GWD-I

dfdl-wg@ggf.org

Category: INFORMATIONAL

GGF Data Format Description Language Working Group
2009-06-18
GWD-I

Category: Informational

GGF Data Format Description Language Working Group
2009-06-18

[image: image1]
Data Format Description Language (DFDL) v1.0

Unparsing and Calculated Output Values

(Internal Committee Working Document)

[image: image2]
Status of This Document

This memo provides information to the Grid community regarding the specification of a Data Format Description Language. The specification is currently a working group internal draft. It does not define any standards or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright © Open Grid Forum, 2009. All Rights Reserved.

Abstract

This document provides draft material clarifying the behavior of DFDL processors when unparsing.

Revision History

	Latest entry at the top please

	Version
	Author/Contributor
	History
	Date(yyyy-mm-dd)

	003
	Mike Beckerle
	More improvements
	2009-06-18

	002
	Mike Beckerle
	Clarifications based on DFDL WG feedback.
	2009-06-11

	001
	Mike Beckerle
	Created
	2009-05-23

Contents

 Data Format Description Language (DFDL) v1.0
1

 Unparsing and Calculated Output Values
1

 (Internal Committee Working Document)
1

 Abstract
1
 Revision History
2
1 Terminology
3
2 Representation Length Functions
3
2.1 Length Units
4
2.1.1 Restrictions when dfdl:lengthUnits='characters'
4
2.2 Padding, Filling, and Truncation
4
2.2.1 Complex Types
4
2.2.2 Simple Types
4
2.2.2.1 Truncation: Bit Field Example
5
2.3 Implementation Considerations
5
3 Examples
6
3.1 Simple Type Example 1
6
3.2 Complex Type Example 1
6
4 Algorithm for computing calculated output values when unparsing
7
5 Unparsing, Forward Reference, and Resource Limitations
8

1 Terminology

· Definition: resource-limitation error: Exceeding an implementation limit such as the ability of the implementation to compute the representation length of an infoset item, or the ability to evaluate a forward reference in the infoset, causes a resource-limitation error. This is a fatal processing error, which means that selection of alternative decisions at points of uncertainty (optional elements, or choice branches) is not triggered. Implementations may provide recovery mechanisms to allow processing to continue after such errors, but such recovery mechanisms are not part of the DFDL standard.

· Definition: augmented infoset. When unparsing one begins with the DFDL schema and part
or all of the logical infoset. As the values of items are filled in by defaulting, and by use of the DFDL outputValueCalc property, these new item values augment the infoset. The resulting infoset is called the augmented infoset.

· Definition: potentially represented. An element declaration in the schema describes a potentially represented item if that element declaration does not have an inputValueCalc property. Whether the element declaration describes an item that is actually represented or not depends on whether the element declaration is for a required or optional element, and whether the element has a corresponding value in the augmented infoset.

· Definition: target representation length. This is the length to which data is to be filled, padded or truncated. This is called target length for short. The dfdl:length() function returns the target representation length of an item.

· Definition: unpadded length: This is the length of the representation an item of the infoset, prior to any filling or padding which might be introduced due to dfdl:lengthKind="fixed" or dfdl:lengthKind="explicit". It is equal to or smaller than the target length.

2 Representation Length Functions

In many data formats there can be stored lengths or other aspects of the representation of the data that are not part of the logical data model. When unparsing, these must be computed and become part of the representation that is written as output. This requirement implies the need for the following functions to determine the representation length of an item from expressions written in the DFDL expression language:

· dfdl:unpaddedLength(path) - returns the unpadded length which excludes any padding or filling which might be added when dfdl:lengthKind="explicit
".

If the element declaration in the DFDL schema corresponding to the infoset item is not potentially represented, then the unpadded length is defined to be 0.

The unpadded length includes the length contributions from introduced escape characters required to escape contained delimiters (if such are defined, and will appear in the output representation).

The unpadded length is also a function of the dfdl:encoding property. Multi-byte and variable-width character set encodings will commonly contribute more bytes to the unpadded length than a single-byte character set would.

When unparsing with dfdl:lengthKind="explicit", the calculation of the unpadded length does not use the value of the dfdl:length property. Rather, the unpadded length is computed from the DFDL infoset value, ignoring the dfdl:length property. Other DFDL properties which affect the length of a text or binary representation are respected, it is only an explicit length which is ignored.

