GWD-I

dfdl-wg@gridforum.org

Category: INFORMATIONAL

GGF Data Format Description Language Working Group
2006-02-04

Data Format Description Language (DFDL)

Extensions
Working Draft

Status of This Memo

This memo provides information to the Grid community regarding the specification of a Data Format Description Language. The specification is currently a draft. It does not define any standards or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright © Global Grid Forum (2006). All Rights Reserved.

Abstract

This document is one of a series that provides a description of the underlying semantics of DFDL in terms of the logical operations of a hypothetical DFDL parser. This document introduces the concept of a “conversion”, presents syntax for its declarations and semantics for its operation.
Revision History

	Latest entry at the top please

	Version
	Author/Contributor
	History
	Date(yyyy-mm-dd)

	001
	Martin Westhead
Bob McGrath/

JimMyers/

Mike Bekerle
	Taken from “Conversions document
	2006-02-04

Contents

1Data Format Description Language (DFDL)

1Extensions

1Working Draft

1Abstract

1Revision History

2Contents

31.
Overview

32.
Motivation

33.
Defining conversions

33.1
Prototype Conversions

43.2
Blackbox conversions

43.3
Whitebox conversions

44.
Registering conversions

55.
Defining Conversion Packages

56.
Defining Data streams

67.
Explicit conversion selection

68.
Summary of new statements

69.
Example

1. Overview
This document is an addendum to the existing documents on conversions and looks provides additional material necessary to neatly support separated data sequences.

2. Concepts

Termination of streams - All data streams (regardless of type) can return a special value which represents the end of the stream. We refer to this value EOS. All conversions will accept and EOS and MUST simply pass it on as output.
Sequence conversion list – this is a list of conversions identified (and changeable from the document) in the context analogous to the exiting conversions list. Separation conversions will typically not modify the data except to consume termination bytes and returning EOS value.

3. New Parser Behavior

When the logical DFDL parser is traversing the document, and encounters a “sequence” XML Schema element, it will automatically define and use a new stream. The new stream will be defined by taking the existing stream and applying a Sequence Conversion to it. It will choose the conversion from the Sequence conversion list using the same algorithm used for choosing regular conversions. If it finds no suitable algorithm no conversion will be applied.

When a sequence of unbounded or variable length is encountered the parser will aim to terminate the sequence when it encounters a EOS value from the stream.

When searching for a type match the parser will search for the most specific match. So in the example below dfdl:char is defined as a restriction on xs:string (length of one). The parser will match xs:string for dfdl:char but only after it has ensured that there are no matches on xs:string first.

4. Example
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="exampleCsvTable">

<xs:annotation>

<xs:appinfo>

<!-- assume the following conversions are defined -->

<dfdl:defineConversion name="bytesToChar" input="xs:byte" output="dfdl:char"

 properties="dfdl:charSet"/>

<dfdl:defineConversion name="split" input="dfdl:char" output="dfdl:char"
 properties="dfdl:splitSeparator"/>

<dfdl:defineConversion name="concatenate" input="dfdl:char" output="xs:string"/>

<dfdl:defineConversion name="stringToInt" input="xs:stringr" output="xs:int" />

</xs:appinfo>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:annotation>

<xs:appinfo>

<dfdl:setLocal name="splitSeparator" value="\n"/>

<!-- <dfdl:defineStream name="sequenceStream1" applyConversion="dfdl:split"/> -->

<!-- <dfdl:useStream name=" sequenceStream1 "/> -->

</xs:appinfo>

</xs:annotation>

<xs:element name="row" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:annotation>

<xs:appinfo>

<dfdl:setLocal name="splitSeparator " value=","/>

<!-- <dfdl:defineStream name="sequenceStream2 "

 applyConversion="dfdl:tokenizer"/> -->

<!-- <dfdl:useStream name="sequenceStream2 "/> -->

</xs:appinfo>

</xs:annotation>

<xs:element name="value" type="xs:int" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>
Consider the above example
. This example is a simple comma separated value table where rows are terminated with a newline character.

Let us assume that the context contains the following registrations and that the Sequence Conversion split has a guard such that it is only applicable when the property “splitSeparator” is defined.
<context>
<dfdl:conversions>

<bytesToChar … />

<concatenate… />

<stringToInt… />

</dfdl:conversions>

<dfdl:sequenceConversions>

<split … />

</dfdl:sequenceConversions>
</context>

Now the logical DFDL parser will work its way down the document until it encounters the sequence tag. At this point it looks in the sequenceConversions context and finds that the split operator is applicable. So it automatically defines a new stream (sequenceStream1) and uses this stream. From this point on values will be drawn from this stream.

The new stream is constructed by applying the conversion split. Split is a simple conversion which reads characters (dfdl:char) and normally just passes them on. If it encounters a character matching the character defined in the property “splitSeparator” then instead of simply passing the character on it consumes it and produces EOS. In this case we are looking for a new line ‘\n’ character.
In order to apply the split conversion the DFDL parser sees it needs to find a way to generate dfdl:char. It looks at the regular conversion list and sees that it can use bytesToChar so this is now applied.

So from this point and deeper into the document we are now pulling values from the new stream.

In the example there are commands included in comments that show the intended automatic behaviour of the parser at this point.

When we encounter the next sequence the same happens only in this case the character is a comma.

The logical DFDL parser moves down and hits the int. It finds the stringToInt as the conversion to produce an int and sees that it needs to find a xs:string to feed it. It has a list of dfdl:char. Now dfdl:char is a restricted xs:string but following the new rule it searches for the most specific match first. It finds concatenate which turns dfdl:char into xs:string. In fact concatenate pulls all the characters off until it reaches EOS and returns them as a single string.
So now when the parser reads the integers off the stream, when it encounters the first comma the innermost split operator will produce EOS. This will end the sequence.

However, the outer sequence will loop and the inner sequence will be reentered and a new comma separated stream will be defined.

� . Assumes the following type definition:

<xs:simpleType name="dfdl:char">

	<xs:restriction base="xs:string">

		<xs:minLength value="1"/>

		<xs:maxLength value="1"/>

	</xs:restriction>

</xs:simpleType>

File name: ggf-dfdl-semantics-2005-01.doc

 Page 2 of 5
Last saved: 2006-02-04T15:47:00 (ET.US)

http://forge.gridforum.org/projects/dfdl-wg/

