		Michael J Beckerle (Tresys)
		

Bit Order requires a new Erratum, involving quite a bit of material.

3.32 Bit order:
Changes to:
· Section 11 Properties Common to both Content and Framing,
· Section 21 Optional Features,
· Section 3 Glossary,
· Section 13.7.1.4.1

· New Section 11.3

Section 11:

The following property is added:

	Property Name
	Description

	bitOrder
	Enum
Values are "mostSignificantBitFirst" or "leastSignificantBitFirst"
Determines the way that the positions of bits within a byte of data are interpreted for content that occupies only part of a byte, or which spans from part of one byte to part of another.
"mostSignificantBitFirst" means that the bit positions 1 to 8 contain the bits such that bit 1 is the most significant bit when viewing the byte as an unsigned number. Bit 8 is the least significant bit. That is, the bit at position i has place value 2(8 - i).
"leastSignificantBitFirst" means that the bit positions 1 to 8 contain the bits such that bit 1 is the least significant bit when viewing the byte as an unsigned number. Bit 8 is the most significant bit. That is, the bit at position i has place value 2(i - 1).
The bitOrder can only change on byte boundaries. That is, it is a schema definition error if a schema component has a bitOrder different from the bitOrder of the preceding schema component, but is not aligned on a byte boundary.
Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence, dfdl:choice, dfdl:group

Section 21:

Amended to list dfdl:bitOrder 'leastSignificantBitFirst' as an optional DFDL feature.

Section 3:

The glossary, is modified as follows:

Bit Position - changed so that rather than explain what most-significant-bit-first order is, that definition is moved to the new glossary entry for Bit Order. Given a bit order within a byte, every bit in the data can be assigned a bit position.

Bit Order - is added to the glossary, and explains most significant bit first being where the bits within each byte are numbered, with the most significant bit having position 1, and the least significant bit having position 8. Least significant bit first is similarly explained as the opposite bit order.

Section 13.7.1.4.1
The first sentence is modified to say:

Consider the first three bytes of the data stream. Imagine their numeric values as 0x5A, 0x92, and 0x00, and assume that dfdl:bitOrder is 'mostSignificantBitFirst':

A new section is added to explain bit order. This should be section 11.3.

11.3 Bit Order

The bit order determines how the bits within a byte are assigned their positions. Bit order arises as a crucial concept when elements occupy only parts of a byte. If several elements are contained within a byte, then the question arises of which bits are part of the first element, and which are part of subsequent elements.

A dfdl:bitOrder of 'mostSignificantBitFirst' is the normal way we think of numbers, when writing them down left to right with the more significant bits (those with higher place value) to the left.

If we examine 4 consecutive bytes of data containing 51, 52, 53, and 54 we can visualize the data with the bits numbered increasing from left to right, and the bytes similarly numbered increasing from left to right:

	Most Significant Bit First
	Byte 1
	Byte 2
	Byte 3
	Byte 4

	bit positions
	(msb) 1 … 8
	9 … 16
	17 … 24
	 25 ... 32 (lsb)

	decimal
	51
	52
	53
	54

	hexadecimal
	0x33
	0x34
	0x35
	0x36

	binary
	00110011
	00110100
	00110101
	00110110

Now consider this first byte, the decimal value 51. In hexadecimal this is 0x33. As a binary number with 8 bits we would normally write this as 00110011. Stored in most-significant-bit first order, these bits would be numbered 1 to 8, with bit 1 having the place value 27 and bit 8 having place value 20.

Let us assume that the byte contains only two elements. The first is a 3-bit unsigned integer, the second a 5-bit unsigned integer.

If the bit order is 'mostSignificantBitFirst', then the first element occupies the most significant 3 bits of the byte, as they are in positions 1, 2, and 3. Within those 3 bits, the most significant bit is first, and corresponds to the most significant bit of the byte. Our example separates the byte 00110011 into two elements. The first contains the 3 bits 001, or the numeric value 1, the second contains the 5 bits 10011, or the value 19 (decimal).

Now, if we consider the 'leastSignificantBitFirst', then our decimal value 51, or hexadecimal 0x33, is stored in bits which if numbered from 1 to 8 left to right, would be 11001100.

However, when visualizing data where the least significant bit is first, it is helpful to write down the data in Right-to-Left fashion. The bits still are in positions which visually correspond to our notion of place value, but we number the bits with bit 1 on the right with positions increasing to the left, and similarly we position the bytes in order from right to left. For example, given four consecutive bytes with values 51, 52, 53, and 54 decimal, in that order, a useful way of visualizing the data is to write it in hexadecimal or binary but from Right-to-Left:

	Least Significant Bit First
	Byte 4
	Byte 3
	Byte 2
	Byte 1

	bit Positions
	(msb) 32… 25
	24….. 17
	16 … 9
	 8 …. 1 (lsb)

	decimal
	54
	53
	52
	51

	hexadecimal
	0x36
	0x35
	0x34
	0x33

	binary
	00110110
	00110101
	00110100
	00110011

This way of presenting the data preserves our intuition about the place value of numbers.
Considering again our two elements within Byte 1 above containing decimal 51, the first is a 3-bit unsigned integer, the second a 5 bit unsigned integer. The 3-bits are those in the positions 1, 2, and 3, which are 011 in this case. The least significant bit is first, but that is on the right, so this 3-bit element corresponds to the decimal value 3. The 5-bit element has bits in positions 4 to 8 which are 00110, corresponding to decimal value 6.

