1 Expression language

The DFDL expression language allows the processing of values conforming to the data model defined in the DFDL Data Model. It allows attributes and properties in the DFDL schema to be dependent of the contents of an instance of a DFDL document, a DFDL variable or another property in the schema. For example the length of a field can be made dependent on the contents of another field in the document.

The main uses of the expression language are

1. When a DFDL property needs to be set dynamically at parse time from the contents of one or more elements of the data. Properties such as initiator, terminator, length, separator, occursSeparator, and nullValues accept an expression.

2. In a dfdl:assert annotation

3. In a dfdl:discriminator annotation to resolve uncertainty when parsing

4. In an inputValueCalc property to derive a node in the logical model that doesn’t exist in the physical data.

5. In an outputValueCalc property to set a value into a field on output.

6. As the value in a dfdl:setVariable annotation or the defaultValue in a dfdl:defineVariable.
The DFDL expression language is a subset of XPath 2.0 (ref). DFDL uses a subset of XML Schema and has a simpler information model, so only a subset of XPath 2.0 expressions is meaningful in DFDL Schemas. For example there are no attributes in DFDL so the attribute axis is not needed.

1.1 Expression Language Data Model

The DFDL expression language operates on the DFDL information model with the addition of hidden elements.
Expressions can only access nodes that currently exist in the tree. On parsing only elements that precede the current element in the data are accessible. On unparsing all elements can be accessed irrespective of position in the data.
1.2 General Syntax

DFDL expressions follow the XPath 2.0 syntax rules but are always enclosed in curly braces “{“ and “}”.

Examples

	{ /book/title }

	{ $x+2 }

	{ if (fn:exists(../field1)) then 1 else 0 }

The result of evaluating the expression must be a single atomic value of the type expected by the context. Expressions must not return a sequence containing more than one item or a processing error will be returned.
 If the expression returns an empty sequence it will be treated as returning NULL.
1.3 XPath Variable Binding

XPath supports the ability to refer to variables inside an expression that have been assigned prior to evaluation. DFDL binds these variables to DFDL variables that have previously been defined by a dfdl:defineVariable property.
1.4 Path Expressions

Path expressions are expected to be the most commonly used XPath expression in DFDL schema.

A path expression consists of one or more step expressions separated by a “/” or “//”

A step expression consists of an axis step. DFDL does not support filter expressions

An axis step consists of an axis followed by “::” followed by a node test and optionally followed by a predicate list

Syntax
: << / >> axis :: nodetest << [>> predicate <<] / >>

For example: child::planet [2]

1.4.1 Axis

DFDL supports the child (default), parent (“..”) and self (“.”) axes
.

1.4.2 Node Tests

A node test can be a name test or a kind test.

A name test will select nodes that match by name.

 A kind test is not supported.

1.4.3 Predicates

A predicate is a qualifying expression used to select a subset of the nodes. The predicate can be an XPath expression and is written in square brackets “[“ “]”. Predicates are only used to index arrays
 so must be integer expressions.

1.5 If Expressions

Syntax: << if (>> Expr <<) >> << then >> ExprSingle << else >> ExprSingle

The condition Expr is evaluated and the expression returns the result of evaluating the either the << then >> or <<else >> branch.

The conditional expression Expr is evaluated to give its effective boolean value. The effective Boolean value of any value is true unless it is:

· The empty sequence

· A singleton xs:Boolean value false

· A singleton zero length string

· A singleton xs:double, xs:float or xs:decimal that is numerically equal to zero

1.6 For Expressions

For expressions are not supported.

1.7 Some and Every Expressions

Some and Every expressions are not supported.

