GWD-I

dfdl-wg@gridforum.org

Category: INFORMATIONAL

GGF Data Format Description Language Working Group
2006-01-13

Data Format Description Language (DFDL)

Conversions
Working Draft

Status of This Memo

This memo provides information to the Grid community regarding the specification of a Data Format Description Language. The specification is currently a draft. It does not define any standards or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright © Global Grid Forum (2006). All Rights Reserved.

Abstract

This document is one of a series that provides a description of the underlying semantics of DFDL in terms of the logical operations of a hypothetical DFDL parser. This document introduces the concept of a “conversion”, presents syntax for its declarations and semantics for its operation.
Revision History

	Latest entry at the top please

	Version
	Author/Contributor
	History
	Date(yyyy-mm-dd)

	004
	Martin Westhead/ Mike Bekerle
	Modifications based on feedback from Mike.
	2006-1-23

	003
	Martin Westhead
	Simplification and reordering of presentation
	2006-1-13

	002
	Martin Westhead/

Bob McGrath/
Jim Myers
	Clarifications and modifications from intial feedback
	2006-1-4

	001
	Martin Westhead
	Initial draft
	2005-12-22

Contents

1Data Format Description Language (DFDL)

1Conversions

1Working Draft

1Abstract

1Revision History

2Contents

31.
Overview

32.
Motivation

33.
Concepts

33.1
Conversion

33.2
Data streams

44.
Defining conversions

44.1
Prototype Conversions

44.2
Blackbox conversions

44.3
Whitebox conversions

55.
Registering conversions

56.
How are conversions chosen?

56.1
Conversion search algorithm

67.
Conversion Packages

78.
Data streams

89.
Explicit conversion selection

810.
Summary of new statements

1. Overview
This document describes the DFDL concept of a conversion. It describes how conversions are chosen and explains how to add new white and black box conversions.
Note 1: This document describes the semantics of DFDL in terms of a logic description of how a parser might proceed to operate on the data. Any implementation that provides operations with consistent behaviour is valid.

 For example, a parser might well use a lazy strategy, and evaluate only the parts of a large source needed by the application. These details are left to implementations.

ToDo: We will have to define conformance criteria.
This is one of a series of three documents produced by the extensibility design team. The documents aim to fill in a number of details as to the logical behaviour of a DFDL parser and in doing so provide the flexibility to extend the capabilities of DFDL to cope with a much broader range of formats than the current proposal.

The three documents can be considered as independent proposals but they relate to a single consistent view of the DFDL parser.

· Context – a simple proposal for a single consistent value store for the logical DFDL parser that provides a single semantics for variables, properties, parameters and constants.

· Hidden elements – a proposal for the ability to hide elements in the format description in such a way that they can be referred to elsewhere in the description but so that the do not appear in the output. For example the length of a prefix string is clearly an element in the format but not of the output or logical model.

· Conversions – a proposal for the underlying mechanism as to how the logical DFDL parser chooses the logic that converts between types. This proposal includes the syntax for specifying conversions.

These three components are intended to provide a complete description of the logical DFDL parser and the (inherent) extensibility mechanisms.

2. Motivation

Being able to add and manipulate conversions is fundamental to the extensibility of DFDL. For DFDL to be useful in cutting edge technology areas like the Grid and to support the breadth of existing legacy formats particularly in the scientific world, this sort of extensibility is essential.

3. Concepts
3.1 Conversion
The term Conversion refers to a operation over typed data that converts it from one format to another. Frequently conversions involve changes in the type of the data. For example, converting from bytes to floats is a conversion. Note that also that the operation described by a DFDL document that converts data from its underlying form into an XML data model is also a conversion.

3.2 Data streams

In DFDL all data inputs are considered to come from logical objects called streams a stream consists of a sequence of XML elements and a cursor which stores the position of the parser in consuming that stream. Note: a single element is considered equivalent to a sequence containing just that element.

All the elements of a stream must be of a single type. If all elements of a stream are of type X then the stream is said to be of type X.
4. Defining conversions

Conversions are defined using the “dfdl:defineConversion” element. Conversions can be defined purely as prototypes (for conversions built-in to the parser) as using external logic (known as blackbox) conversions and conversions which use DFDL directly (known as whitebox conversions).
4.1 Prototype Conversions

A prototype conversion defines the name and type signature of a conversion built in to the parser.
<dfdl:defineConversion name=”dfdl:bytesToInt” input=”xs:byte” output=”xs:int” inverseConversion=”dfdl:intToByte”/>
Note that the inverse conversion is required to exist but may not yet have been defined. This is the conversion that is used to write out the values read-in in using this conversion.

