored as a memory image, it could be stored in sparse structures (such as lists), blocked structures (such as B-trees), and even as computed procedures. 
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Figure 2
Figure 2 sketches this general model of arrays. A given one dimensional array of elements (b) might have many alternative logical views (a), and it might be stored in different ways (c). In this model, these layers (a-c) are related via algorithms. For example, algorithms define the relationship between elements of a B-tree (in (c)) and the one dimensional array it represents (b). Another algorithm defines the relationship between the elements of a logical multi-dimensional array (a) and the one dimensional array of elements (b).
12.1 Standard XML Markup for Arrays

The model in Figure 2 presents challenges for standard XML markup. Standard XML can model one dimensional arrays, e.g., as an element with “maxOccurs” greater than one. This description is correct for the middle element in Figure 2b.

XML markup also can represent many different logical views of data that might be stored in arrays (i.e., Figure 2a).  For example, there are several ways to model a two dimensional array of numbers (see Section 17 below).  But given the variety of logical views for a similar one dimensional array, there is no universal standard for representing arrays in XML.
Similarly, XML markup can represent lists, tables, or blocked data structures in many ways. Therefore, it is possible to define an XML schema for most stored data, i.e., for Figure 2c.
To implement the model discussed above, there might be several XML elements defined, which should be related by the appropriate algorithms. The DFDL provides mechanisms to precisely specify this complex model

12.2 Basic DFDL Markup for Arrays
The  DFDL defines markup to handle input and output for a logical one dimensional array of any type. The DFDL markup can include black box and white box transformations to define what is needed to decode/encode the storage (e.g. blocked storage, conventions for missing values, etc.) into a contiguous, ordered sequence of elements (between (c) and (b) in  Figure 2). 
Let’s call this one dimensional array (as in Figure 2b), the DFDL Array.  The DFDL Array contains all the data in the array, including missing or implied values, in a canonical storage order. Note that the stored data may or may not be stored in this form. 
The DFDL Array is sufficient for many uses, e.g., for transmission across a network, or as input to a program that will provide the logical interpretation.

The main points of the approach are:

· DFDL requires a logical layer that is a one-dimensional array of elements (termed here the DFDL Array)
· DFDL defines markup for many representations of a one dimensional array

· The one dimensional DFDL Array may be used to access the data 

· Alternatively, views such as higher dimensional arrays are mapped to the DFDL Array through
· DFDL transforms to elements of XML logical models, or

· External interpretations guided by logical descriptions

Section 17 presents extensions to define the logical views of the one dimensional array.
12.3 Example

The DFDL Array is logically just an XML element with maxOccurs equal to the number of elements in the array.

For example, an array of 15 floating point numbers might be marked up in XML as:

<anArray>

8.5 9.6 10.7 11.8 1.9 2.0 3.1 4.2 34.1 56.2 68.3 80.4 45.7 49.2 72.7

</anArray>
The schema might be:

<xs:complexType name=”exampleArrayType”>
    
<xs:sequence>


  
<xs:element name="values" type="float" maxOccurs=”15”/>
 


</xs:sequence>
</xs:complexType>
<xs:element name="exampleArrayElement" type=”exampleArrayType”>
This element could be read from data in several forms. For example, the data might be a simple comma-delimited list in ASCII, such as:

8.5,9.6,10.7,11.8,1.9,2.0,3.1,4.2,34.1,56.2,68.3,80.4,45.7,49.2,72.7

To read this array from comma delimited text, DFDL annotations would be added, as in:

<xs:complexType name=”exampleArrayType”>
   
<xs:annotation>

      

<xs:appinfo>

      


<dfdl:dataFormat repType=“text” 

            


charset=“UTF-8” 

            


decimalSeparator=“.”>

            

<dfdl:separator>,</dfdl:separator>

      


</dfdl:dataFormat>

      

</xs:appinfo>

    
</xs:annotation>

    
<xs:sequence>


  
<xs:element name="values" type="float" maxOccurs=”15”/>
 


</xs:sequence>
</xs:complexType>
<xs:element name="exampleArrayElement" type=”exampleArrayType”>
The same array could be read from other storage representations using different DFDL annotations. For example, the array might be stored in a binary data structure with:
· Length (integer)

· Pairs (index, value) (integer, float)

This would be read into the same one-dimensional array, using DFDL such as:

<xs:complexType name=”exampleArrayType”>
   
<xs:annotation>

      

<xs:appinfo>

      


…. FIX ME…
      


</dfdl:dataFormat>

      

</xs:appinfo>

    
</xs:annotation>

    
<xs:sequence>


  
<xs:element name="values" type="float" maxOccurs=”15”/>
 


</xs:sequence>
</xs:complexType>
<xs:element name="exampleArrayElement" type=”exampleArrayType”>
12.4 Logical Views of the Array

The layering and extension mechanisms of DFDL will enable the definition of alternative logical views (e.g., as a multidimensional array, or as an image) of the DFDL Array.

For example, two general approaches that might be used to mark up these views:

1. The XML can contain a logical description of the view, e.g., “this data should be interpreted as a 5 X 3 array”.  This approach is used by XSIL [1] and BFD [2], for instance.

2. The XML can contain a logical model (e.g., an XML schema for a 5 x 3 array), mapped to the elements of the DFDL Array.  In this case, the DFDL Array could be a DFDL “hidden” layer.

Note that the DFDL markup for the DFDL Array itself would be the same for all cases, the difference would be in whether the XML defined additional views, and what conventions are used for the views.

See section 17 for a detailed discussion of DFDL extensions to implement these concepts.
13 Variables

14 Layering

14.1 Value Calculation, Representation Calculation
14.2 Hidden layers

14.3 Data Source Indirection
15 Detailed Semantics

15.1 External Specification of Format for Top-level Element

A DFDL Schema can contain more than one format definition. For example, both a binary and a text format definition can be provided so that the same logical data can be described both ways within the same DFDL schema. 

To allow one to associate a format definition with a top-level element declaration at run time DFDL allows the top-level element declarations to omit a dfdl:format annotation. DFDL processors can provide means to specify:

1. the data to be processed

2. the DFDL schema to be used

3. the top-level global element declaration to be used (specifying both name of element and namespace of that name)

4. when that top-level element does not have a dfdl:format annotation, the format name (and namespace) of a format definition to be used.

The behavior of the DFDL processor must then be as if the top-level element declaration were written having a dfdl:format annotation on it containing:

<dfdl:format ref="formatName"/>

where the 'formatName' is the specified format from item 4 above.
Notice also that like any XML Schema a DFDL schema can have multiple top-level element declarations, so item 3 above is necessary to indicate which of these top-level element declarations is to be the starting point for processing data. The information in item 3 above may be omitted if the DFDL schema contains only one top-level element declaration. 

The mechanism by which a DFDL processor is controlled to specify items 1 through 4 above is not specified by this standard.  For example, command line DFDL processors may use command line options, but DFDL processors embedded in other kinds of software systems may need other mechanisms. 

16 Properties and Conversions

16.1 Conversions

We define the semantics of DFDL in terms of a concept of data conversions.
The term Conversion refers to a operation over typed data that converts it from one format to another. Frequently conversions involve changes in the type of the data. For example, converting from bytes to floats is a conversion. Note that also that the operation described by a DFDL document that converts data from its underlying form into an XML data model is also a conversion. The definition of a conversion provides the following information:

· A name (e.g. bytesToInt)

· An input type (e.g. byte)

· An output type (e.g. int)

· A guard expression – the conversion may be chosen by the parser iff and only if this evaluates to a non-null value that is not FALSE. (Note: call outs to black-box functions should be possible). The guard CAN ONLY refer to static elements in the context. This is to ensure that any search required to calculate which conversions apply at any point in the document can be done once in advance of any data being processed i.e. these choices can be handled at “compile” time.
· A list of the named properties that the conversion will use in the context.

16.2 Data streams

In DFDL all data inputs are considered to come from logical objects called streams a stream consists of a sequence of XML elements and a cursor which stores the position of the parser in consuming that stream. Note: a single element is considered equivalent to a sequence containing just that element.

