GWD-I

dfdl-wg@gridforum.org

Category: INFORMATIONAL

GGF Data Format Description Language Working Group
2006-01-25

Data Format Description Language (DFDL)

Extensions
Working Draft

Status of This Memo

This memo provides information to the Grid community regarding the specification of a Data Format Description Language. The specification is currently a draft. It does not define any standards or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright © Global Grid Forum (2006). All Rights Reserved.

Abstract

This document is one of a series that provides a description of the underlying semantics of DFDL in terms of the logical operations of a hypothetical DFDL parser. This document introduces the concept of a “conversion”, presents syntax for its declarations and semantics for its operation.
Revision History

	Latest entry at the top please

	Version
	Author/Contributor
	History
	Date(yyyy-mm-dd)

	001
	Martin Westhead
Bob McGrath/

JimMyers/

Mike Bekerle
	Taken from “Conversions document
	2006-02-04

Contents

1Data Format Description Language (DFDL)

1Extensions

1Working Draft

1Abstract

1Revision History

2Contents

31.
Overview

32.
Motivation

33.
Defining conversions

33.1
Prototype Conversions

43.2
Blackbox conversions

43.3
Whitebox conversions

44.
Registering conversions

55.
Defining Conversion Packages

56.
Defining Data streams

67.
Explicit conversion selection

68.
Summary of new statements

69.
Example

1. Overview
This document describes the DFDL concept of a conversion. It describes how conversions are chosen and explains how to add new white and black box conversions.
Note 1: This document describes the semantics of DFDL in terms of a logic description of how a parser might proceed to operate on the data. Any implementation that provides operations with consistent behaviour is valid.

 For example, a parser might well use a lazy strategy, and evaluate only the parts of a large source needed by the application. These details are left to implementations.

ToDo: We will have to define conformance criteria.
This is one of a series of three documents produced by the extensibility design team. The documents aim to fill in a number of details as to the logical behaviour of a DFDL parser and in doing so provide the flexibility to extend the capabilities of DFDL to cope with a much broader range of formats than the current proposal.

The three documents can be considered as independent proposals but they relate to a single consistent view of the DFDL parser.

· Context – a simple proposal for a single consistent value store for the logical DFDL parser that provides a single semantics for variables, properties, parameters and constants.

· Hidden elements – a proposal for the ability to hide elements in the format description in such a way that they can be referred to elsewhere in the description but so that the do not appear in the output. For example the length of a prefix string is clearly an element in the format but not of the output or logical model.

· Conversions – a proposal for the underlying mechanism as to how the logical DFDL parser chooses the logic that converts between types. This proposal includes the syntax for specifying conversions.

These three components are intended to provide a complete description of the logical DFDL parser and the (inherent) extensibility mechanisms.

2. Motivation

Being able to add and user-defined conversions is fundamental to the extensibility of DFDL. For DFDL to be useful in cutting edge technology areas like the Grid and to support the breadth of existing legacy formats particularly in the scientific world, this sort of extensibility is essential.

3. Defining conversions

Conversions are defined using the “dfdl:defineConversion” element. Conversions can be defined purely as prototypes (for conversions built-in to the parser) as using external logic (known as blackbox) conversions and conversions which use DFDL directly (known as whitebox conversions).
3.1 Prototype Conversions

A prototype conversion defines the name and type signature of a conversion built in to the parser.
<dfdl:defineConversion name=”dfdl:bytesToInt” input=”xs:byte” output=”xs:int” inverseConversion=”dfdl:intToByte”/>
Note that the inverse conversion is required to exist but may not yet have been defined. This is the conversion that is used to write out the values read-in in using this conversion.

The purpose of a prototype conversion is to explicitly define conversions which are built in to the parser. Once they are made explicit the data modeler can use them directly when defining his/her own conversions and packages.

3.2 Blackbox conversions

The blackbox conversion is like a prototype conversion except it specifies how to call an external method for example in java:
<dfdl:defineConversion name=”parseText” input=”xs:string” output=”xs:float” inverseConversion=”writeText”>

<dfdl:exec language=”java”>org.foo.Example.parseText(sourceStream, “$separator”, “$numberOfFields”)</dfdl:exec>

</dfdl:defineConversion>
This would call java methods of the form:

public static InputStream ParseText (InputStream input, String separator, int numberOfFields);

TODO: Define blackbox conversions for C, XSL, OS-command-line, WSDL-web service.