1.8 Constructors, Functions and Operators

1.8.1 Constructor Functions for XML Schema Built-in Types

The following constructor functions for the built-in types are supported:

· xs:string($arg as xs:anyAtomicType?) as xs:string?
· xs:boolean($arg as xs:anyAtomicType?) as xs:boolean?
· xs:decimal($arg as xs:anyAtomicType?) as xs:decimal?
· xs:float($arg as xs:anyAtomicType?) as xs:float?
· xs:double($arg as xs:anyAtomicType?) as xs:double?
· xs:duration($arg as xs:anyAtomicType?) as xs:duration?
· xs:dateTime($arg as xs:anyAtomicType?) as xs:dateTime?
· xs:time($arg as xs:anyAtomicType?) as xs:time?
· xs:date($arg as xs:anyAtomicType?) as xs:date?
· xs:hexBinary($arg as xs:anyAtomicType?) as xs:hexBinary?
· xs:base64Binary($arg as xs:anyAtomicType?) as xs:base64Binary?
· xs:integer($arg as xs:anyAtomicType?) as xs:integer?
· xs:long($arg as xs:anyAtomicType?) as xs:long?
· xs:int($arg as xs:anyAtomicType?) as xs:int?
· xs:short($arg as xs:anyAtomicType?) as xs:short?
· xs:byte($arg as xs:anyAtomicType?) as xs:byte?
· xs:unsignedLong($arg as xs:anyAtomicType?) as xs:unsignedLong?
· xs:unsignedInt($arg as xs:anyAtomicType?) as xs:unsignedInt?
· xs:unsignedShort($arg as xs:anyAtomicType?) as xs:unsignedShort?
· xs:unsignedByte($arg as xs:anyAtomicType?) as xs:unsignedByte?
· xs:yearMonthDuration($arg as xs:anyAtomicType?) as xs:yearMonthDuration?
· xs:dayTimeDuration($arg as xs:anyAtomicType?) as xs:dayTimeDuration?
A Special Constructor Function for xs:dateTime

A special constructor function is provided for constructing a xs:dateTime value from a xs:date value and a xs:time value.

fn:dateTime($arg1 as xs:date?, $arg2 as xs:time?) as xs:dateTime?
1.8.2 Operators

Supported

	,
	Sequence concatenation

	or
	Boolean disjunction

	and
	Boolean conjunction

	eq ne
lt le
gt ge
	Value comparisons

	

	

	+ -
	Addition, subtraction

	* div idiv mod
	Multiplication, division, modulus

	
	

	
	

Not supported

	= !=

< <=

> >=
	General compari
son

	<<
 is
 >>
	 Ordering comparison between nodes

	| union

	Union

	Intersect except
	Intersection and differences of sequences

	to
	Constructs a sequences of integers

	
	

Note: there is no “shift” operator

1.8.3 Standard XPath Functions

Boolean functions
The following additional constructor functions are defined on the boolean type.

	Function
	Meaning

	fn:true
	Constructs the xs:boolean value 'true'.

	fn:false
	Constructs the xs:boolean value 'false'.

The following functions are defined on boolean values:

	Function
	Meaning

	fn:not
	Inverts the xs:boolean value of the argument.

	
	

	
	

	
	

	
	

	
	

Numeric Functions
The following functions are defined on numeric types. Each function returns a value of the same type as the type of its argument.

	Function
	Meaning

	fn:abs
	Returns the absolute value of the argument.

	fn:ceiling
	Returns the smallest number with no fractional part that is greater than or equal to the argument.

	fn:floor
	Returns the largest number with no fractional part that is less than or equal to the argument.

	fn:round
	Rounds to the nearest number with no fractional part.

	fn:round-half-to-even
	Takes a number and a precision and returns a number rounded to the given precision. If the fractional part is exactly half, the result is the number whose least significant digit is even.

	
	

	
	

	
	

	
	

	
	

	
	

String Functions
The following functions are defined on values of type xs:string and types derived from it.

	Function
	Meaning

	fn:concat
	Concatenates two or more xs:anyAtomicType arguments cast to xs:string.

	fn:substring
	Returns the xs:string located at a specified place within an argument xs:string.

	fn:string-length
	Returns the length of the argument.

	fn:upper-case
	Returns the upper-cased value of the argument.

	fn:lower-case
	Returns the lower-cased value of the argument.