All the elements of a stream must be of a single type. If all elements of a stream are of type X then the stream is said to be of type X.
16.3 Registered conversions

The context logically holds a list of registered conversions:

<context>


<dfdl:conversions>



<parseText input=”xs:string” output=”xs:string” test=“$parserText=’on’”/>



<bytesToInt input=”xs:byte” output=”xs:int” test=“$repType=’binary’”/>



<bytesToString input=”xs:byte” output=”xs:string” test=“$repType=’binary’”/>


</dfdl:conversions>

</context>

16.4 How are conversions chosen?
In this section we look at how the parser normally selects a conversion. Note that the algorithm given is intended to describe the logical behaviour of the DFDL parser. A real implementation is at liberty to choose any implementation that is consistent with these semantics.

The DFDL parser traverses the DFDL Schema visiting nodes in order (as described elsewhere) at each element or attribute it visits it attempts to find a conversion with which to populate it according to the algorithm below.

If the node being populated is an element of complex type and no conversion direct to that type can be found, the parser will add an empty node and move on to attempt to populate its children.

If the node being populated is of simple type and no conversion can be found the parse has failed.

16.5 Conversion search algorithm

Many algorithms could be applied to this search problem and depending on the number of conversions registered the search could be lengthy. Although in most simple cases the search should be trivial. This section describes the initial search that a parser MUST undertake before either giving up or doing anything more complex.

When searching for a conversion the parser will (logically) examine all the registered conversions in the order they appear in the “conversions” element in the context. It will select the first element that can output its target type and for which the guard XPath is satisfied. If the conversion will accept the current source stream type it is applied and the search ends.

If the chosen conversion will not accept the current source stream type then the input type it requires is made the new target type and the parser begins the search from the top.

In this way the parser builds up a sequence of conversions (byte to String followed by String- to Integer) that match end to end like dominoes. 
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The parser MAY NOT apply the same conversion twice in the same sequence of conversions (i.e. the search may not loop).

If the parser build a sequence of conversions longer than $MAX_CONVERSION_LENGTH (a settable parameter in the context) then the parser MUST fail.

16.6 Null conversion

The null conversion is a simple standard conversion that leaves the input type unmodified. It is always present as the last registered conversion.
16.7 Conversion Packages

Typically conversions are used in groups. For convenience, definitions can be grouped together in a file, and a bundle provided that registers the whole group and sets up appropriate default values. Such a file is referred to as a conversion package.
To use this package we would have to (obviously) include the file containing the packages and then (where relevant) use the bundle:

<dfdl:useBundle name=”smallBinary”>
The use of packages provides a useful mechanism for controlling which conversions are at the top of the conversion list in the local context.

If a section of a DFDL schema was represented in binary we could simply apply:

<dfdl:useBundle name=”smallBinary”>
At the start of the section and these conversions would be preferentially picked up through the scope of the modification to the context.

Note: We have discussed in DFDL a property called repType which can take the value of “text” or binary this property in this formulation would be used on guards to determine which conversions would be chosen. However and alternative way to provide this functionality would be to have the user choose the appropriate bundle of conversions at the top of the document i.e. include the “text” conversions or the “binary” conversions.
16.8 Example

In this section we work through a small example to show how the conversion selection algorithm works. Consider the following fragment of XML:
<xs:complexType name=”exampleType”>
   
<xs:annotation>

      

<xs:appinfo>

      


<dfdl:dataFormat repType=“text” 

            


charset=“UTF-8” 

            


decimalSeparator=“.”>

            

<dfdl:separator>,</dfdl:separator>

      


</dfdl:dataFormat>

      

</xs:appinfo>

    
</xs:annotation>

    
<xs:sequence>


  
<xs:element name="w" type="int"/>


 
<xs:element name="x" type="int"/>


  
<xs:element name="y" type="double"/>


  
<xs:element name="z" type="float"/>


</xs:sequence>
</xs:complexType>
<xs:element name="exampleElement" type=”exampleType”>
Let us suppose that the following conversions have been registered in the context:

<context>


<dfdl:conversions>

          <byteToInt input=”xs:byte” output=”xs:int” test=”$repType=’binary’” />



<charactersToTokens input=”xs:string” output=”xs:string” test=”$repType=’text’” />



<bytesToCharacters input=”xs:byte” output=”xs:string” test=”$repType=’text’” />



<stringToInt input=”xs:string” output=”xs:int” test=”$repType=’text’” />

<stringToDouble input=”xs:string” output=”xs:double” test=”$repType=’text’” />

<stringToFloat input=”xs:string” output=”xs:float” test=”$repType=’text’” />

<null  input=”xs:any” output=”xs:any” test=”true’” />


</dfdl:conversions>

</context>

The logical DFDL parser parses the XML document and reaches this element (exampleElement). The first thing it will do is to look at the type of example1, which in this case is defined to be the complex type exampleType and it checks to see if there are any conversions registered which can produce one of these types. 

There is only one conversion registered that can produce this type: the null conversion. So the parser tries to apply the null conversion. The null conversion requires an input of type exampleType so the parser goes back to the list to look for a conversion that will produce an exampleType. The parser is not allowed to use the null conversion a second time so it fails.

The parser failed to find a conversion that produced the element in one go. So, it adds the element to the output model and attempts to populate its children.

It enters the complex type exampleType and sees an annotation with property values. A new layer is added to the context stack and the values are added to this layer. The current context now looks something like this:

<context>

 
<dfdl:repType>text</ dfdl:reptype/> 
<dfdl:charset>UTF-8</ dfdl:charset> 

<dfdl:decimalSeparator>.</ dfdl:decimalSeparator>
  
<dfdl:separator>,</dfdl:separator>
    <…. other values defined earlier in the schema…>

    <dfdl:conversions>…as shown above…<>

</context>

The parser moves on down the document and visits the first child element, w which is of type “xs:int”. The parser looks through its registered conversions, starting at the top, looking for a conversion which supplies a value of type xs:int. It sees:

<byteToInt input=”xs:byte” output=”xs:int” test=”$repType=’binary’” />

But the test evaluates to false (since repType has been set to “text” in the current context). So the parser does not select this.

The parser moves on and finds:


<stringToInt input=”xs:string” output=”xs:int” test=”$repType=’text’” />

The test evaluates to true, so this conversion is chosen. The parser looks at the input type. The type is a string, but it is holding the default input stream which is composed of xs:byte. So the parser goes back to the list of registered conversions and looks down the list for a conversion that produces strings. The first one it finds is:

<charactersToTokens input=”xs:string” output=”xs:string” test=”$repType=’text’” />

The guard evaluates to true, so this conversion is chosen. The parser checks the input type for the conversion. It needs a “string”, the parser is still holding a byte stream so it goes back to the registered conversions and looks down the list from the top.

The first conversion found is charactersToTokens, but that is already being applied in this case and we cannot use it twice, so the parser moves on. The next conversion it finds that produces strings is:

<bytesToCharacters input=”xs:byte” output=”xs:string” test=”$repType=’text’” />

The test evaluates to true, so this conversion is chosen. This conversion takes xs:byte as input which is what the parser has to offer and so we have finished. The final set of conversions applied is:

   dataStream -> bytesToCharacters -> charactersToTokens -> stringToInt

The parser assembles this stack of conversions and then asks stringToInt for an integer. StringToInt calls characterToTokens for a string characterToTokens asks bytesToCharacters for a series of single character strings (until it finds a separator) and characterToTokens, in turn, calls bytesToCharacters to supply the characters. Finally bytesToCharacters pulls the requisite number of bytes from the underlying data stream.

The parser adds the resulting integer element as a child of “exampleElement” and moves on to the next value.

If the parser fails to find a sequence of primitive conversions that can populate a simple type then the parsing fails. Note that the parser may need to backtrack and explore alternative sequences of conversions before it can find one that will carry out the required conversion. The context contains controls on this search to ensure that it can be curtailed at a maximum depth or number of nodes visited. 

16.9 Completeness and Default-values for Representation Properties

It is an error when a DFDL schema does not contain a definition for a representation property that is needed to interpret the data. In this situation, a DFDL processor must fail. For example, a DFDL schema containing any textual data must provide a definition of the character set 'encoding' property for that textual data, and if it is not part of the format properties context for that data, then the DFDL processor must fail.

Furthermore, no default values are provided for representation properties as built-in definitions by any DFDL processor. This requires DFDL schemas to be explicit about the representation properties of the data they describe, and avoids any possibility of DFDL schemas that are meaningful for some DFDL processors but not others.

