GWD-I

dfdl-wg@gridforum.org

Category: INFORMATIONAL

GGF Data Format Description Language Working Group
2006-02-04

Data Format Description Language (DFDL)

Conversions
Working Draft

Status of This Memo

This memo provides information to the Grid community regarding the specification of a Data Format Description Language. The specification is currently a draft. It does not define any standards or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright © Global Grid Forum (2006). All Rights Reserved.

Abstract

This document is one of a series that provides a description of the underlying semantics of DFDL in terms of the logical operations of a hypothetical DFDL parser. This document introduces the concept of a “conversion”, presents syntax for its declarations and semantics for its operation.
Revision History

	Latest entry at the top please

	Version
	Author/Contributor
	History
	Date(yyyy-mm-dd)

	005
	Martin Westhead
	Removed extensibility features
	2006-2-4

	004
	Martin Westhead/ Mike Bekerle
	Modifications based on feedback from Mike.
	2006-1-23

	003
	Martin Westhead
	Simplification and reordering of presentation
	2006-1-13

	002
	Martin Westhead/

Bob McGrath/
Jim Myers
	Clarifications and modifications from intial feedback
	2006-1-4

	001
	Martin Westhead
	Initial draft
	2005-12-22

Contents

1Data Format Description Language (DFDL)

1Conversions

1Working Draft

1Abstract

1Revision History

3Contents

41.
Overview

42.
Motivation

43.
Concepts

43.1
Conversion

53.2
Data streams

54.
Registered conversions

55.
How are conversions chosen?

55.1
Conversion search algorithm

65.2
Null conversion

66.
Conversion Packages

77.
Example

1. Overview
This document describes the DFDL concept of a conversion. It describes how conversions are chosen and explains how to add new white and black box conversions.
Note 1: This document describes the semantics of DFDL in terms of a logic description of how a parser might proceed to operate on the data. Any implementation that provides operations with consistent behaviour is valid.

 For example, a parser might well use a lazy strategy, and evaluate only the parts of a large source needed by the application. These details are left to implementations.

ToDo: We will have to define conformance criteria.
This is one of a series of three documents produced by the extensibility design team. The documents aim to fill in a number of details as to the logical behaviour of a DFDL parser and in doing so provide the flexibility to extend the capabilities of DFDL to cope with a much broader range of formats than the current proposal.

The three documents can be considered as independent proposals but they relate to a single consistent view of the DFDL parser.

· Context – a simple proposal for a single consistent value store for the logical DFDL parser that provides a single semantics for variables, properties, parameters and constants.

· Hidden elements – a proposal for the ability to hide elements in the format description in such a way that they can be referred to elsewhere in the description but so that the do not appear in the output. For example the length of a prefix string is clearly an element in the format but not of the output or logical model.

· Conversions – a proposal for the underlying mechanism as to how the logical DFDL parser chooses the logic that converts between types. This proposal includes the syntax for specifying conversions.

These three components are intended to provide a complete description of the logical DFDL parser and the (inherent) extensibility mechanisms.

2. Objectives
The aim of this document is to provide a description of how conversions are chosen and applied within DFDL.
3. Concepts
3.1 Conversion
The term Conversion refers to a operation over typed data that converts it from one format to another. Frequently conversions involve changes in the type of the data. For example, converting from bytes to floats is a conversion. Note that also that the operation described by a DFDL document that converts data from its underlying form into an XML data model is also a conversion. The definition of a conversion provides the following information:
· A name (e.g. bytesToInt)

· An input type (e.g. byte)

· An output type (e.g. int)

· A guard expression – the conversion may be chosen by the parser iff and only if this evaluates to a non-null value that is not FALSE. (Note: call outs to black-box functions should be possible). The guard CAN ONLY refer to static elements in the context. This is to ensure that any search required to calculate which conversions apply at any point in the document can be done once in advance of any data being processed i.e. these choices can be handled at “compile” time.
· A list of the named properties that the conversion will use in the context.

3.2 Data streams

In DFDL all data inputs are considered to come from logical objects called streams a stream consists of a sequence of XML elements and a cursor which stores the position of the parser in consuming that stream. Note: a single element is considered equivalent to a sequence containing just that element.