For a complex type, this means a bottom up totaling of the dfdl:length() of all the contents and framing of the complex type.

For a simple type, the implicit length is a function of the type.

· dfdl: length(path) – returns the physical length of the representation of the infoset data item as identified by the path argument. This includes padding or filling or truncation which might be carried out when dfdl:lengthKind="explicit".

If the element declaration in the DFDL schema corresponding to the infoset item is not potentially represented, then the length is defined to be 0.

When unparsing with dfdl:lengthKind="explicit", the calculation of dfdl:length() returns the value of the dfdl:length property.

For both dfdl:length and dfdl:unpaddedLength, the representation length excludes any alignment padding as well as excluding any leading or trailing skip bytes. That is, the returned length is about the length of the content, and not about the position of that content in the output data stream.

2.1 Length Units

The units of measure of the representation length are in terms of the lengthUnits in effect for the element addressed by the path. It is a schema definition error if the addressed element does not have dfdl:lengthUnits defined.

Note that the representation length functions are completely distinct from the fn:string-length() function which returns the logical length of a string - which has nothing to do with representations.

2.1.1 Restrictions when dfdl:lengthUnits='characters'

It is valid to use the functions above to obtain the representation length of either simple or complex type items. In the case of complex type items, the length units can only be 'characters' if the entire representation of the complex type is text, including all contained sub items.

2.2 Padding, Filling, and Truncation

Complex types can only be padded or filled on the right, and never truncated.

Simple types can be padded on the left or right or both depending on the specific type and its justification properties.

2.2.1 Complex Types

For an item of complex type, dfdl:length(path) is always greater than or equal to dfdl:unpaddedLength(path). Specifically, the difference between dfdl:length() and dfdl:unpaddedLength() is the length of any padding/filling added to the representation of the item.

If a complex type item's unpadded length is too large to fit in the allowed fixed or explicit length (that is, would need to be truncated to fit), it is a processing error.

When dfdl:representation="binary", the length is "filled" on the right using the dfdl:fillByte.

2.2.2 Simple Types

For a simple type item dfdl:length(path) can also be less than dfdl:unpaddedLength() because the infoset item may need to be truncated to fit within the allowed representation length.

Truncation is allowed for

· type xs:string

· type xs:hexBinary

· xs:unsignedInt but only when dfdl:representation="binary"

· This type can be viewed as a bit string, and used to populate bit fields narrower than the implicit binary length.

· The value of dfdl:length must be less than or equal to 32.

· The bit field is populated with the least-significant bits of the integer type.

All other truncation cases are processing errors.

Simple types are padded or filled depending on the specific type. All text representations are padded on the left, right, or both depending on the DFDL justification properties.

There is no case for fill on xs:unsignedInt, because in DFDL v1.0 we restrict the maximum length in bits to be 32 which is the implicit length of the type. Hence, there are always 'enough' bits in the infoset value to provide for the maximum number of explicit bits.

2.2.2.1 Truncation: Bit Field Example

Consider this example:

 <element name="myBitFlags" type="unsignedInt"

 dfdl:representation="binary"

 dfdl:lengthKind="explicit"

 dfdl:length="3"

 dfdl:lengthUnits="bits"

 dfdl:alignmentUnits="bits"

 dfdl:alignment="1"

 maxInclusive="7" />

The above example is of a 3-bit field, unaligned - that is, on any bit boundary. When unparsing the infoset item for 'myBitFlags' is an xs:unsignedInt which is implicitly 32-bits of magnitude. It is truncated to its least-significant 3 bits on output.

Validation can be used to be sure the value of the infoset item is in the numeric range such that this truncation will not cause loss of information.

2.3 Implementation Considerations

When unparsing, the dfdl: length() and dfdl:unpaddedLength() functions have significant implications for DFDL implementations. However, the mechanism used by implementations (such as buffering to avoid redundant computation) is not specified.

Implementations can of course restrict the degree to which they are able to support the representation length functions. All limitations will have some length limit based on the memory size or address-space size of the computation vehicle executing the DFDL processor, so limitations on the ability to compute the representation length may affect the ability of a particular DFDL processor implementation to realize a particular data format, but such implementations can still be considered in compliance with the DFDL specification.

