IBM Hursley MRM team comments on DFDL draft specification Aug 2005

1. Glossary

· Definition of an array. We don’t think that minOccurs=0, maxOccurs=1 should be defined as an array. For example, it does not require any aggregation properties.

· Definition of array. maxOccurs=-1 is missing.

3. DFDL Subset of XML Schema Type System

· Not sure why you have excluded the various derivations of integer, they are just restrictions of xsd:integer using max/min facets ?

· We believe you should include hexBinary simple type. The existing MRM model uses this and it is used by customers.

· This section should be expanded to talk about other schema constructs. The previous draft contained a list of schema constructs that were not allowed to have DFDL annotations. That list was too restrictive but the list does not appear at all in this draft. We think the following should not be supported:

· Redefine

· Complex types derived by extension

· Substitution groups

· Elements of abstract type

· Complex type with simple content

· Mixed content

· You should also mention wildcard elements and attributes and indicate what support is provided for these, including the effects of strict/lax. Wildcards are essential in the modelling of user extensions to industry standards.
· Any restrictions on the schema facets supported?

4. DFDL Data Format Annotations
· You have annotations on groups instead of complex types. That’s ok until you start to consider attributes. If DFDL supports annotations on attributes, then don’t we need an annotation on a complex type, to take aggregation properties? This does complicate things when a complex type contains both attribute and non-attribute content, I can explain what we did in the MRM model to handle this.
· We should be clear on element/attribute/group references. These can only take the occurs annotation.

· Occurs: Same comment as in section 1 above concerning arrays.

· Why not rename the dataFormat annotation as ‘configuration’, you refer to it as a configuration throughout.

· I would prefer quoteScheme to be called escapeScheme. Quotes are a means of escaping, escapes are not a means of quoting.

· Do we need an inclusion annotation? In our MRM model, we have a couple of examples of properties that only surface due to the inclusion of an object in a group, but that are not related to occurrences:
· Length reference. How can you say where the length reference of an object is for a global object, doesn’t it depend on where it is used?

· Regular expression, for groups. In our model, groups only get a regular expression by virtue of inclusion. (Though I can’t see the harm in allowing regular expression for a global group).

An alternative to a separate inclusion annotation would be to combine the inclusion/occurs annotation into one, with a suitable name. Occurs properties are by definition inclusion only.

· Presumably element wildcards will have an ‘any’ annotation and attribute wildcard will have an ‘anyAttribute’ annotation, if we deem it necessary for wildcards to carry properties. (Example later on).

5.1. Dynamic Representation Properties
· The use of dynamic metadata is most common in the EDI world, as illustrated by EDIFACT, X12 and HL7. For the former two, the header record occurs in the envelope, and it governs the envelope and any embedded records. The embedded records are defined in a separate xsd, so your expression capability must be able to handle referring to an element in another xsd for your scheme to work for EDI.

· An alternative schema is to use keys. Provide the capability for the user to define an element as being a key and giving it a keyname. If a property wants to use the value of an element as its value, it simply specifies the keyname using a suitable syntax. This would handle cross xsd references as it would be left to the user to ensure the integrity of keys. The DFDL parser would simply build up a list of keys as it came across them during a parse.
6. Configurations and Scoping
· General comment. We should be careful that we are not creating a sledgehammer to crack a nut here. To keep things simple we must all be convinced that the scoping rules described in this section are necessary to model real-world scenarios. It looks they can be simplified and still solve the key requirement, namely to switch the rep ‘context’ part way through a parse.
· Define ‘contained constructs of the schema’.

· dfdl:default. On the one hand we are introducing short-form syntax to keep DFDL schema concise, then on the other hand we are contemplating mandatory default configuration. This seems contradictory, and our first reaction was that it is ok to have an implicit set of defaults as defined by the DFDL model, as the MRM model has. However, the MRM model has one big problem with defaults, namely that it is impossible to change a default once a model has been released without potentially breaking users’ applications. Having a mandatory dfdl:default would cure this.
· dfdl:default. In the messaging world, certain properties are context dependent and should be allowed to override the model default on a per instance basis. Specifically, charSet and byteOrder are provided by the messaging subsystem. A mechanism must be provided for charSet and byteOrder to be specified externally and for this to override the DFDL schema.

