Rewrite of the DFDL Scoping Rules
Status of This Document

This memo provides information to the Grid community regarding the specification of a Data Format Description Language. The specification is currently a working group internal draft. It does not define any standards or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright © Global Grid Forum, 2004, 2005, 2006. All Rights Reserved.

Copyright © Open Grid Forum, 2006. All Rights Reserved.

Abstract

This document contains a rewrite of the scoping rules contained in the DFDL draft specification. The purpose of this is to attempt to condense the material at the same time as improving clarity. Instead of using examples to introduce the rules, the rules are explained verbally then illustrated by example. Clean formatting and tables have also been used to try and improve the readability and ease of reference.

Contents
2Introduction to Scoping

2Annotation Positioning

3Annotation Overloading

4Annotation Overriding

4Scoping of Type References

5Scoping of Element and Group References

Introduction to Scoping

This section describes the rules that govern the scope over which DFDL annotations apply. The aim is to summarise these rules concisely, while more detailed examples are provided in the supplementary document, [Examples of the DFDL Scoping Rules].
The scope over which a DFDL annotation applies is defined using the applies attribute of a DFDL annotation element. The example below shows the scope being defined for a dfdl:format annotation:
<xs:annotation>
 <xs:appinfo source=”http://dataformat.org/”>
 <dfdl:format applies="toScope" separator=";" />
 </xs:appinfo>
</xs:annotation>

The applies attribute can take one of two values:

· hereOnly - the annotation applies to the annotated construct but not to any contained or referenced constructs.

· toScope - the annotation applies to the annotated construct and to any contained or referenced constructs.

Annotation Positioning

As described in [Chapter ?], DFDL annotations are positioned at annotation points within a DFDL schema. The table below shows the validity of each annotation point for annotations that apply hereOnly and toScope.

	Annotation Point
	Applies

	
	hereOnly
	toScope

	Schema declaration
	(Invalid
	(Valid

	Element declaration
	(Valid
	(Valid

	Element reference
	(Valid
	(Valid

	Complex type declaration
	(Invalid
	(Valid

	Sequence declaration
	(Valid
	(Valid

	Choice declaration
	(Valid
	(Valid

	Group reference
	(Valid
	(Valid

Since an annotation that applies toScope is inherited by any contained or referenced constructs, the same meaning can often be expressed using various annotation points. The example below shows three equivalent annotation points for a toScope annotation. In each case, the annotation applies to both contained constructs: title and pages.

<xs:element name=”book”>
 <!-- Point A -->
 <xs:complexType>
 <!-- Point B -->
 <xs:sequence>
 <!-- Point C -->
 <xs:element name="title” type=”xs:string”/>
 <xs:element name=”pages” type=”xs:int”/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
In contrast to this, the meaning of an annotation that applies hereOnly is always altered if the annotation point is changed. Such an annotation is invalid for annotation points A and B from the previous example, because there are no local constructs for the annotation to apply to. Point C, on the other hand, is valid for defining annotations that are relevant to the surrounding sequence.
The example below shows two further annotation points. Positioning an annotation that applies hereOnly at point D would mean that it applied to the title element only, while positioning at point E would mean it applied only to the pages element.

<xs:element name=”book”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="title” type=”xs:string”>
 <!-- Point D -->
 </xs:element>
 <xs:element name=”pages” type=”xs:int”>
 <!-- Point E -->
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>
Annotation Overloading
Annotation overloading takes place when multiple DFDL annotations properties are positioned at the same annotation point. When this occurs, annotations that apply hereOnly take precedence over those that apply toScope. When multiple DFDL annotation properties occur at the same annotation point, those that apply toScope and those that apply hereOnly are combined separately to form two groups. There must not be duplicate properties within either of these groups, and there can be only one use of the ref attribute within each group
. Duplicate properties and multiple ref attributes must result in a DFDL schema definition error.
The example below demonstrates annotation overloading. The format separator annotation property is overloaded on the annotation point for the outer sequence. In this case, the ":" separator value which applies toScope will take precedence and apply to the outer sequence, while the "," separator will be inherited by the inner sequence.

<xs:element name=”book”>
 <xs:complexType>
 <!-- outer sequence -->
 <xs:sequence>
 <xs:annotation>
 <xs:appinfo source=”http://dataformat.org/”>
 <dfdl:format applies="hereOnly" separator=":" />
 <dfdl:format applies="toScope" separator="," />
 </xs:appinfo>
 </xs:annotation>
 <xs:element name="cover” type=”xs:string”>
 <xs:complexType>
 <!-- inner sequence -->
 <xs:sequence>
 <xs:element name=”title” type=”xs:string”>
 <xs:element name=”caption” type=”xs:string”>
 <xs:element name=”author” type=”xs:string”>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name=”pages” type=”xs:int”/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
Annotation Overriding

Annotation overriding takes place when multiple DFDL annotations for the same property occur at different annotation points. Overriding can only occur between annotations that apply toScope. The general rule is that the most local annotation property takes precedence over any inherited annotation properties. However, there is an important exception to this which is discussed in the Scoping of Element and Group References section.

The example below demonstrates the general case through the overriding of a format encoding annotation property. The ascii format encoding is inherited by the title element, but then it is overridden by the utf-8 format encoding, which takes precedence.
<xs:element name=”book”>
 <xs:complexType>
 <xs:sequence>
 <xs:annotation>
 <xs:appinfo source=”http://dataformat.org/”>
 <dfdl:format applies="toScope" encoding="ascii" />
 </xs:appinfo>
 </xs:annotation>
 <xs:element name=”title” type=”xs:string”>
 <xs:annotation>
 <xs:appinfo source=”http://dataformat.org/”>
 <dfdl:format applies="toScope" encoding="utf-8" />
 </xs:appinfo>
 </xs:annotation>
 </xs:element>
 <xs:element name=”pages” type=”xs:int”/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
Scoping of Type References

DFDL scoping rules are consistent with the principal of referential transparency, whereby a type reference can be replaced with an in-line copy of the referenced type without altering the meaning. Hence, if an annotation that applies hereOnly is positioned on an element that references a complex type, the annotation does not apply to the referenced type; and conversely, an annotation that applies toScope would also apply to the referenced complex type.
The table below summarises the rules for the application of annotations to referenced types:
	Referenced Type
	Applies

	
	toScope
	hereOnly

	Simple Type
	(Does apply
	(Does apply

	Complex Type
	(Does apply
	(Does not apply

Scoping of Element and Group References
The exception to the general case concerns annotations positioned on element references and group references. When this occurs, the annotations on the reference will take precedence over any top-level annotations on the referenced element or group. Consider the mechanism of substituting an element reference declaration with the referenced elements. If annotations are present on both the element reference declaration and the referenced element, they will need to be combined in some way. The rules of DFDL dictate that those on the element reference take precedence over those on the referenced element.
In the example below, the annotation on the element reference specifying a format encoding of ascii takes precedence over the utf-8 format encoding of the referenced element.

<xs:element name=”title” ref="name">

 <xs:annotation>

 <xs:appinfo source=”http://dataformat.org/”>

 <dfdl:format applies="toScope" encoding="ascii" />

 </xs:appinfo>

 </xs:annotation>

</xs:element>

<xs:element name=”name” type="xs:string">

 <xs:annotation>

 <xs:appinfo source=”http://dataformat.org/”>

 <dfdl:format applies="toScope" encoding="utf-8" />

 </xs:appinfo>

 </xs:annotation>

</xs:element>
�A little elaboration on this would be good.