3 Examples

This section has some illustrative examples. It is non-normative.

3.1 Simple Type Example 1

Consider this example:

<sequence>

 <element name="len" type="int"

 dfdl:fillByte="%#r0;"

 dfdl:outputValueCalc=

 "{

 fix:ceiling(

 dfdl:unpaddedLength(../val) div 4

) * 4

 }"

 />

 <element name="val" type="string"

 dfdl:encoding="ascii"

 dfdl:lengthKind="explicit"

 dfdl:lengthUnits="bytes"

 dfdl:length="{ ../len }"

 dfdl:textTrimKind="padChar"

 dfdl:textStringJustification="left"

 dfdl:textPadCharacter="%#r0;"

 />

</sequence>

Here we have two mutually dependent elements. The ‘len’ element contains the length of the ‘val’ element, rounded up to the next multiple of 4, and measured in units of bytes.

There is an apparent circularity here between the calculation of the length of the representation of the element named ‘val’, and the dfdl:outputValueCalc expression for the element named ‘len’ which refers to the representation length of ‘val’.

However, since this reference uses the dfdl:unpaddedLength() function, the calculation does not involve the dfdl:length property expression of the 'val' element. So there is no circularity.

When it comes time to unparse and write out the 'val' element, the dfdl:length expression can safely refer to the value of the 'len' element.

In the example above, the length of the representation in the data stream is rounded up to the next multiple of 4 bytes beyond the unpadded length in bytes of the ‘val’ item. Note that when unparsing these extra bytes would be filled by the dfdl:fillByte value. On parsing, since the dfdl:textPadCharacter is the character code zero (matching the fillByte), these extra character codes/bytes will be removed from the right end of the ‘val’ string, resulting in a logical value for 'val' which possibly has fewer characters in it than given by the dfdl:length expression.

3.2 Complex Type Example 1

Consider this example:

<sequence>

 <element name="len" type="int"

 dfdl:fillByte="%#r0;"

 dfdl:outputValueCalc=

 "{

 fix:ceiling(

 dfdl:unpaddedLength(../struct) div 4

) * 4

 }"

 />

 <element name="struct"

 dfdl:encoding="ascii"

 dfdl:lengthKind="explicit"

 dfdl:lengthUnits="bytes"

 dfdl:length="{ ../len }"

 dfdl:textTrimKind="padChar"

 dfdl:textPadCharacter="%#r0;" >

 <complexType>

 <sequence>

 <element name="f1" type="string"

 dfdl:lengthKind="delimited"

 dfdl:terminator=";"/>

 <element name="f2" type="string"

 dfdl:lengthKind="endOfParent"

 dfdl:terminator=";"/>

 </sequence>

 </complexType>

 </element>

</sequence>

In the example above, the length element 'len' has an outputValueCalc property which specifies that the unpadded length of the 'struct' element is to be used. Because 'struct' has complex type, the unpadded length is the representation length of the 'struct' as a bottom-up totaling of the representation lengths of the contents of the complex type.

4 Algorithm for computing calculated output values when unparsing

This algorithm is expressed as if the entire infoset to be output is computed before unparsing begins, a subsequent section discusses implementation considerations for other implementation techniques.

When unparsing, an element declaration and the infoset are considered as follows:

a) Compute outputValueCalc

If the element declaration has a dfdl:outputValueCalc property then the expression which is the dfdl:outputValueCalc property value is evaluated and the resulting value becomes the value of the element item in the augmented infoset.

Any pre-existing value for the infoset item is superseded by this new value. Note that it is not possible for any pre-existing value for the infoset item to ever be referenced. The value must come from the computation of the dfdl:outputValueCalc expression.

References to other augmented infoset items from within the outputValueCalc expression must obtain their values from the augmented infoset by recursively using these methods (a) or (b) to compute it as needed.

