GFD-P-R.207		September 2013
[bookmark: _Toc20156277][bookmark: _Toc177399140][bookmark: _Toc175057427][bookmark: _Toc199516368][bookmark: _Toc194984029][bookmark: _Toc243112871][bookmark: _Toc199516285][bookmark: _Ref383076796][bookmark: _GoBack]NOTE to READER. Blocks of unchanged text are in a light blue font color.
23.1
23.2
23.3
23.4
23.5
23.5.1
23.5.2

	Function
	Meaning

	dfdl:valueLength($node, $lengthUnits)
	Returns the length of the supplied node's SimpleValue, NilLiteralValue, or NilLogicalValue region for elements of simple type, or ComplexContent region for elements of complex type.
These regions are defined in Section 9.2 DFDL Data Syntax Grammar.
The value is returned as an xs:unsignedLong.
The second argument is is of type xs:string and must be 'bytes', 'characters', or 'bits' (schema definition error otherwise) and determines the units of length.
See also section 23.5.3.1 below.

	dfdl:contentLength($node, $lengthUnits)
	Returns the length of the supplied node's SimpleContent region for elements of simple type, or ComplexContent region for elements of complex type.
These regions are defined in Section 9.2 DFDL Data Syntax Grammar.
The value is returned as an xs:unsignedLong.
The second argument is of type xs:string and must be 'bytes', 'characters', or 'bits' (schema definition error otherwise) and determines the units of length.
See also section 23.5.3.2 below.

	dfdl:testBit($data, $bitPos)
	Returns Boolean true if the bit number given by the xs:nonNegativeInteger $bitPos is set on in the xs:unsignedByte given by $data, otherwise returns Boolean false.

	dfdl:setBits($bit1, $bit2, ... $bit8)
	Returns an unsigned byte being the value of the bit positions provided by the Boolean arguments, where true=1, false=0. The number of arguments must be 8.

	dfdl:occursIndex()
	Returns the position of the current item within an array as an xs:long.
The first element is at position 1.
The function may be used on non-array elements.

	dfdl:checkConstraints($node)
	Returns boolean true if the specified node value satisfies the XML schema facet constraints that are associated with it. Returns false if the specified node does not meet the constraints or does not exist.
The facets that are checked are
· minLength, maxLength
· pattern
· enumeration
· maxInclusive, maxExclusive, minExclusive, minInclusive
· totalDigits
· fractionDigits
See Section 5.2 for which facets are checked for each simple type.
Additionally the XSD fixed property is checked.
It is a schema definition error if the argument is a complex element.

	[bookmark: _Toc199515651][bookmark: _Toc199515839][bookmark: _Toc199516278][bookmark: _Toc199515654][bookmark: _Toc199515842][bookmark: _Toc199516281][bookmark: _Toc199841833][bookmark: _Toc199844399][bookmark: _Toc199515657][bookmark: _Toc199515845][bookmark: _Toc199516284][bookmark: _Toc199841835][bookmark: _Toc199844401]dfdl:encodeDFDLEntities($arg)
	Returns a string containing a DFDL string literal constructed from the $arg string argument. If $arg contains any '%' and/or space characters, then the return value replaces each '%' with '%%' and each space with '%SP;', otherwise $arg is returned unchanged.
See also Section 23.5.3.3 below.

	dfdl:decodeDFDLEntities ($arg)
	Returns a string constructed from the $arg string argument. If $arg contains syntax matching DFDL Character Entities syntax, then the corresponding characters are used in the result. Any characters in $arg not matching the DFDL Character Entities syntax remain unchanged in the result.

It is a schema definition error if $arg contains syntax matching DFDL Byte Value Entities syntax.
See also Section 23.5.3.4 below.

	dfdl:containsDFDLEntities($arg)
	Returns a Boolean indicating whether the $arg string argument contains one or more DFDL entities.

	dfdl:timeZoneFromDateTime($arg)
dfdl:timeZoneFromDate($arg)
dfdl:timeZoneFromTime ($arg)
	Returns the timezone component of $arg if any as an xs:string. The $arg is of type xs:dateTime, xs:date and xs:time respectively.
If $arg has a timezone component, then the result is a string in the format of an ISO Time zone designator. Interpreted as an offset from UTC, its value may range from +14:00 to -14:00 hours, both inclusive. The UTC time zone is represented as "+00:00". If the $arg has no timezone component, then "" (empty string) is returned.

dfdl:valueLength()
The function dfdl:valueLength(path, lengthUnits) - returns the value length which excludes any padding or filling which might be added for a specified length. Framing is excluded including alignment filling, leading/trailing skip bytes, and delimiters.
If the element declaration in the DFDL schema corresponding to the infoset item is not potentially represented, then the value length is defined to be 0.
The value length includes the length contributions from introduced escape characters needed to escape contained delimiters (if such are defined, and will appear in the output representation).
The value length is also a function of the dfdl:encoding property. Multi-byte and variable-width character set encodings will commonly contribute more bytes to the value length than a single-byte character set would.
The value length is computed from the DFDL infoset value, ignoring the dfdl:length or dfdl:textOutputMinLength property. Other DFDL properties which affect the length of a text or binary representation are respected, it is only an explicit length which is ignored.
If the second argument is 'characters' then the element must have text representation and it is a schema definition error otherwise.
For a simple type, the value length is computed as if the infoset value given by the XPath argument is unparsed according to the properties in force for the element that describes it, but omitting padding or filling. The length of this unparsed representation is the value length.
For a complex type, the value length is computed as a bottom up totaling of the dfdl:contentLength() of all the contents of the complex type. If the second argument, giving the length units, is 'characters', then recursively, this complex type element must have text representation throughout all its contained elements and framing, all of which must also use a uniform character set encoding.
[bookmark: _Ref383078859]Examples of dfdl:valueLength
To clarify, consider this example element within a sequence separated by commas:
<dfdl:defineEscapeScheme name="backslash">
 <dfdl:escapeScheme escapeCharacter="\" escapeEscapeCharacter="\"/>
</dfdl:defineEscapeScheme>

...