At this point it should be clear that the same byte value stored in the data, 51 in this case, produces entirely different interpretations if subdivided into elements smaller than a byte depending on the bit order. However, interpreted as a whole unsigned byte value, the value is 51, and bit order does not play a part.
11.3.1 Bit Order and Byte Order
The bit order of data is orthogonal as a concept to byte order. With most-significant-bit-first bit order, either big-endian or little-endian byte order are common place.
The less-commonly used bit order of least-significant-bit first, is normally used with little-endian byte order.
Bit order and byte order can seem to interact when an element has more than 8 bytes in it, but does not contain a multiple of 8 bits. They actually do not interact, they compose orthogonally.
Consider 3 elements, all of type xs:unsignedInt, with dfdl:representation 'binary', and dfdl:binaryNumberRep='binary'.
Let us name these elements A, B, and C.
The A is 3 bits in length, B is 10 bits in length, and C is again 3 bits in length.
Suppose the value of A is 3. The value of B is 732, and the value of C is 4.
Let's compare all combinations of dfdl:byteOrder and dfdl:bitOrder for representing this data, which occupies a total of 2 bytes.
In the table below, the row for mostSignificantBitFirst bit order shows the data with most-significant bit on the left, and with bytes numbered increasing from left to right.
The only difference between the two sub-tables for bigEndian and littleEndian byte order is the element named B. The bits 1011011100 occupy more than one byte. In big endian byte order, the first byte would be 10110111, and the remaining two bits 00. However, there are only 5 bits left in the first byte. So those 5 bits are the first 5 bits of the first byte of B, which are 10110. The remaining bits of that byte of B are 111, and those appear first (in the most significant bits) of the next byte, followed by the 00 of the remaining bits for the second byte of B. The bits making up the most significant byte of the number are highlighted in this row.
However, if we look at the littleEndian byte order, the bits 1011011100 are divided up least-significant byte first, so the first byte is 11011100, and the remaining bits are 10. This first byte of B is then divided into 5 bits 11011 and 3 bits 100, followed by the remaining bits 10. The bits making up the least significant byte of the number are highlighted in this row.

	byteOrder

	
	bigEndian
	littleEndian

	bitOrder
	mostSignificantBitFirst
		
	Byte 1
	Byte 2

	bit positions
	(msb) 1 … 8
	9 … 16(lsb)

	decimal
	227
	150

	hexadecimal
	0xE3
	0x96

	binary
	011
	10110
	11100
	100

	Element name
	A
	B
	C

		
	Byte 1
	Byte 2

	bit positions
	(msb) 1 … 8
	9 … 16(lsb)

	decimal
	227
	150

	hexadecimal
	0xE3
	0x96

	binary
	011
	11011
	10010
	100

	Element name
	A
	B
	C

	
	leastSignificantBitFirst
		
	Byte 2
	Byte 1

	bit Positions
	(msb)16… 9
	8 …1 (lsb)

	decimal
	150
	227

	hexadecimal
	0x96
	0xE3

	binary
	100
	00101
	10111
	011

	element
	C
	B
	A

[bookmark: _GoBack]
		
	Byte 2
	Byte 1

	bit Positions
	(msb)16… 9
	8 …1 (lsb)

	decimal
	150
	227

	hexadecimal
	0x96
	0xE3

	binary
	100
	10110
	11100
	011

	element
	C
	B
	A

In the table above, the row for leastSignificantBitFirst bit order shows the data again with most-significant bit on the left, but with bytes and bits numbered increasing from right to left
The only difference between the two sub-tables for bigEndian and littleEndian byte order is once again the element named B. The bits for the value 732 are 1011011100. This time we start on the right for littleEndian byte order. In little-endian byte order, the first byte would be 11011100, and the remaining two bits 10. However, there are only 5 bits left in the first byte. So those 5 bits are 11100 (least significant bits). The remaining bits of that byte are 110, and those appear first (in the least significant bits) of the next byte, followed by the 10 of the remaining bits for the second byte.
However, if we look at the bigEndian byte order, the bits 1011011100 are divided up most-significant byte first, so the first byte is 10110111, and the remaining bits are 00. This first byte is then divided into 5 bits in least-significant-bit-first, so 10111, and 3 more bits 101, followed by the remaining bits 00 working right to left.
In all cases above, we see that the bits making up a whole byte of element B are split across an actual byte boundary of the data, but are always adjacent.

dfdl-wg@ogf.org	 	Page 1 of 4	