There is a semantic fudge in this between individual types, streams of types and sequences of types. This has to be worked through properly.
3.3 Whitebox conversions

The following is a simple example of a conversion in which the value of the input integer is doubled.
<xs:complexType>

<xs:annotation>

<xs:appinfo>

<dfdl:defineConversion name=”doubleInt” />

 <dfdl:hidden”>

<xs:element name="x" type="xs:int"/>

</dfdl:hidden>

</xs:appinfo>

<xs:annotation>

<xs:element name="doubled-value" type="xs:int" dfdl:value=”2* ../x”/>
</xs:complexType>

This conversion has the following prototype declaration, which the parser must infer from the definition:

<dfdl:defineConversion name=”dfdl:doubleInt” input=”xs:int” output=”xs:int” />
4. Registering conversions

Once defined, conversions must be registered. Conversions are registered by adding them to the “conversions” element in the context:

<dfdl:registerConversion name=”parseText”/>
This statement will add the conversion “parseText” to the top of the list of conversions:
<context>

<dfdl:conversions>

<parseText … />

<bytesToInt… />

<bytesToString… />

</dfdl:conversions>
</context>

5. Defining Conversion Packages

A conversion package is simply a bundle that registers one or more conversions. It may also define new conversions and set up appropriate default values.

For example a small package might look like:

<dfdl:defineConversion name=”dfdl:binInt” input=”xs:byte” output=”xs:int” test=”$binary” />

<dfdl:defineConversion name=”dfdl:binFloat” input=”xs:byte” output=”xs:float” test=”$binary”/>
<dfdl:defineConversion name=”dfdl:binDouble” input=”xs:byte” output=”xs:double” test=”$binary”/>
<dfdl:defineBundle name=”smallBinary”>

<dfdl:registerConversion name=”dfdl:binInt” />

<dfdl: registerConversion name=”dfdl:binFloat” />

<dfdl registerConversion name=”dfdl:binDouble” />

 <dfdl:set name=”binary” value=”true” test=”not($binary)”/>

<dfdl:set name=”byteOrder” value=”bigEndian” test=”not($bigEndian)”/>

 <dfdl:useBundle name=”binaryStrings”/>

</dfdl:defineBundle>
To use this package we would have to (obviously) include the file containing the packages and then (where relevant) use the bundle:
<dfdl:useBundle name=”smallBinary”>
Notice that all of the set context statements have a test to ensure that they do not attempt to double-register the conversion. This allows different packages to include the same conversions.

Notice that packages can also refer to other packages. The last line of the bundle references another package called “binaryStrings”. So “binaryStrings” is included in “smallBinary”, although because it is included at the end the constant definitions and conversion guards from smallBinary take precedence over those in binaryStrings. For example, suppose that “binaryStrings” contained the line:

<dfdl:set name=”byteOrder” value=”littleEndian” test=”not($bigEndian)”/>

This line would be silently overridden by the value for this property set in “smallBinary” shown above.

6. Defining Data streams
The name of the current stream from which data is being extracted is maintained in the Context. The default source stream is called “stdin” and is of type “xs:byte”. The name of the current stream is held in a property called “source”.
The DFDL document begins parsing against “stdin”. At any point in the parsing the source stream can be switched either by choosing an alternative input source (e.g. a file, url or data stream) or by applying a conversion to the existing stream.

For example this shows how the source stream can be switched to access a new file, in this case one located at “http://my.data.com/file.csv”.
<xs:annotation>

<xs:appinfo>

<dfdl:defineStream name=”myNewStream" url=”http://my.data.com/file.csv”/>
 <dfdl:useStream name=”myNewStream”/>
 </xs:appinfo>
</xs:annotation>
The next example above applies a conversion (which must have been defined and registered with the parser) that, in this case, decompresses the data.
</xs:annotation>
 <xs:appinfo>

<dfdl:defineStream name=”uncompressed" applyConversion=”gunzip"/>

<dfdl:useStream name=”uncompressed”/>
</xs:appinfo>
</xs:annotation>
Note: How do we do output streams. (This whole proposal needs reviewing for the write direction).