For convenience, a standard set of named DFDL format definitions are provided with all DFDL processors. These built-in format definitions are to be imported by DFDL schema authors. The namespace URIs which identify these standard format definitions contain version identification so that future versions of this standard can provide updates to these definitions which define more properties. These built-in format definitions are complete in that they provide a consistent definition for all representation properties. Their intended use is as a base for extension. By extending from one of these provided definitions a DFDL schema author can be assured that there are no properties for which there is no definition provided.

The built-in format definitions are specified in section (TBD)

16.10 Clarifying Examples - Opaque and HexBinary

16.10.1 String Type

This string contains Japanese characters. "2003年08月27日"

In UTF-8 encoding, the bytes are these: 32 30 30 33 e5 b9 b4 30 38 e6 9c 88 32 37 e6 97 a5

Let us assume we have this collection of bytes in a file. The length 11 characters.

In DFDL, we can describe this as:

<element name="d" type="string" dfdl:repType="text" 

                                dfdl:encoding="utf-8" 

                                dfdl:length="11"

                                dfdl:lengthUnitKind="characters"/>

Now, in an API suppose I had an object representing this element held in variable named 'x'. Consider:

x.substring(0, 10); // substring starting at position 0 for 10 chars

It's pretty clear that this should return a 10 character string containing "2003年08月27". The API on strings would support only access to the data as strings and characters.

I would suggest this API could also support:

int charCode = x.characterAt(4); // base 0 indexing

which would return the character code value 0x5e74 , which is the Unicode codepoint for the 4th (base 0) character which is the "年"  or 'year' character.

16.10.2 HexBinary Type

Suppose we wanted this as a hexBinary 'blob'.

<element name="d" type="hexBinary" dfdl:repType="text" 

dfdl:encoding="utf-8" 

dfdl:length="11" 

dfdl:lengthUnitKind="characters"/>

Now, in an API suppose I had an object representing this element held in variable named 'x'. 

x.substring(0, 10); // substring starting at position 0 for 10 chars.

I would claim this should return "32303033e5 ", that is, the first ten hex digits. This is consistent with the type being hexBinary, and not string. 

I would suggest this API could also support:

x.byteAt(4)

which would return the value 0xE5, or 229, which is the contents of the 4th (base 0 indexed) byte viewing the data not as hex encoding character string data, but as a binary array of bytes.

16.10.3 Opaque

Suppose we have the same data file, but which to model it in DFDL via a wildcard.

<element name="d">

    <complexType>

      <sequence>

      <any dfdl:repType="text" dfdl:encoding="utf-8" 

dfdl:length="11" 

dfdl:lengthUnitKind="characters"/>

    </sequence>

  </complexType>

</element>

The above DFDL would allow a parser to skip over the contents of element 'd'. Now suppose we have an API where we have an object , x, providing access to this element 'd'. The following operation should be feasible in the API:

byte[] d_contents = x.copyBytes();

The content of the d_contents byte vector should be of size 17 and contain these bytes: 0x32 0x30 0x30 0x33 0xe5 0xb9 0xb4 0x30 0x38 0xe6 0x9c 0x88 0x32 0x37 0xe6 0x97 0xa5. 

17 Arrays

Section 12 presented the DFDL model for arrays. The heart of the proposal is that DFDL will provide markup to handle I/O for a logical one dimensional array of any type, termed a DFDL Array. For some uses, this array is sufficient and the user can access the DFDL Array directly. In other cases, the elements may be intended to have further logical interpretation, e.g., as a multidimensional array, or as an image.  In this case, additional XML markup can be used to define views of the DFDL Array.  In this case, the DFDL Array may be defined to be a hidden layer, not visible as part of the XML logical model. 

Given the variety of logical models that might be used and the diversity of stored representations, it is very difficult to define a universal markup. Furthermore, it is often impossible or difficult to tell what interpretation should be used from the stored bytes. The intended interpretation is often implicit (e.g., the file extension is 'jpeg') or stored in conventional metadata, e.g. at the head of the file or even in an external data source. Therefore, we propose that the DFDL should not attempt to cover all possibilities; rather, it should provide a flexible base for other software to build view of data.
This section presents a proposed approach for how alternative logical views of a DFDL Array can be implemented using standard XML and DFDL extensions. The DFDL Array contains all the data in the array, including missing or implied values, in stored order. Additional XML markup can be used to define views of the DFDL Array. These views are related to the DFDL Array using the layers and extension capabilities of the DFDL.
This approach opens the way for modular implementations, so that standard markup for storage strategies (DFDL) can be readily mixed with standard markup for different logical views of arrays (e.g., application schemas). The DFDL provides the means for handling a variety of storage mechanisms and DFDL layers make it possible to either expose or conceal the transformations.

As discussed in section 12, the main points of the approach are:

· DFDL requires a logical layer that is a one-dimensional array of elements (he DFDL Array)
· DFDL defines markup for many representations of a one dimensional array

· The one dimensional DFDL Array may be used to access the data 

· Alternatively, views such as higher dimensional arrays are mapped to the DFDL Array through
· DFDL transforms to elements of XML logical models, or

· External interpretations guided by logical descriptions
The claim is that this approach is sufficient to meet the needs of many users. To demonstrate the feasibility of this approach, we give some examples below.
17.1 Example Logical Models
This section illustrates three styles for representing the logical XML structure of an array. First, the array may be represented with a descriptor and a one-dimensional array of elements, a la XSIL. Alternatively, the XML may contain a logical model for the array. We show two different styles: coordinate-attributes style, and nested vector style. That is, if you converted the array data into a literal XML document rather than accessing it via an API, then the document would look like one of the two possibilities given below.

17.1.1 Descriptor of the Array
One approach is to augment the DFDL Array with metadata indicating the intended interpretation of the data element. This approach is used by XSIL [1] and BFD [2], which define a standard markup to describe array data. For example, the one-dimensional array with 15 floating point numbers might be defined to be a two dimensional array, 5x3 of “doubles”. 
<Array Name="data" Type="double">

    <Dim>5</Dim>

    <Dim>3</Dim>

    <Stream >

8.5 9.6 10.7 11.8 1.9 2.0 3.1 4.2 34.1 56.2 68.3 80.4 45.7 49.2 72.7

    </Stream>

  </Array>

In this case, DFDL markup would be used to populate the array of numbers, while XSIL or BFD or other software would perform the interpretation of the multidimensional indexing.
The XML schema would be similar to earlier examples, 

<xs:complexType name=”exampleArrayType”>
   
<xs:annotation>

      

<xs:appinfo>

      


…. FIX ME…
      


</dfdl:dataFormat>

      

</xs:appinfo>

    
</xs:annotation>

    
<xs:sequence>
                                <xs:element name=”Dim” type=”int” minOccurs=”1” maxOccurs=”unbounded” \>

                                          < -- constrain the value of dims, number of elemens? -- >

  
<xs:element name="values" type="float" maxOccurs=”15”/>
 


</xs:sequence>
                <attribute name=”Name” type=”string”\>

                <attribute name=”Type” type=”string” \>  < -- constrain the value? -- >

</xs:complexType>
<xs:element name="Array" type=”exampleArrayType”>
17.1.2 Coordinate Attributes Style

An alternative approach is to mark up each element of the array as a single element, with attributes for the coordinates.  For example, three elements of an array might be represented as:

     <a x="5" y="6">53.8</a> 
   <a x="22" y="-987">-21.029D112</a> 
   <a x="-123" y="0">-2.3</a> 

In this approach, an XPath expression like a[x='-123' and y='0'] extracts one value from the array. Slicing can be done by XPath expressions like a[y='0'] which selects a vector of elements. 

Notice that elements can have negative indices. This representation naturally handles sparse matrices to some degree though not the specialized variants like block diagonal, etc. 


The XML Schema description of the above is: 

<element name="a" maxOccurs="unbounded"> 
  <complexType> 
     <simpleContent> 
       <extension base="double"> 
         <attribute name="x" type="int"/> <!-- TBD use uniqueness constraints to stipulate no duplicate x, y pairs --> 
         <attribute name="y" type="int"/> <!-- TBD optional range restrictions on these values --> 
       </extension> 
     </simpleContent> 
   </complexType> 
</element> 


The DFDL annotationas ... {Fix this...