The representation length (measured in bits, bytes, or characters) of an infoset item can be obtained and used by an outputValueCalc expression by calling dfdl:length() or dfdl:unpaddedLength()

b) Fill in Default Items on Demand

If the element declaration has no corresponding value in the augmented infoset, and the element declaration is for a required item, and it has a default value specified, then an element item having the default value is created and added to the augmented infoset. Characteristics such as value or representation length of that item are then made available as requested.

c) Error if missing an item that cannot be defaulted and has no outputValueCalc

If any infoset item’s value or representation length is requested recursively as a part of (a) above and (a) does not again apply to the requested item, then if the requested item’s corresponding value is not present, and (b) does not apply so that it cannot be defaulted, then in the absence of any resource-limitation error it is a schema definition error.

d) Circular definitions are schema definition errors

Circular definitions are schema definition errors. That is, if any infoset item is encountered as part of expression evaluation using rule (a) above, but that same infoset item is already being evaluated, it is a schema definition error.

This rather complicated sounding rule (c) is actually just a formal way of saying that when you recursively evaluate an expression you have to get to a value (or length) eventually in order for the schema to be well defined. Also the infoset items (or lengths thereof) being requested by the evaluation can be filled in by way of the defaulting mechanisms provided in DFDL, and finally, all this has to be possible without running out of memory.

Conceptually, a DFDL processor may handle data more than once. Due to forward reference from an expression, the processor may need to compute a representation length thereby requiring it to first compute the value of an infoset item. It may conceptually need to compute it again to actually output the data representation of that same item. DFDL semantics does not allow the order of evaluation to affect the value or representation length of any infoset item. This provides an important freedom to DFDL processor implementations. Implementations are free to cache the serialized representation of the data at the time the representation length is calculated, and reuse it such time as the data must be physically output. Implementations can also choose to discard and recompute these representations as needed if they must be discarded to free resources.

Rule (a) requires that all conforming DFDL implementations must ignore any application provided infoset value for an item with a corresponding dfdl:outputValueCalc property in the DFDL schema. Implementations are free to issue diagnostic messages or warnings if applications attempt to provide a value for such infoset items, but it is specifically not a processing error nor error of any kind for an infoset to have a value for such an infoset item when unparsing of that item is attempted. This allows for the immediate unparsing of the infoset created created by a DFDL parser and then modified by an application. Such an infoset may contain items whose element declarations carry dfdl:outputValueCalc annotations but where infoset items exist left over from the DFDL parse processing creation of the infoset.

5 Unparsing, Forward Reference, and Resource Limitations

DFDL implementations might exist which attempt to process the infoset incrementally by providing an API for overlapping its creation with the unparsing using a DFDL schema. This concept is sometimes called output streaming, and the goal of it is efficiency in memory space usage, that is, to avoid the simultaneous holding in memory of as much of the infoset as possible while still serializing the data representation. Like any DFDL implementation, these output-streaming variants must deal with the complexity of possible forward reference. The ability to unparse an item of the infoset can depend on values in the infoset that are potentially quite far ahead, in the sense that if they could be produced incrementally, they would be produced substantially later in time, and their representation bits would be stored substantially later in the data stream. The obvious example of this is when the representation length of an infoset item is stored in header records which appear substantially before the infoset item itself in the data stream. DFDL implementations must use some technique such as buffering, or recomputation, to handle this situation.

DFDL implementations may place a limit on the amount of forward reference allowed during unparsing. This will mean that some DFDL implementations cannot successfully unparse some legal DFDL formats. If a DFDL implementation limit on forward reference is exceeded it is a resource-limitation error.

Conceptually, a DFDL processor may handle data twice: once to compute its representation length, and again to actually unparse/serialize the data. Because DFDL semantics does not allow the order of evaluation to affect the value or representation length of any infoset item, implementations can choose to avoid multiple-passes over the data when the representation length must be calculated. Implementations are free to cache the serialization of the data at the time the representation length is calculated, and reuse it such time as the data must be physically represented. Implementations can also choose to discard and recomputed these representations when needed.

�Explicitly allowing here for some sort of event-based unparsing where the infoset items are being produced incrementally.

�Alan, Remind me again why we don't also care about lengthKind='implicit' for an xs:string where the length facet is specified? Seems like the way to get a fixed length string.

File: outputValueCalc-and-variables-003.doc

Page 9 of 9
dfdl-wg@ggf.org

Page 9 of 9