7. Explicit conversion selection
At any point in the document traversal, if the DFDL parser reaches an explicit “useConversion” tag it will apply the conversion to the data from the current source stream to populate the DFDL element, attribute or sequence the annotation is associated with. If the results of the conversion do not match the type of the element then a runtime error is returned.
<xs:element name="testElement" type="xs:string">

<xs:annotation>

<xs:appinfo>

<dfdl:useConversion name=”pigLatin" test=”$pigLatin=’on’”/>

</xs:appinfo>

</xs:annotation>

</xs:element>
If the optional test condition is present then the statement is only applied if the test condition is satisfied.
8. Summary of new statements
In this document the following new statements were introduced:

· defineConversion

· useConversion

· defineStream

9. Example
In this section we present two examples of using these extensions:

· The first example defines a new conversion to decrypt a document, making use of a key supplied in the data.

· The second example defines two new conversions to handle non-IEEE representations of 32 and 64 bit floating point numbers. In this example we register one of the conversions and not the other in order to demonstrate how to insert a conversion into the automatic selection process, and also how to explicitly apply a conversion which has not been registered.
<?xml version=”1.0” encoding=”UTF-8”?>

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema” >

<xs:annotation>

<xs:appinfo source=”http://dataformat.org/”>

<!—set up the new conversion (

<dfdl:defineConversion name=”decriptStream” input=”xs:byte” output=”xs:byte”>

<dfd:exec language=”java”>com.crypto.decrypt(sourceStream,”$cryptoKey”)</dfd:exec>

</dfdl:defineConversion>

<!—define a stream that applies the new conversion (

<xs:defineStream name=”decryptedData” applyConversion=”decryptStream”/>

</xs:appinfo>

</xs:annotation>

<xs:element name=”encryptedExample”>

<xs:complexType>

<xs:sequence>

<!—pick out the key and add its value to the global context (

<xs:element name=”key” type=”xs:base64Binary” dfdl:length=”128” addToGlobalContext=”cryptoKey”/>

<xs:element name=”data”>

<xs:annotation>

<xs:appinfo source=”http://dataformat.org/”>

<!—invoke the new data stream (

<dfdl:useStream name=”decryptedData”/>

<dfdl:dataFormat repType=”text” characterset=”UTF-8”>

<dfdl:separator>,</dfdl:separator>

</dfdl:dataFormat>

</xs:appinfo>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name=”name” type=”xs:string”/>

<xs:element name=”address” type=”xs:string”/>

<xs:element name=”zipCode” type=”xs:int”/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>
Example 1 – showing the definition of a new black-box conversion to handle an ecrypted data payload. One of the encryption keys is passed in the data (in unencrypted form).

<?xml version=”1.0” encoding=”UTF-8”?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:annotation>

<xs:appinfo>

<!-- set up the new conversions -->

<dfdl:defineConversion name="nonIEEEByteToFloat" input="xs:byte" output="xs:float">

<dfd:exec language="java">com.fp.byteToFloat(sourceStream,"$byteOrder")</dfd:exec>

</dfdl:defineConversion>

<dfdl:defineConversion name="nonIEEEByteToDouble" input="xs:byte" output="xs:double">

<dfd:exec language="java">com.fp.byteToDouble(sourceStream,"$byteOrder")</dfd:exec>

</dfdl:defineConversion>

<!-- note for the purposes of demonstration we only register the double conversion -->

<dfdl:registerConversion name="nonIEEEByteToDouble"/>

</xs:appinfo>

</xs:annotation>

<xs:complexType name="exampleType">

<xs:sequence>

<xs:element name="x" type="xs:int"/>

<xs:element name="y" type="xs:float">

<!-- explicitly select the float converion -->

<xs:annotation>

<xs:appinfo>

<dfdl:useConversion name="nonIEEEByteToFloat"/>

</xs:appinfo>

</xs:annotation>

</xs:element>

<xs:element name="z" type="xs:double"/>

<!-- The double conversion is automatically applied because we registered it -->

<!-- which will send it to the top of the list. So it is guaranteed to be the first -->

<!-- chosen when we reach this point in the document. -->

</xs:sequence>

</xs:complexType>

<xs:element name="exampleElement">

<xs:annotation>

<xs:documentation>Comment describing your root element</xs:documentation>

</xs:annotation>

</xs:element></xs:schema>
Example 2 – in this example two new blackbox conversions are defined to handle the conversion of bytes into a float and a double using some non-IEEE floating point representation. The conversion to double is registered and chosen automatically by the parser. The conversion to float is not and has to be explicitly chosen by the data-modeler.

File name: ggf-dfdl-semantics-2005-01.doc

 Page 2 of 8
Last saved: 2006-01-25T13:20:00 (ET.US)

http://forge.gridforum.org/projects/dfdl-wg/