<xs:complexType name=”exampleArrayType”>
   
<xs:annotation>

      

<xs:appinfo>

      


…. FIX ME…
      


</dfdl:dataFormat>

      

</xs:appinfo>

    
</xs:annotation>

    
<xs:sequence>
                                <xs:element name=”Dim” type=”int” minOccurs=”1” maxOccurs=”unbounded” \>

                                          < -- constrain the value of dims, number of elemens? -- >

  
<xs:element name="values" type="float" maxOccurs=”15”/>
 


</xs:sequence>
                <attribute name=”Name” type=”string”\>

                <attribute name=”Type” type=”string” \>  < -- constrain the value? -- >

</xs:complexType>
<xs:element name="Array" type=”exampleArrayType”>
17.1.3 Nested Vectors Style 
A third approach is to represent the array as vectors or nested vectors. For example, two rows of three elements of an array might be represented as:

   <x><y>3</y><y>4</y><y>5.1D24</y></x> 
   <x><y>6</y><y>7D2</y><y>8</y></x> 


The nested vectors form is not capable of expressing negative indices. Users can use layering to translate a different coordinate system so as to access the content of a nested-vectors logical array. (TBD: will need an example) 

The XML Schema for the nested vectors above is: 

<element name="x" maxOccurs="unbounded"> 
  <complexType> 
    <sequence> 
      <element name="y" maxOccurs="unbounded" type="double"/> 
    </sequence> 
  </complexType> 
</element> 

The above two schema fragments define what we have to work with by way of structure on which to "hang" DFDL annotations describing the actual representation and describing the mapping to and from the above logical structure. 

In addition to the above, we'll assume that somewhere there are logical elements holding the logical dimensions of the array. Fixed size arrays in the nested vectors style can of course set maxOccurs and minOccurs to fixed values. However, in general we must handle data formats where the sizes of the array dimensions vary with each actual data instance; hence we assume there will be two prior elements giving the sizes of the dimensions: 

<element name="xdim" type="int"/> 
<element name="ydim" type="int"/> 

Alternatively, there could be low and high limit values for each of the coordinate axes, from which the above sizes could be calculated.
<xs:complexType name=”exampleArrayType”>
   
<xs:annotation>

      

<xs:appinfo>

      


…. FIX ME…
      


</dfdl:dataFormat>

      

</xs:appinfo>

    
</xs:annotation>

    
<xs:sequence>
                                <xs:element name=”Dim” type=”int” minOccurs=”1” maxOccurs=”unbounded” \>

                                          < -- constrain the value of dims, number of elemens? -- >

  
<xs:element name="values" type="float" maxOccurs=”15”/>
 


</xs:sequence>
                <attribute name=”Name” type=”string”\>

                <attribute name=”Type” type=”string” \>  < -- constrain the value? -- >

</xs:complexType>
<xs:element name="Array" type=”exampleArrayType”>
17.2 Representation

The representation is assumed to be a 1d vector of values of the same type as the logical array's elements: 

<element name="rep" type="double" maxOccurs="unbounded"/> 

Typically this representation array will be in a hidden layer hence, to read data we must map from this representation to our logical structure. To write data we must perform the inverse mapping from the logical structure into this representation. 

TBD: we need annotations to tell the DFDL system that the structure, while logically mapping to this XML schema is also really a multi-dimensional array such that a DFDL system could support an API for a programmer where API calls like x.getAt(5).getAt(2); can be made meaningful for accessing an element of the array. 

Now let's look at annotations to describe the representation aspects:

17.2.1 Mapping - Parsing/Reading - Nested Vectors Logical Structure

<sequence> 
  <element name="xdim" type="int"/> 
  <element name="ydim" type="int"/> 
  <elemnet name="rep" type="double" maxOccurs="unbounded"> <!-- hidden typically. Shown visible here --> 
    <annotation><appinfo> 
      <dfdl:format occurs="{../xdim * ../ydim }" occursUnit="elements"/> 
    </appinfo></annotation> 
  </element> 
  <element name="x" maxOccurs="unbounded"> 
    <annotation><appinfo> 
       <dfdl:format occurs="../xdim" occursUnit="elements"/>   
    </appinfo></annotation> 
    <complexType> 
      <sequence> 
        <element name="y" maxOccurs="unbounded" type="double"> 
          <annotation><appinfo> 
            <dfdl:format inputValue="{ let xpos = ../x.position(); /* TBD exact way to get position within x vector */ 
                                       let ypos = position();      /* TBD exact way to get position within y vector */ 
                                       in ../rep[(xpos * ../../ydim) + ypos]  /* TBD is this called row-major or column major order? */ 
                                       /* alternatively ../rep[(ypos * ../../xdim) + xpos]  is the other order */ 
                                       /* TBD: failure behavior if either dim is 0, or rep is size 0 */ 
                                     }" 
                         occurs="../ydim" occursUnit="elements"/>   
          </appinfo></annotation> 
        </element> 
      </sequence> 
    </complexType> 
  </element> 
</sequence> 

Note that an implementation of the above need not actually create a realization of the nested vectors x and y in memory. Rather, each access to x and y could be translated on the fly into an access to the underlying rep vector. It is highly desirable that the design of the annotations admits this kind of implementation.
17.2.2 Mapping – Adding in the Writing/Output Direction – Nested Vectors Logical Structure
<sequence> 
  <element name="xdim" type="int"> 
    <annotation><appinfo> 
      <dfdl:format outputValue="{../x.size()}"/> <!-- get from logical --> 
    </appinfo></annotation> 
  </element> 
  <element name="ydim" type="int"> 
    <annotation><appinfo> 
      <dfdl:format outputValue="{../x[1]/y.size()}"/> <!-- TBD: fails on size zero x vector --> 
    </appinfo></annotation> 
  </element> 
  <elemnet name="rep" type="double" maxOccurs="unbounded"> <!-- hidden typically. Shown visible here --> 
    <annotation><appinfo> 
      <dfdl:format occurs="{../xdim * ../ydim }" occursUnit="elements" 
                   outputValue="{ let repPos = position(); 
                                  let xPos = floor(repPos/../xdim);  /* TBD: is this row major or column major? */ 
                                  let yPos = mod(repPos, ../xdim);     
                                  in ../x[xPos]/y[yPos] 
                                }"/> 
    </appinfo></annotation> 
  </element> 
  <element name="x" maxOccurs="unbounded"> 
    <annotation><appinfo> 
       <dfdl:format occurs="../xdim" occursUnit="elements"/>   
    </appinfo></annotation> 
    <complexType> 
      <sequence> 
        <element name="y" maxOccurs="unbounded" type="double"> 
          <annotation><appinfo> 
            <dfdl:format inputValue="{ let xpos = ../x.position(); /* position within x vector */ 
                                       let ypos = position();      /* position within y vector */ 
                                       in ../rep[(xpos * ../../ydim) + ypos]  /* is this called row-major or column major order? */ 
                                       /* alternatively ../rep[(ypos * ../../xdim) + xpos]  is the other order */ 
                                     }" 
                         occurs="../ydim" occursUnit="elements"/>   
          </appinfo></annotation> 
        </element> 
      </sequence> 
    </complexType> 
  </element> 
</sequence> 

TBD: doing all this division seems clumsy. A program that is actually reading in the data would just use counters. This is likely the reason why array support needs to be built in and not expressed in the above manner.
17.2.3 Mapping – Parsing/Reading –Coordinate Attributes Style 
<sequence> 
  <element name="xdim" type="int"/> 
  <element name="ydim" type="int"/> 
  <elemnet name="rep" type="double" maxOccurs="unbounded"> <!-- hidden typically. Shown visible here --> 
    <annotation><appinfo> 
      <dfdl:format occurs="{../xdim * ../ydim }" occursUnit="elements"/> 
    </appinfo></annotation> 
  </element> 
  <element name="a" maxOccurs="unbounded"> 
    <annotation><appinfo> 
      <dfdl:format inputValue="{ let pos = ./position(); // this is the logical element number.   
                                 in ../rep[pos] 
                               }" 
                   occurs="{ ../xdim * ../ydim }" occursUnit="elements"/>   
    </appinfo></annotation> 
    <complexType> 
       <simpleContent> 
         <extension base="double"> 
           <attribute name="x" type="int"> 
             <annotation><appinfo> 
               <dfdl:format inputValue="{ let pos=../position(); // this is the logical element number.   
                                          in  floor(pos, ../../xdim) // division. TBD: Row major? 
                                        }"/> 
             </appinfo></annotation> 
           </attribute> 
           <attribute name="y" type="int"> 
             <annotation><appinfo> 
               <dfdl:format inputValue="{ let pos=../position(); 
                                          in  mod(pos, ../../xdim) // TBD: row major? 
                                        }"/> 
             </appinfo></annotation> 
           </attribute> 
         </extension> 
       </simpleContent> 
     </complexType> 
  </element> 
</sequence> 

Note that in the above, we don't strictly speaking even need the rep 1d array, as the logical rep is essentially 1d with attributes. 

