Resolving Points of Uncertainty.

A point of uncertainty occurs in the data stream when there is more than one component that might occur at that point. A region of uncertainty starts at the point of uncertainty and ends when the uncertainty is resolved. Points of uncertainty can be nested but only the area associated with the most recent point of uncertainty is active

A point of uncertainty is caused when one of the following constructs is used in a DFDL schema

1. An xs:choice

2. An unordered xs:sequence (dfdl:sequenceKind='unordered')

3. An
 xs:element which is optional (xs:minOccurs = 0, xs:maxOccurs=1)
4. An xs:element has variable number of occurrences (xs:minOccurs not equal to xs:maxOccurs, and xs:maxOccurs > 1)

a. Terminology: When maxOccurs is > 1 this is called an array.
5. An xs:sequence containing an floating element.

An xs:choice point of uncertainty is resolved by parsing each choice branch in schema definition order until one is known to exist. It is a processing error if none of the choices branches are known to exist.
An unordered xs:sequence point of uncertainty is resolved by parsing each of the child components of the sequence in schema definition order at each point in the data stream where a component can exist until the required number of child components are known to exist or the sequence is terminated by delimiters.
An optional element point of uncertainty is resolved by parsing the element until it is either known to exist or known not to exist.
An element with a variable number of occurrences (an array) point of uncertainty is resolved for each occurrence separately. The array is known to exist if one of its occurrences exists.
A sequence with a floating child element point of uncertainty is resolved by parsing the expected item
at that point in the data stream. If the expected item is known not to exist then each floating component is parsed in schema definition order.
A component is deemed to be known to exist when

1. All the components (initiator if defined, content and terminator if defined) of the component are found.

2. A dfdl:discriminator on one of its children evaluates to true.

3. A xs:sequence or xs:choice with dfdl:initiatedContent finds an initiator for a component

A component is deemed to be known not to exist when

1. A dfdl:assert on one of its children evaluates to false .

2. A dfdl:discriminator on one of its children evaluates to false or a processing error occurs while evaluating the expression.

3.
4. A xs:sequence or xs:choice with dfdl:initiatedContent finds an initiator for a different component

5. A processing error occurs when parsing the value of the component. Processing errors includes, but is not limited to, failure to convert the data to the built-in logical type. Validation errors do not cause a component to be known not to exist. Schema definition errors cause the parse to be terminated so implicitly resolve an area on uncertainty.

DFDL Discriminators

DFDL discriminators are used to resolve points of uncertainty that cannot be resolved by speculative parsing. They can also be used to force a resolution earlier during the parsing of a group so that subsequent parsing errors are treated as processing errors of a known component rather than a failure to find a component.
A discriminator determines the existence or non-existence of a sequence group. That is, a discriminator on a component evaluating to true means the parent sequence group is known to exist.
Inductively, when this parent sequence group is a required item within its enclosing sequence group, then that enclosing sequence group is also known to exist.
A discriminator can only be on a required component in a sequence group.
If the complex type of an element contains a sequence group then if the sequence group is known not to exist, then the element is known not to exist.
There can be at most one discriminator for a sequence group. It is a schema definition error if there is more than one discriminator format annotation that applies to a single sequence group

Any one annotation point can contain only a single discriminator or one or more assertions, but not both. It is a schema definition error otherwise
�This is a special case of point 4. We either introduce the term "array", or we don't and blur the distinction between optionals and arrays. I.e., either put a case in for optionals, and a case in for arrays, or collapse the two and call it "variable number of occurrances".

�is this the right word? We generally use component to refer to "schema component". The term for element or model group is "item" I believe.