<xs:sequence dfdl:separator=","
	dfdl:escapeSchemeRef="backslash">
 <xs:element name="x" type="xs:int"
	dfdl:lengthKind="explicit"
	dfdl:length="10"
	dfdl:lengthUnits='characters'
	dfdl:textNumberPadCharacter="*"
	dfdl:textNumberJustification="right"
	dfdl:representation="text"
	dfdl:encoding="utf-16"
	dfdl:textNumberRep="Standard"
	dfdl:textNumberPattern="+###,##0"
	dfdl:textNumberBase="10"
	dfdl:textStandardGroupingSeparator=","
	dfdl:initiator="["
	dfdl:terminator="]"/>
</xs:sequence>

...
If the infoset value for the element 'x' contains a value 10000 for this element, then unparsing it would produce '[***10\,000]'. The '*' characters are the padding. Note specifically the insertion of an escaped comma as grouping separator. However, the SimpleValue region of the grammar excludes the padding and also the framing which in this example is the initiator and terminator, so the SimpleValue region contains only '10\,000'. If the second argument to dfdl:valueLength is 'characters', then the return value from the function would be 7. If the second argument to dfdl:valueLength is 'bytes' then the dfdl:encoding of 'utf-16' means the return value of the function would be 14 as each character occupies 2 bytes in UTF-16 encoding.
A binary example:
<xs:element name="x" type="xs:int"
	dfdl:representation="binary"
	dfdl:binaryNumberRep="binary"
	dfdl:byteOrder="bigEndian"
	dfdl:lengthKind="implicit"/>
If the infoset value for this element is 10000, then the unparsed representation specified by this would be these 4 bytes containing (in hexadecimal) 00 00 27 10. The return value from dfdl:valueLength would be 4 if the second argument is 'bytes' or 32 if the second argument was 'bits'. In this case the value length is independent of the element value because an element of type xs:int in the above-described binary representation always occupies exactly 4 bytes. If the second argument was 'characters' it would be a schema definition error because this element does not have text representation.
[bookmark: _Ref383076817]dfdl:contentLength()
The dfdl:contentLength(path, lengthUnits) – returns the length of the content of the infoset data item as identified by the path argument. This includes padding or filling or truncation which might be carried out for a specified length item.
Framing is excluded including alignment filling, leading/trailing skip bytes, and delimiters. That is, the returned length is about the length of the content, and not about the position of that content in an output data stream.
If the element declaration in the DFDL schema corresponding to the infoset item is not potentially represented (e.g., has an dfdl:inputValueCalc property), then the content length is defined to be 0.
When unparsing with dfdl:lengthKind="explicit", the calculation of dfdl:contentLength() returns the value of the dfdl:length property.	Comment by Mike Beckerle: Readers, specifically consider this change.
Example of dfdl:contentLength
Consider the same first example from Section 23.5.3.1.1 above. However, in this case we are evaluating the dfdl:contentLength function on the element 'x'.
If the infoset value for the element 'x' contains a value 10000 for this element, then unparsing it would produce '[***10\,000]'. The '*' characters are the padding. Note specifically the insertion of an escaped comma as grouping separator. In this case the SimpleContent region of the grammar includes the padding, however, it still excludes the framing (initiator and terminator), so the SimpleContent region contains only '***10\,000'. If the second argument to dfdl:contentLength is 'characters', then the return value from the function would be 10, consistent with the value of the dfdl:length property. If the second argument to dfdl:valueLength is 'bytes' then the dfdl:encoding of 'utf-16' means the return value of the function would be 14 as each character occupies 2 bytes in UTF-16 encoding.	Comment by Mike Beckerle: This is the new behavior suggested.

The only alternative I can think of is to make it an SDE to ask for valueLength or contentLength using units which do not match the dfdl:lengthUnits property, but I believe that isn't general enough for many binary formats that wrap textual things in boxes where length is stored in bytes, but text inside may have been generalized to utf-8 or other non-SBCS.
[bookmark: _Ref383076879]dfdl:encodeDFDLEntities()
Use dfdl:encodeDFDLEntities() when the value of a DFDL property is obtained from the data stream using an expression, and the type of the property is DFDL String Literal or List of DFDL String Literals, and the values extracted from the data stream could contain '%' or space characters. If the data already contains DFDL entities, this function should not be used.
[bookmark: _Ref383076903]dfdl:decodeDFDLEntities()
Use dfdl:decodeDFDLEntities() when you need to create a value which contains characters for which DFDL Character Entities are needed. An example is to create data containing the NUL (character code 0) codepoint. This character code is not allowed in XML documents, including DFDL Schemas; hence, it must be specified using a DFDL Character Entity. Within a DFDL Expression, use this function to obtain a string containing this character.

dfdl-wg@ogf.org		Page 1 of 4