TBD: doing all this division seems clumsy. A program that is actually reading in the data would just use counters. This is likely the reason why array support needs to be built in and not expressed in the above manner. 
17.2.4 Mapping – Adding the Write/Output Direction – Coordinate Attributes Style



<sequence> 
  <element name="xdim" type="int"> 
    <annotation><appinfo> 
      <dfdl:format outputValue="{ ??? }"/> <!-- TBD: how to get from logical --> 
    </appinfo></annotation> 
  </element> 
  <element name="ydim" type="int"> 
    <annotation><appinfo> 
      <dfdl:format outputValue="{ ??? }"/> <!-- TBD: how to get from logical --> 
    </appinfo></annotation> 
  </element> 
  <elemnet name="rep" type="double" maxOccurs="unbounded"> <!-- hidden typically. Shown visible here --> 
    <annotation><appinfo> 
      <dfdl:format occurs="{../xdim * ../ydim }" occursUnit="elements" 
                   outputValue="{ let pos=./position(); 
                                  in ../a[x='floor(pos,../xdim)' and y='mod(pos,../ydim)'] // works for any logical order.   
                                }"/> 
    </appinfo></annotation> 
  </element> 
  <element name="a" maxOccurs="unbounded"> 
    <annotation><appinfo> 
      <dfdl:format inputValue="{ let pos = ./position(); // this is the logical element number.   
                                 in ../rep[pos] 
                               }" 
                   occurs="{ ../xdim * ../ydim }" occursUnit="elements"/>   
    </appinfo></annotation> 
    <complexType> 
       <simpleContent> 
         <extension base="double"> 
           <attribute name="x" type="int"> 
             <annotation><appinfo> 
               <dfdl:format inputValue="{ let pos=../position(); // this is the logical element number.   
                                          in  floor(pos, ../../xdim) // division. TBD: Row major? 
                                        }"/> 
             </appinfo></annotation> 
           </attribute> 
           <attribute name="y" type="int"> 
             <annotation><appinfo> 
               <dfdl:format inputValue="{ let pos=../position(); 
                                          in  mod(pos,../../ydim) // TBD: row major? 
                                        }"/> 
             </appinfo></annotation> 
           </attribute> 
         </extension> 
       </simpleContent> 
     </complexType> 
  </element> 
</sequence> 

TBD: division issue again. 

Comments overall: the use of division seems required to make the expression declarative. That is, not dependent on a specific order of traversal of the data. An API could randomly access the elements, for example.
17.3 How to use blackbox transforms

The examples above use “white box” transforms to map between the layers. With the three layers, there are three places where a “black box” transformation might be inserted.  The following DFDL suggests where these might be placed.  The format is TBD.

TBD:  for efficiency, want to have a black box that eliminates the intermediate array, i.e., tunnels directly from disk to upper representation.

<?xml version="1.0"?>

<xs:schema 

  targetNamespace="http://dataformat.org/tests" 

  elementFormDefault="qualified" 

  xsi:schemaLocation="http://dataformat.org/dfdl-0.1 ../../xsd/dfdl.xsd

                      http://www.w3.org/2001/XMLSchema ../../xsd/XMLSchema.xsd" 

  xmlns:xs="http://www.w3.org/2001/XMLSchema" 

  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

  xmlns="http://dataformat.org/tests" 

  xmlns:dfdl="http://dataformat.org/dfdl-0.1">

 <!-- Encapsulates the hidden information.                         -->

  <xs:complexType name="SVArrayHeader">

    <xs:sequence>

      <xs:element name="count" type="xs:int"/>

      <xs:element name="stringLengths" type="xs:int" 

                  maxOccurs="unbounded">

        <xs:annotation>

          <xs:appinfo source="http://dataformat.org/">

            <dfdl:dataFormat about="array" 

                             repLengthUnitKind="elements"

                             storedLengthCalc="../count"/>

            <dfdl:dataFormat about="arrayElement" repLengthUnitKind="bits"/>
<!—BB0 call a BB here to read the data     ???                                -->

<dfdl:read=”blackBox(params)” />

<!—Rest of schema is unchanged                                -->

          </xs:appinfo>

        </xs:annotation>

      </xs:element>

    </xs:sequence>

  </xs:complexType>

    <xs:element name="oneD" 

                dfdl:byteOrder="littleEndian" 

                dfdl:repType="binary">

        <xs:complexType>

            <xs:sequence>

<!-- Will create a hidden Instance named "rephdr". Hidden Instances-->

<!-- are called "layers" and are defined by nesting a <dfdl:layer> -->

<!-- tag in an empty sequence.                                     -->

                <xs:sequence>

                    <xs:annotation>

                        <xs:appinfo source="http://dataformat.org/">

                            <dfdl:layer name="rephdr" 

                                        type="SVArrayHeader"/>

<!—BB1 call a BB here to read the data     ???                                -->

<dfdl:read=”blackBox(params)”  needs params such as byte order? />

<!—Rest of schema is unchanged                                -->

                        </xs:appinfo>

                    </xs:annotation>

                </xs:sequence>

                <xs:element name="data" type="xs:string" 

                            maxOccurs="unbounded">

                    <xs:annotation>

                        <xs:appinfo source="http://dataformat.org/">

<!-- dataFormat's about attribute lets you narrow the scope of the -->

<!-- properties it defines. The allowed values are array and       -->

<!-- arrayElement. arrayElement is the default.                    -->

                            <dfdl:dataFormat about="array" 

                                         repLengthUnitKind="elements">

                                <dfdl:storedLengthCalc>

                                  ../rephdr/count

                                </dfdl:storedLengthCalc>

                            </dfdl:dataFormat>

                            <dfdl:dataFormat about="arrayElement" 

                                        repLengthUnitKind="characters" 

                                        repType="text" 

                                        charset="US-ASCII">

<!-- Attributes in the DFDL namespace are special. They allow the  -->

<!-- DFDL author to access the Instance's runtime metadata. In this-->

<!-- we're using @dfdl:index, which stores the current Instance's  -->

<!-- position in its parent array.                                 -->

                                <dfdl:storedLengthCalc>

                               ../../rephdr/stringLengths[@dfdl:index]

                                </dfdl:storedLengthCalc>

                            </dfdl:dataFormat>

                        </xs:appinfo>

                    </xs:annotation>

                </xs:element>

            </xs:sequence>

        </xs:complexType>

    </xs:element>

    <xs:element name="twoD" 

        <xs:complexType>

        <xs:attribute name="xdimsize" type="xs:int"\> 

        <xs:attribute name="ydimsize" type="xs:int"\> 

            <xs:sequence>

              <xs:sequence>

                    <xs:annotation>

<!—BB2 call a BB here to read the data     ???                                -->

<dfdl:read=”blackBox(params)” />

<!—Omit the ‘1D’ element above    and next lines                            -->

<xs:appinfo source="http://dataformat.org/">

                            <dfdl:layer name="data" 

                                        type="oneD"/>
                        </xs:appinfo>

                    </xs:annotation>

              </xs:sequence>

              <xs:element name="data" type="xs:string" 

                            maxOccurs="unbounded">

               <xs:attribute name="xpos" type="xs:int"\> 

               <xs:attribute name="ypos" type="xs:int"\> 

               <xs:annotation>

                        <xs:appinfo source="http://dataformat.org/">

                           <dfdl:dataFormat about="array" 

                                         repLengthUnitKind="elements">

                             <dfdl:valueCalc>

                               ../../rephdr/oned[@./xpos * ./ydimsize + ./xdim]  this

                             </dfdl:valueCalc>

                           </dfdl:dataFormat>

                        </xs:appinfo>

                    </xs:annotation>

                </xs:element>

</xs:schema>

17.4 Implementation Issues

This approach separates and limits the requirements on the DFDL, interposing the one dimensional contiguous array (the DFDL Array).  When the XML contains explicit markup that represents the logical view of the data, then the DFDL Array might be purely logical. In that case, it need not be fully realized by an implementation. Indeed, naively populating a huge array would be catastrophic for many cases, and more so if many elements are missing values or other computed values. These details are left to implementations.