4.2 Blackbox conversions

The blackbox conversion is like a prototype conversion except it specifies how to call an external method for example in java:
<dfdl:defineConversion name=”parseText” input=”xs:string” output=”xs:float” inverseConversion=”writeText”>

<dfdl:exec language=”java”>org.foo.Example.parseText(sourceStream, “$separator”, “$numberOfFields”)</dfdl:exec>

</dfdl:defineConversion>
This would call java methods of the form:

public static InputStream ParseText (InputStream input, String separator, int numberOfFields);

TODO: Define blackbox conversions for C, XSL, OS-command-line, WSDL-web service.

There is a semantic fudge in this between individual types, streams of types and sequences of types. This has to be worked through properly.
4.3 Whitebox conversions

The following is a simple example of a conversion in which the value of the input integer is doubled.
<xs:complexType>

<xs:annotation>

<xs:appinfo>

<dfdl:defineConversion name=”doubleInt” />

 <dfdl:hidden”>

<xs:element name="x" type="xs:int"/>

</dfdl:hidden>

</xs:appinfo>

<xs:annotation>

<xs:element name="doubled-value" type="xs:int" dfdl:value=”2* ../x”/>
</xs:complexType>

This conversion has the following prototype declaration, which the parser must infer from the definition:

<dfdl:defineConversion name=”dfdl:doubleInt” input=”xs:int” output=”xs:int” />
5. Registering conversions

Once defined, conversions must be registered. Conversions are registered by adding them to the “conversions” element in the context:

<dfdl:set name=”conversions/parseText” value=” ’$useTextInput’ “ type=”xs:string” position=”top”/>
This statement will add the conversion “parseText” to the top of the list of conversions:
<context>

<dfdl:conversions>

<parseText>$useTextInput</parseText>

<bytesToInt>$binary</bytesToInt>

<bytesToString>TRUE</bytesToString >

</dfdl:conversions>
</context>

The value ofthe element is an XPath guard which is evaluated as part of the process for selecting conversions. This conversion will not be chosen if the guard evaluates to FALSE or null.

The guard CAN ONLY refer to static elements in the context. This is to ensure that any search required to calculate which conversions apply at any point in the document can be done once in advance of any data being processed i.e. these choices can be handled at “compile” time.
6. How are conversions chosen?
Conversions can be forced using an explicit declaration (see later). In this section we look at how the parser selects a conversion. Note that the algorithm given is intended to describe the logical behaviour of the DFDL parser. A real implementation is at liberty to choose any implementation that is consistent with these semantics.
The DFDL parser traverses the DFDL Schema visiting nodes in order (as described elsewhere) at each element or attribute it visits it attempts to find a conversion with which to populate it according to the algorithm below.

If the node being populated is an element of complex type and no conversion direct to that type can be found, the parser will add an empty node and move on to attempt to populate its children.

If the node being populated is of simple type and no conversion can be found the parse has failed.

6.1 Conversion search algorithm

Many algorithms could be applied to this search problem and depending on the number of conversions registered the search could be lengthy. Although in most simple cases the search should be trivial. This section describes the initial search that a parser MUST undertake before either giving up or doing anything more complex.

When searching for a conversion the parser will (logically) examine all the registered conversions in the order they appear in the “conversions” element in the context. It will select the first element that can output its target type and for which the guard XPath is satisfied. If the conversion will accept the current source stream type it is applied and the search ends.
If the chosen conversion will not accept the current source stream type then the input type it requires is made the new target type and the parser begins the search from the top.

In this way the parser builds up a sequence of conversions (byte to String followed by String- to Integer) that match end to end like dominoes.

[image: image1.emf]

Integer String

String String

String Byte

input stream

populate document

The parser MAY NOT apply the same conversion twice in the same sequence of conversions (i.e. the search may not loop).

If the parser build a sequence of conversions longer than $MAX_CONVERSION_LENGTH (a settable parameter in the context) then the parser MUST fail.