All the elements of a stream must be of a single type. If all elements of a stream are of type X then the stream is said to be of type X.
3.3 Registered conversions
The context logically holds a list of registered conversions:
<context>

<dfdl:conversions>

<parseText input=”xs:string” output=”xs:string” test=“$parserText=’on’”/>

<bytesToInt input=”xs:byte” output=”xs:int” test=“$repType=’binary’”/>

<bytesToString input=”xs:byte” output=”xs:string” test=“$repType=’binary’”/>

</dfdl:conversions>
</context>

4. How are conversions chosen?
In this section we look at how the parser normally selects a conversion. Note that the algorithm given is intended to describe the logical behaviour of the DFDL parser. A real implementation is at liberty to choose any implementation that is consistent with these semantics.
The DFDL parser traverses the DFDL Schema visiting nodes in order (as described elsewhere) at each element or attribute it visits it attempts to find a conversion with which to populate it according to the algorithm below.

If the node being populated is an element of complex type and no conversion direct to that type can be found, the parser will add an empty node and move on to attempt to populate its children.

If the node being populated is of simple type and no conversion can be found the parse has failed.

4.1 Conversion search algorithm

Many algorithms could be applied to this search problem and depending on the number of conversions registered the search could be lengthy. Although in most simple cases the search should be trivial. This section describes the initial search that a parser MUST undertake before either giving up or doing anything more complex.

When searching for a conversion the parser will (logically) examine all the registered conversions in the order they appear in the “conversions” element in the context. It will select the first element that can output its target type and for which the guard XPath is satisfied. If the conversion will accept the current source stream type it is applied and the search ends.
If the chosen conversion will not accept the current source stream type then the input type it requires is made the new target type and the parser begins the search from the top.

In this way the parser builds up a sequence of conversions (byte to String followed by String- to Integer) that match end to end like dominoes.

[image: image1.emf]

Integer String (tokens)

String (tokens) String (1 - char)

String (1 - char) Byte

input stream

populate document

The parser MAY NOT apply the same conversion twice in the same sequence of conversions (i.e. the search may not loop).

If the parser build a sequence of conversions longer than $MAX_CONVERSION_LENGTH (a settable parameter in the context) then the parser MUST fail.

4.2 Null conversion

The null conversion is a simple standard conversion that leaves the input type unmodified. It is always present as the last registered conversion.
5. Conversion Packages

Typically conversions are used in groups. For convenience, definitions can be grouped together in a file, and a bundle provided that registers the whole group and sets up appropriate default values. Such a file is referred to as a conversion package.
The use of packages can provide a useful mechanism for controlling which conversions are at the top of the conversion list in the local context.

If a section of a DFDL schema was represented in binary we could simply apply a relevant bundle at the start of the section and these conversions would be preferentially picked up through the scope of the modification to the context.

For example an alternative to the “repType” property that chooses between test and binary formats would be for the dfdl document to register the “text” (or “binary”) package at the start of the document (or indeed in the section for which it applies).
6. Conversion Selection Example
In this section we work through a small example to show how the conversion selection algorithm works. Consider the following fragment of XML:
<xs:complexType name=”exampleType”>

<xs:annotation>

<xs:appinfo>

<dfdl:dataFormat repType=“text”

charset=“UTF-8”

decimalSeparator=“.”>

<dfdl:separator>,</dfdl:separator>

</dfdl:dataFormat>

</xs:appinfo>

</xs:annotation>

<xs:sequence>

<xs:element name="w" type="int"/>

<xs:element name="x" type="int"/>

<xs:element name="y" type="double"/>

<xs:element name="z" type="float"/>

</xs:sequence>
</xs:complexType>
<xs:element name="exampleElement" type=”exampleType”>
Let us suppose that the following conversions have been registered in the context:

<context>

<dfdl:conversions>

 <byteToInt input=”xs:byte” output=”xs:int” test=”$repType=’binary’” />

<charactersToTokens input=”xs:string” output=”xs:string” test=”$repType=’text’” />