17.5 Summary
18 Built-in Specifications

TBD: this section gives the names, import URLs for, and rep-property definition sets for the built-in named format definitions. Note that the URLs for importing these must contain the version number of the standard so that future revisions of the standard can define new built-in format definitions without breaking older schemas. 
19 Extensions and Extensibility
Being able to add user-defined conversions is fundamental to the extensibility of DFDL. For DFDL to be useful in cutting edge technology areas like the Grid and to support the breadth of existing legacy formats particularly in the scientific world, this sort of extensibility is essential. 

19.1 Defining conversions

Conversions are defined using the “dfdl:defineConversion” element. Conversions can be defined purely as prototypes (for conversions built-in to the parser) as using external logic (known as blackbox) conversions and conversions which use DFDL directly (known as whitebox conversions).

19.2 Prototype Conversions

A prototype conversion defines the name and type signature of a conversion built in to the parser.
<dfdl:defineConversion name=”dfdl:bytesToInt” input=”xs:byte” output=”xs:int” inverseConversion=”dfdl:intToByte”/>
Note that the inverse conversion is required to exist but may not yet have been defined. This is the conversion that is used to write out the values read-in in using this conversion.

The purpose of a prototype conversion is to explicitly define conversions which are built in to the parser. Once they are made explicit the data modeler can use them directly when defining his/her own conversions and packages.

19.2.1 Blackbox conversions

The blackbox conversion is like a prototype conversion except it specifies how to call an external method for example in java:
<dfdl:defineConversion name=”parseText” input=”xs:string” output=”xs:float” inverseConversion=”writeText”>


<dfdl:exec language=”java”>org.foo.Example.parseText(sourceStream, “$separator”, “$numberOfFields”)</dfdl:exec>

</dfdl:defineConversion>
This would call java methods of the form:

public static InputStream ParseText (InputStream input, String separator, int numberOfFields);

TODO: Define blackbox conversions for C, XSL, OS-command-line, WSDL-web service.

There is a semantic fudge in this between individual types, streams of types and sequences of types. This has to be worked through properly.
19.2.2 Whitebox conversions

The following is a simple example of a conversion in which the value of the input integer is doubled.
<xs:complexType>


<xs:annotation>



<xs:appinfo>



<dfdl:defineConversion name=”doubleInt” />



 <dfdl:hidden”>




<xs:element name="x" type="xs:int"/>





</dfdl:hidden>
      

</xs:appinfo>

      
<xs:annotation>


<xs:element name="doubled-value" type="xs:int" dfdl:value=”2* ../x”/>
</xs:complexType>

This conversion has the following prototype declaration, which the parser must infer from the definition:

<dfdl:defineConversion name=”dfdl:doubleInt” input=”xs:int” output=”xs:int” />
19.3 Registering conversions

Once defined, conversions must be registered. Conversions are registered by adding them to the “conversions” element in the context:

<dfdl:registerConversion name=”parseText”/>
This statement will add the conversion “parseText” to the top of the list of conversions:

<context>


<dfdl:conversions>



<parseText … />



<bytesToInt… />



<bytesToString… />


</dfdl:conversions>

</context>

19.4 Defining Conversion Packages

A conversion package is simply a bundle that registers one or more conversions. It may also define new conversions and set up appropriate default values. 

For example a small package might look like:

<dfdl:defineConversion name=”dfdl:binInt”        input=”xs:byte” output=”xs:int” test=”$binary” />

<dfdl:defineConversion name=”dfdl:binFloat”    input=”xs:byte” output=”xs:float” test=”$binary”/>
<dfdl:defineConversion name=”dfdl:binDouble” input=”xs:byte” output=”xs:double” test=”$binary”/>
<dfdl:defineBundle name=”smallBinary”>


<dfdl:registerConversion name=”dfdl:binInt”        />


<dfdl: registerConversion name=”dfdl:binFloat”    />


<dfdl registerConversion name=”dfdl:binDouble” />

      <dfdl:set name=”binary”       value=”true”            test=”not($binary)”/>


<dfdl:set name=”byteOrder” value=”bigEndian”  test=”not($bigEndian)”/> 

       <dfdl:useBundle name=”binaryStrings”/>

</dfdl:defineBundle>

To use this package we would have to (obviously) include the file containing the packages and then (where relevant) use the bundle:

<dfdl:useBundle name=”smallBinary”>
Notice that all of the set context statements have a test to ensure that they do not attempt to double-register the conversion. This allows different packages to include the same conversions. 

Notice that packages can also refer to other packages. The last line of the bundle references another package called “binaryStrings”. So “binaryStrings” is included in “smallBinary”, although because it is included at the end the constant definitions and conversion guards from smallBinary take precedence over those in binaryStrings. For example, suppose that “binaryStrings” contained the line:


<dfdl:set name=”byteOrder” value=”littleEndian”  test=”not($bigEndian)”/> 

This line would be silently overridden by the value for this property set in “smallBinary” shown above.

19.5 Defining Data streams

The name of the current stream from which data is being extracted is maintained in the Context. The default source stream is called “stdin” and is of type “xs:byte”. The name of the current stream is held in a property called “source”.

The DFDL document begins parsing against “stdin”. At any point in the parsing the source stream can be switched either by choosing an alternative input source (e.g. a file, url or data stream) or by applying a conversion to the existing stream.

For example this shows how the source stream can be switched to access a new file, in this case one located at “http://my.data.com/file.csv”.
<xs:annotation>


<xs:appinfo>



<dfdl:defineStream name=”myNewStream" url=”http://my.data.com/file.csv”/> 
            <dfdl:useStream name=”myNewStream”/> 
     </xs:appinfo>

</xs:annotation>
The next example above applies a conversion (which must have been defined and registered with the parser) that, in this case, decompresses the data.
</xs:annotation>
 <xs:appinfo>
    
<dfdl:defineStream name=”uncompressed" applyConversion=”gunzip"/>

  
<dfdl:useStream name=”uncompressed”/>

</xs:appinfo>
</xs:annotation>
Note: How do we do output streams. (This whole proposal needs reviewing for the write direction).

19.6 Explicit conversion selection
At any point in the document traversal, if the DFDL parser reaches an explicit “useConversion” tag it will apply the conversion to the data from the current source stream to populate the DFDL element, attribute or sequence the annotation is associated with. If the results of the conversion do not match the type of the element then a runtime error is returned.

<xs:element name="testElement" type="xs:string">


<xs:annotation>



<xs:appinfo>




<dfdl:useConversion name=”pigLatin" test=”$pigLatin=’on’”/>



</xs:appinfo>

</xs:annotation>

</xs:element>
If the optional test condition is present then the statement is only applied if the test condition is satisfied.

19.7 Summary of new statements

In this document the following new statements were introduced:

· defineConversion

· useConversion

· defineStream

19.8 Example

In this section we present two examples of using these extensions:

· The first example defines a new conversion to decrypt a document, making use of a key supplied in the data.