7. Conversion Packages

Typically conversions are used in groups. For convenience, definitions can be grouped together in a file, and a bundle provided that registers the whole group and sets up appropriate default values. Such a file is referred to as a conversion package.
For example a small package might look like:

<dfdl:defineConversion name=”dfdl:binInt” input=”xs:byte” output=”xs:int” />

<dfdl:defineConversion name=”dfdl:binFloat” input=”xs:byte” output=”xs:float” />
<dfdl:defineConversion name=”dfdl:binDouble” input=”xs:byte” output=”xs:double” />
<dfdl:defineBundle name=”smallBinary”>

<dfdl:set name=”conversions/dfdl:binInt” value=”$binary” test=”not($conversions/dfdl:binInt)” position=”start”/>

<dfdl:set name=”conversions/dfdl:binFloat” value=”$binary” test=”not($conversions/dfdl:binFloat)” position=”start”/>

<dfdl:set name=”conversions/dfdl:binDouble” value=”$binary” test=”not($conversions/dfdl:binDouble)”

 position=”start”/>

 <dfdl:set name=”binary” value=”true” test=”not($binary)”/>

<dfdl:set name=”byteOrder” value=”bigEndian” test=”not($bigEndian)”/>

 <dfdl:useBundle name=”binaryStrings”/>

</dfdl:defineBundle>
To use this package we would have to (obviously) include the file containing the packages and then (where relevant) use the bundle:
<dfdl:useBundle name=”smallBinary”>
Notice that all of the set context statements have a test to ensure that they do not attempt to double-register the conversion. This allows different packages to include the same conversions.

Notice that packages can also refer to other packages. The last line of the bundle references another package called “binaryStrings”. So “binaryStrings” is included in “smallBinary”, although because it is included at the end the constant definitions and conversion guards from smallBinary take precedence over those in binaryStrings. For example, suppose that “binaryStrings” contained the line:

<dfdl:set name=”byteOrder” value=”littleEndian” test=”not($bigEndian)”/>

This line would be silently overridden by the value for this property set in “smallBinary” shown above.

The use of packages provides a useful mechanism for controlling which conversions are at the top of the conversion list in the local context.

If a section of a DFDL schema was represented in binary we could simply apply:

<dfdl:useBundle name=”smallBinary”>
At the start of the section and these conversions would be preferentially picked up thought the scope of the modification to the context.

8. Data streams
The name of the current stream from which data is being extracted is maintained in the Context. The default source stream is called “stdin” and is of type “xs:byte”. The name of the current stream is held in a property called “source”.
The DFDL document begins parsing against “stdin”. At any point in the parsing the source stream can be switched either by choosing an alternative input source (e.g. a file, url or data stream) or by applying a conversion to the existing stream.

For example this shows how the source stream can be switched to access a new file, in this case one located at “http://my.data.com/file.csv”.
<xs:annotation>

<xs:appinfo>

<dfdl:defineStream name=”myNewStream" url=”http://my.data.com/file.csv”/>
 <dfdl:set name=”$source” value=”myNewStream”/>
 </xs:appinfo>
</xs:annotation>
The next example above applies a conversion (which must have been defined and registered with the parser) that, in this case, decompresses the data.
</xs:annotation>
 <xs:appinfo>

<dfdl:defineStream name=”uncompressed" applyConversion=”gunzip” source=”$source”/>

<dfdl:set name=”$source” value=”uncompressed”/>
</xs:appinfo>
</xs:annotation>
Note: It would be consistent to have a “dfdl:useStream” that was syntactic sugar for “dfdl:set name=”$source””.

Note: How do we do output streams. (This whole proposal needs reviewing for the write direction).

9. Explicit conversion selection
At any point in the document traversal, if the DFDL parser reaches an explicit “useConversion” tag it will apply the conversion to the data from the current source stream to populate the DFDL element, attribute or sequence the annotation is associated with. If the results of the conversion do not match the type of the element then a runtime error is returned.
<xs:element name="testElement" type="xs:string">

<xs:annotation>

<xs:appinfo>

<dfdl:useConversion name=”pigLatin" test=”$pigLatin=’on’”/>

</xs:appinfo>

</xs:annotation>

</xs:element>
If the optional test condition is present then the statement is only applied if the test condition is satisfied.
10. Summary of new statements
In this document the following new statements were introduced:

· defineConversion

· useConversion

· defineStream

File name: ggf-dfdl-semantics-2005-01.doc

 Page 3 of 9
Last saved: 2006-01-13T09:22:00 (ET.US)

http://forge.gridforum.org/projects/dfdl-wg/

_1198566184.doc

[image: image1]

Integer

String

String

String

String

Byte

input stream

populate

document