<bytesToCharacters input=”xs:byte” output=”xs:string” test=”$repType=’text’” />

<stringToInt input=”xs:string” output=”xs:int” test=”$repType=’text’” />

<stringToDouble input=”xs:string” output=”xs:double” test=”$repType=’text’” />

<stringToFloat input=”xs:string” output=”xs:float” test=”$repType=’text’” />

<null input=”xs:any” output=”xs:any” test=”true’” />

</dfdl:conversions>

</context>

The logical DFDL parser parses the XML document and reaches this element (exampleElement). The first thing it will do is to look at the type of example1, which in this case is defined to be the complex type exampleType and it checks to see if there are any conversions registered which can produce one of these types.

There is only one conversion registered that can produce this type: the null conversion. So the parser tries to apply the null conversion. The null conversion requires an input of type exampleType so the parser goes back to the list to look for a conversion that will produce an exampleType. The parser is not allowed to use the null conversion a second time so it fails.
The parser failed to find a conversion that produced the element in one go. So, it adds the element to the output model and attempts to populate its children.

It enters the complex type exampleType and sees an annotation with property values. A new layer is added to the context stack and the values are added to this layer. The current context now looks something like this:

<context>

<dfdl:repType>text</ dfdl:reptype/>
<dfdl:charset>UTF-8</ dfdl:charset>

<dfdl:decimalSeparator>.</ dfdl:decimalSeparator>

<dfdl:separator>,</dfdl:separator>
 <…. other values defined earlier in the schema…>

 <dfdl:conversions>…as shown above…<>

</context>

The parser moves on down the document and visits the first child element, w which is of type “xs:int”. The parser looks through its registered conversions, starting at the top, looking for a conversion which supplies a value of type xs:int. It sees:
<byteToInt input=”xs:byte” output=”xs:int” test=”$repType=’binary’” />

But the test evaluates to false (since repType has been set to “text” in the current context). So the parser does not select this.

The parser moves on and finds:

<stringToInt input=”xs:string” output=”xs:int” test=”$repType=’text’” />

The test evaluates to true, so this conversion is chosen. The parser looks at the input type. The type is a string, but it is holding the default input stream which is composed of xs:byte. So the parser goes back to the list of registered conversions and looks down the list for a conversion that produces strings. The first one it finds is:

<charactersToTokens input=”xs:string” output=”xs:string” test=”$repType=’text’” />

The guard evaluates to true, so this conversion is chosen. The parser checks the input type for the conversion. It needs a “string”, the parser is still holding a byte stream so it goes back to the registered conversions and looks down the list from the top.

The first conversion found is charactersToTokens, but that is already being applied in this case and we cannot use it twice, so the parser moves on. The next conversion it finds that produces strings is:

<bytesToCharacters input=”xs:byte” output=”xs:string” test=”$repType=’text’” />

The test evaluates to true, so this conversion is chosen. This conversion takes xs:byte as input which is what the parser has to offer and so we have finished. The final set of conversions applied is:

 dataStream -> bytesToCharacters -> charactersToTokens -> stringToInt

The parser assembles this stack of conversions and then asks stringToInt for an integer. StringToInt calls characterToTokens for a string characterToTokens asks bytesToCharacters for a series of single character strings (until it finds a separator) and characterToTokens, in turn, calls bytesToCharacters to supply the characters. Finally bytesToCharacters pulls the requisite number of bytes from the underlying data stream.
The parser adds the resulting integer element as a child of “exampleElement” and moves on to the next value.

If the parser fails to find a sequence of primitive conversions that can populate a simple type then the parsing fails. Note that the parser may need to backtrack and explore alternative sequences of conversions before it can find one that will carry out the required conversion. The context contains controls on this search to ensure that it can be curtailed at a maximum depth or number of nodes visited.

File name: ggf-dfdl-semantics-2005-01.doc

 Page 3 of 8
Last saved: 2006-02-04T12:58:00 (ET.US)

http://forge.gridforum.org/projects/dfdl-wg/

_1200564142.doc

[image: image1]

Integer

String(tokens)

String(tokens)

String(1-char)

String(1-char)

Byte

input stream

populate

document