· The second example defines two new conversions to handle non-IEEE representations of 32 and 64 bit floating point numbers. In this example we register one of the conversions and not the other in order to demonstrate how to insert a conversion into the automatic selection process, and also how to explicitly apply a conversion which has not been registered.
<?xml version=”1.0” encoding=”UTF-8”?>

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema” >


<xs:annotation>



<xs:appinfo source=”http://dataformat.org/”>




<!—set up the new conversion (



<dfdl:defineConversion name=”decriptStream” input=”xs:byte” output=”xs:byte”>





<dfd:exec language=”java”>com.crypto.decrypt(sourceStream,”$cryptoKey”)</dfd:exec>




</dfdl:defineConversion>




<!—define  a stream that applies the new conversion (



<xs:defineStream name=”decryptedData” applyConversion=”decryptStream”/>



</xs:appinfo>


</xs:annotation>


<xs:element name=”encryptedExample”>



<xs:complexType>




<xs:sequence>





<!—pick out the key and add its value to the global context (




<xs:element name=”key” type=”xs:base64Binary” dfdl:length=”128” addToGlobalContext=”cryptoKey”/>





<xs:element name=”data”>






<xs:annotation>







<xs:appinfo source=”http://dataformat.org/”>








<!—invoke the new data stream (







<dfdl:useStream name=”decryptedData”/>








<dfdl:dataFormat repType=”text” characterset=”UTF-8”>









<dfdl:separator>,</dfdl:separator>








</dfdl:dataFormat>







</xs:appinfo>






</xs:annotation>






<xs:complexType>







<xs:sequence>








<xs:element name=”name” type=”xs:string”/>








<xs:element name=”address” type=”xs:string”/>








<xs:element name=”zipCode” type=”xs:int”/>







</xs:sequence>






</xs:complexType>





</xs:element>




</xs:sequence>



</xs:complexType>


</xs:element>

</xs:schema>
Example 1 – showing the definition of a new black-box conversion to handle an ecrypted data payload. One of the encryption keys is passed in the data (in unencrypted form).

<?xml version=”1.0” encoding=”UTF-8”?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">


<xs:annotation>



<xs:appinfo>




<!-- set up the new conversions -->




<dfdl:defineConversion name="nonIEEEByteToFloat" input="xs:byte" output="xs:float">





<dfd:exec language="java">com.fp.byteToFloat(sourceStream,"$byteOrder")</dfd:exec>




</dfdl:defineConversion>




<dfdl:defineConversion name="nonIEEEByteToDouble" input="xs:byte" output="xs:double">





<dfd:exec language="java">com.fp.byteToDouble(sourceStream,"$byteOrder")</dfd:exec>




</dfdl:defineConversion>




<!-- note for the purposes of demonstration we only register the double conversion -->



<dfdl:registerConversion name="nonIEEEByteToDouble"/>



</xs:appinfo>


</xs:annotation>


<xs:complexType name="exampleType">



<xs:sequence>




<xs:element name="x" type="xs:int"/>




<xs:element name="y" type="xs:float">




<!-- explicitly select the float converion -->





<xs:annotation>






<xs:appinfo>







<dfdl:useConversion name="nonIEEEByteToFloat"/>






</xs:appinfo>





</xs:annotation>




</xs:element>




<xs:element name="z" type="xs:double"/>




<!-- The double conversion is automatically applied because we registered it -->




<!-- which will send it to the top of the list. So it is guaranteed to be the first  -->




<!-- chosen when we reach this point in the document. -->



</xs:sequence>


</xs:complexType>


<xs:element name="exampleElement">



<xs:annotation>




<xs:documentation>Comment describing your root element</xs:documentation>



</xs:annotation>


</xs:element></xs:schema>
Example 2 – in this example two new blackbox conversions are defined to handle the conversion of bytes into a float and a double using some non-IEEE floating point representation. The conversion to double is registered and chosen automatically by the parser. The conversion to float is not and has to be explicitly chosen by the data-modeler. 
20 Security Considerations
When writing data. All locations must be properly initialized before writing so as to prevent accidental (or purposeful) transmission of data in the unused parts of data formats. Even when a DFDL description does not specify that data should be written to a particular part of the output representation, a defined pattern should always be written.

All DFDL processors must check when writing data, that the representation properties that control filling and padding are defined by the DFDL schema. It is an error if they are not defined, and the DFDL processor must fail if they are not defined so that it is certain no region of the output data has unspecified contents.

If regions within a DFDL-described data object are encrypted, then when decrypting them proper means must be used to assure secure passage of passwords to the decrypting software. Such means are beyond the scope of the DFDL language specification. 

In addition, if encryption passwords/keys are stored in DFDL schema-described data, then proper means must be used to assure that the decrypted form of these passwords is not revealed. Such means are beyond the scope of the DFDL language specification. 
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26 Appendix: About UTF-16 and Unicode Character Codes above 0xFFFF

When we define UTF-16 to be a fixed-width double-byte wide character set we say that each UTF-16 codepoint is represented by 2 bytes. Notice the careful use of the term 'codepoint' here. Unicode characters can have character codes as large as 0x10FFFF which requires 3 bytes to store (21 bits actually); however in UTF-16 characters with more than 2 bytes of code are encoded as two codepoints, called a surrogate pair; hence, UTF-16 is fixed-width, 2 bytes per codepoint. It is not 2 bytes per Unicode character. UTF-16 is really a variable-width encoding, but the characters that require the surrogate-pair treatment are so infrequently used that UTF-16 is most often treated like a 16-bit fixed-width character set. It is the acknowledgement of the existence of surrogate pairs that leads to the “codepoint” vs. “character code” distinction.

UTF-32 is a fixed width encoding with a full 4-bytes per character code. It represents all of Unicode with the same width per character.

Hence, when we refer to lengths in character strings we will often refer to length in characters, but we qualify that it means 2-byte codepoints when the character set encoding is UTF-16. Hence, when the property repLengthUnitKind (TBD: property name correct?) is 'characters' and the charset is 'UTF-16', then the units are actually 16-bit codepoints, not Unicode characters. 

TBD: reserve repLengthUnitKind=fullUnicodeCharacters, to mean real characters where a surrogate pair counts as 1 character if the charset is utf-16?

27 Appendix: About Literal String Values in DFDL

A literal string in a DFDL Schema is written in the character set encoding specified by the xml directive that begins all XML documents. For example, one might have:

<?xml version="1.0" encoding="UTF-8" ?>

This line must be at the top of the DFDL schema. In this example, the DFDL schema is written in UTF-8, so any literal strings contained in it, and particularly in its representation properties, are UTF-8.

However, these strings are being used to describe features of text data that are commonly in other character sets. E.g., we may have EBCDIC data which is comma separated. A comma in EBCDIC does not have the same character code as a Unicode comma. However, when we indicate that an element is "," (comma) separated and we specify this using a string literal along with specifying the 'encoding' property to be 'ebcdic-cp-us' then we mean that the data is separated by EBCDIC commas regardless of what character set encoding is used to write the DFDL Schema. The string literal "," is translated into the character set encoding of the data it is separating.

However, it is sometimes more convenient to just provide the string literal in hex form so that one can avoid having to figure out what the corresponding character is to the character code point of interest. This is particularly important for the non-printing characters where the mapping to/from the character set of the DFDL schema may be non-obvious.  There is also the potential of the XML document being in a character set that can’t represent a character which is in the data.  Using hex to describe the actual value of the character in the character set of the data handles this. 

TBD: is the below still the property syntax?

This is accomplished by specifying the '…encoding' attribute when specifying the literal string. For example:

<xs:annotation>


<xs:appinfo source="http://dataformat.org/">

 

<dfdl:format

separator=”2C”

separatorEncoding="hex />

In the example, we see the separator property works with an additional modifying property which specifies that the separator property is specified in hex. The default value for the separatorEncoding attribute is ‘text’, and values ‘hex’ and ‘regexp’ are available to indicate that the separator syntax is either hexadecimal digits, or regular expression syntax. The default value ‘text’ means that the separator is specified as a string literal in the character set of the schema.

The additional encoding attributes are: (TBD verify)
· initiatorEncoding

· terminatorEncoding

· separatorEncoding

· nullReservedValuesEncoding (only for string type elements or elements with text repType)

· fillCharEncoding, fillStringEncoding

· alternateZeroRepresntationEncoding.

There are other rep. properties that must be strings, but DFDL does not allow encoding for them: digitGroupingSeparator, decimalSeparator, exponentCharacters, date pattern, time pattern, and duration pattern. 
28 Appendix: About XML-Disallowed Character codes in Literal String Values in DFDL

Certain character codes are disallowed in XML syntax, and are not allowed as part of the XML Infoset, yet we need to specify those character codes in delimiters, patterns, enumerations of allowed values for restricted types, default values, null reserved values, and so forth since they can clearly appear in real (non-XML) data representations. 