· Agree that ‘base’ should be renamed to ‘extends’ to match quoteScheme.

9. Scoping and Property Resolution
· We feel that wildcards will need including in this algorithm.

10. 1 Frozen Scoping …
· Is this 100% accurate? If I have a parent group that has children separated by a delimiter, but each of those children contains only fixed length fields, then a DFDL parser would only be using lengths to extract the data for the children. The fact that they might be in a different charSet or byteOrder is immaterial.
10. 2 Special Case Configuration …
· Same point as for 10.1.
12. DFDL Annotation Behaviour
We will be coming up with a proposal that covers everything in this section as soon as we can, as actioned at F2F #2, so we will defer commenting in detail on this for now, other than:

· When parsing the data in a group, there are two distinct operations, how do you identify the field in the bitstream, and how do you extract its data. Your tables look to be mixing these two concepts together. Separating these operations is key to conveying how the behaviour works (and the efficient structuring of the parser).
· No mention of using regular expressions to parse data.

· We discussed wildcards in ‘tagged’ groups at F2F #2. I thought we agreed that this could be handled by providing an ‘Initiator Regular Expression’ property on the group, to which all child initiators must conform, but this has not been reflected in Suman’s model or the spec.
· An alternative to having the initiator regular expression on the group is to put it on the ‘any’ annotation itself.
· An initiator regular expression would also remove the need for the tagDataSeparator property on the children of the group. Btw if you don’t use a initiator regular expression, DFDL must provide two properties tagDataSeparator and tagLength, as not all tags have a separator. One of these would be specified. The attraction of initiator regular expression is that it encompasses both.

13. Quoting schemes
· As mentioned above, escapeScheme might be a better name.

· 13.2. ‘Name’ missing from list of attributes.

16. Expression Language
· In summary, we have to be convinced that the DPath deviations from XPath are sensible. At the moment we are not.
· 16.1.2. Location paths. This lost us. Your example, where the interpretation of the expression /top/foo[position()] ends up being evaluated on ‘bar’ looks so counter-intuitive that it is unworkable. Adopting Kristoffer’s suggestion of the parent as the initial context could solve this?
17. Layers and Hidden Elements
· We need to have a better explanation, with pictures and not just examples, to illustrate this. It wasn’t until I drew a picture on a whiteboard to illustrate your DSI example that the penny dropped with the rest of my team here.

· valueCalc definition and example needed.

· Strictly speaking, a layer annotation could appear inside any schema construct that has maxOccurs=0, and not just a sequence? So instead of nested sequences with a dummy sequence I could just have a dummy element with maxOccurs=0. This could be significant where you have attributes instead of elements, as you can’t use sequences.

20.3 Selectors
· We had trouble with this section too.

· The capability of selecting a named ‘format’ is something that we have in the MRM model. It is not clear to use how many customers actually exploit it, but our feeling is that enough do so to warrant its inclusion in DFDL.
· We feel the scoping rules as documented are creating the need for this orthogonal selector mechanism. The MRM model achieves both scoping and selectors through its configuration scheme, by saying that:

· A schema cab contain several named schema level configuration blocks.

· All annotations must extend a named schema level configuration block.

· The user passes the name of a configuration block as a parameter to the DFDL parser (the triple is schema file name, top level element name, and configuration block name).
Such a schema would avoid the need for selectors altogether.

25. Appendix. About Literal String Values in DFDL
· We prefer the element syntax approach, which allows you mix and match ordinary text, Unicode designations, and hex designations in a single string (there are real-world examples where this mixing capability is needed – TLOG for example).

27. Appendix. Representation Properties Detail
· To be reviewed in detail.

Other appendices.
· To be reviewed in detail.