Hence, a meta-escape is required. This meta-escape is needed for XML 1.0 for these character codes:

#x0-#x8 #xB #xC #xE-#x1F #xD800-#xDFFF #xFFFE #xFFFF

In addition, a character entity must be used to express #xD. ("&#xD;") 
.

In XML 1.1 (draft, not yet standard as of 2005-03-01), there are fewer restrictions. A meta-escape is needed for these character codes:


#x0 #xD800-#xDFFF #xFFFE #xFFFF

In addition, a character entity must be used to express #xD as in XML 1.0.

(Note that these character codes are truly disallowed by XML. Their values are not allowed in the XML Infoset. You cannot disguise them as character entities like: "&#0;" or "&x8;" in XML documents since this only disguises the character codes; the information set of the document would still contain these illegal-for-XML character codes.)

To overcome these XML restrictions all string literals in DFDL schemas will support these escape sequences:

· “\#D…;” (“D…” denotes digits) inserts a single character with the character code given by the base 10 decimal value.

· “\#xH…;”(“H…” denotes hex digits) inserts a single character with that code value.

· “\\#” inserts a literal “\#” pair of characters.

TBD: Susan Malaika of IBM suggested this is a general w3c issue that transcends just the DFDL group. There ought to be a standard way to talk about characters with these reserved character codes inside XML documents.

DFDL processors which convert data into XML form from non-XML representations must not produce invalid XML by including any of the disallowed characters in the output. Such implementations MUST substitute for the disallowed characters. DFDL processors are encouraged to perform such substitution by inserting the "\#xH…;" or "\#D…;" sequences for the disallowed characters.   

DFDL processors which provide API-based access to non-XML data MUST NOT substitute for XML-disallowed characters. 

TBD: DFDL Infoset or information model - must be documented to allow strings containing any characters at all. Is this related to the data model for XQuery?
29 Appendix: Rationale Discussions, Decisions, Future Direction
TBD: This section will eventually be removed from the specification, and put into a separate document which is retained for purposes of avoiding endless revisiting of the same issues as the standard evolves. 
29.1 Scoping - No Top-level Scope
The following observations about XSD and DFDL are the core realizations that lead to the simplified scoping proposal described herein:

1. Definitions or declarations of elements, attributes, types, and groups that are reusable occur only at the top level of some schema. This means the only lexical-scope that a reusable definition is found within is one at the top-level of a schema. 

2. We don't use any lexical scopes of representation properties that implicitly surround the whole set of top-level definitions of a schema. Rather format specifications are invoked by putting annotations directly on a specific global element declaration (or by specifying the equivalent from outside the schema.) At the global level of a schema you can define reusable named format definitions, but those annotations don't put any format into effect over the whole schema. This insures referential transparency for named declarations/definitions.

3. We lose nothing important by this restriction. Instead of specifying a data format to use at the top-level of a schema, you put it at the outermost level of the declaration(s) or definitions it applies to. 

4. Selectors, or embedding multiple sets of data format annotations into the same XSD schema, is completely orthogonal to scoping.
29.2 Rationale for layering and data source indirection features
The book “ASN.1 Complete” by Larmouth (ISBN 0-12-233435-3 and available online as a pdf) discusses the importance of layer support in format descriptions. 
The layering concept is perhaps most commonly associated with the International Standards Organization (ISO) and International Telecommunications Union (ITU) “architecture” or “7-layer model” for Open Systems Interconnection (OSI) shown in Figure 3.  While many of the protocols developed within this framework are not greatly used today, it remains an interesting academic study for approaches to protocol specification. In the original OSI concept in the late 1970s, there would be just 6 layers providing (progressively richer) carrier services, with a final “application layer” where each specification supported a single endapplication, with no “holes”. 

It became apparent, however, over the next decade, that even in the “application layer” people wanted to leave “holes” in their specification for later extensions, or to provide a means of tailoring their protocol to specific needs. For example, one of the more recent and important protocols - Secure Electronic Transactions (SET) - contains a wealth of fully-defined message semantics, but also provides for a number of “holes” which can transfer “merchant details” which are not specified in the SET specification itself. So we have basic messages for purchase requests and responses, inquiry requests and responses, authorization requests and responses, and so on, but within those messages there are “holes” for “message extensions” - additional information specific to a particular merchant. 

It is thus important that any mechanism or notation for specifying a protocol should be able to cater well for the inclusion of “holes”. This has been one of the more important developments in ASN.1 in the last decade, and will be a subject of much further discussion in this book. 

“Catering well” for the inclusion of “holes” implies that the notation must have defined mechanisms (preferably uniformly applied to all specifications written using that notation) to identify the contents of a hole at communications time. (In lower layers, this is sometimes referred to as the “protocol id” problem). Equally important, however, are notational means to clearly identify that a specification is incomplete (contains a hole), together with well-defined mechanisms to relate the (perhaps later in time) specification of the contents of holes to the location of the holes themselves. 

The argument made here is equally true for DFDL. We need the ability to describe a data format containing a hole or payload which another DFDL schema can then describe the format of. In general a hole is not even necessarily contiguous. One example is IP packet fragmentation in TCP/IP protocols. Another more data-format-centric example is the nonVSAM VS format. (see “IBM OS/390 DFSMS: Using Data Sets” IBM publication  SC26-7339-01, Second Edition, December 2000. (online at: http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/DGT1D411/CCONTEN TS?SHELF=EZ239126&DN=SC26-7339-01&DT=20001014144419) In this format, data records with actual data fields of interest are broken up into segments. The segments are of variable size, and a record can fit in a single segment or can span multiple segments. The segments are of 3 types, initial, middle (there can be zero or more of these), and final. The hole that the record fits in is assembled by putting together the partial holes from each of the segments. Adding minor additional complexity is that in the actual format the segments are then grouped into variable-sized blocks as an I/O transfer-unit efficiency optimization. 

A further wrinkle on layering in DFDL is the notion of encoding. Modern data formats often contain holes (or we’ll also call them payloads) which have been encoded to allow data transfer in text-only mediums, or to compress to save space, or to encrypt, or for various other reasons. The encoding must be decoded and the resulting data is the payload where we then want to describe the format. There are many examples of this, but email messages using MIME encapsulated attachments are a classic example. We’d like to describe a file of email messages each containing MIME encapsulated attachments where the attachments are compressed binary data where the data is a binary data format. We’d like to describe this file and expose the logical structure of the data that is inside the MIME encapsulated attachments.
29.3 Implementation note on unbounded lookahead.

Data formats may be described in DFDL where successful processing may require what is called unbounded look-ahead parsing. This generality is required in order to handle the wide variety of existing data formats. This standard does not specify mechanisms for control over this behavior in implementations, and implementations may differentiate themselves on the degrees of control over this capability that they provide.

30 Appenix TBD: MIssing Topics/Discussion 

1. Associating DFDL with data - embedded, prefix, referenced, etc. Once you do this, there's lots of other metadata that wants to be tightly associated with the data too: Semantic tagging - attaching provenance information, documentation, data owner, checksums and digital signatures, sample data, and all other sorts of metadata. (This is all clearly beyond scope, but do we want to say something about there being some standard way to do the binding of DFDL to data. This is doable using layering at minimum. I.e., zip your data, base100 encode it, then express your data layout as on top of that representation via layering and a black box unzip and decode of the single element which is all the data. It would also be relatively easy to describe a file containing an XML prefix which is a textual field followed by the rest of the data in binary form. This would let you slam some XML header that points at a DFDL schema on the front of data. The schema just has to include description of the XML header too or how to skip over it.)

31 TBD: 

In previous spec (from 2005)

· Type Aliasing (useTypeAlias) - do we want this?

· Data Source Indirection - (as part of layering) - also described in prior spec, but needs work as it is parse-direction only as described there. 

In primer (ggf-dfdl-primer-005.doc has discussion)

· associating DFDL with data

· implied XML schema

· 'the leverage of using XSD'
















































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































� This is as of XML 1.0 3rd edition, #xD cannot be expressed directly as it will be replaced automatically with #xA by conforming processors. One must use a character reference to express this character.





�I don't think this concept of a default context is needed anymore - this should be revisited when the other documents have been finished off.
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