	Function
	Meaning

	fn:contains
	Indicates whether one xs:string contains another xs:string. A collation may be specified.

	fn:starts-with
	Indicates whether the value of one xs:string begins with the collation units of another xs:string. A collation may be specified.

	fn:ends-with
	Indicates whether the value of one xs:string ends with the collation units of another xs:string. A collation may be specified.

	fn:substring-before
	Returns the collation units of one xs:string that precede in that xs:string the collation units of another xs:string. A collation may be specified.

	fn:substring-after
	Returns the collation units of xs:string that follow in that xs:string the collation units of another xs:string

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

Date, Time and Duration functions:

None
	Function
	Meaning

	fn:years-from-duration
	Returns the year component of an xs:duration value.

	fn:months-from-duration
	Returns the months component of an xs:duration value.

	fn:days-from-duration
	Returns the days component of an xs:duration value.

	fn:hours-from-duration
	Returns the hours component of an xs:duration value.

	fn:minutes-from-duration
	Returns the minutes component of an xs:duration value.

	fn:seconds-from-duration
	Returns the seconds component of an xs:duration value.

	fn:year-from-dateTime
	Returns the year from an xs:dateTime value.

	fn:month-from-dateTime
	Returns the month from an xs:dateTime value.

	fn:day-from-dateTime
	Returns the day from an xs:dateTime value.

	fn:hours-from-dateTime
	Returns the hours from an xs:dateTime value.

	fn:minutes-from-dateTime
	Returns the minutes from an xs:dateTime value.

	fn:seconds-from-dateTime
	Returns the seconds from an xs:dateTime value.

	fn:timezone-from-dateTime
	Returns the timezone from an xs:dateTime value.

	fn:year-from-date
	Returns the year from an xs:date value.

	fn:month-from-date
	Returns the month from an xs:date value.

	fn:day-from-date
	Returns the day from an xs:date value.

	fn:timezone-from-date
	Returns the timezone from an xs:date value.

	fn:hours-from-time
	Returns the hours from an xs:time value.

	fn:minutes-from-time
	Returns the minutes from an xs:time value.

	fn:seconds-from-time
	Returns the seconds from an xs:time value.

	fn:timezone-from-time
	Returns the timezone from an xs:time value.

	Function
	Meaning

	fn:adjust-dateTime-to-timezone
	Adjusts an xs:dateTime value to a specific timezone, or to no timezone at all.

	fn:adjust-date-to-timezone
	Adjusts an xs:date value to a specific timezone, or to no timezone at all.

	fn:adjust-time-to-timezone
	Adjusts an xs:time value to a specific timezone, or to no timezone at all.

Sequences functions
The following functions are defined on sequences.

	Function
	Meaning

	fn:empty
	Indicates whether or not the provided sequence is empty.

	fn:exists
	Indicates whether or not the provided sequence is not empty.

	
	

	
	

	
	

Node functions
This section discusses functions and operators on nodes.

	Function
	Meaning

	fn:name
	Returns the name of the context node or the specified node as an xs:string.

	fn:local-name
	Returns the local name of the context node or the specified node as an xs:NCName.

	fn:namespace-uri
	Returns the namespace URI as an xs:anyURI for the xs:QName of the argument node or the context node if the argument is omitted. This may be the URI corresponding to the zero-length string if the xs:QName is in no namespace.

	
	

	
	

	
	

1.8.4 DFDL Functions

	Function
	Meaning

	dfdl:length
	Returns the unparsed length of the context node or the specified node as an xs:integer.

	dfdl:property
	Returns the value of requested dfdl property of the context node or the specified node as an xs:string.
Ex dfdl:property(‘byteorder’, ‘./address ‘)

	dfdl:teston

	Indicates whether the specified bit in a xs:byte is 1.

	dfdl:testoff
	Indicates whether the specified bit in a xs:byte is 0.

	dfdl:seton
	Sets the specified bit in a xs:byte to 1.

	dfdl:setoff
	Sets the specified bit in a xs:byte to 0.

	dfdl:match

	

	
	

	
	

	
	

	

	

	
	

2 Previous Spec content

Note: Rationale here: XPath 2.0 is a large and complex language to implement. We should not burden DFDL implementations with full XPath 2.0 implementations. Furthermore, performance is important for DFDL, and XPath 2.0 is a powerful query language where the performance implications of various kinds of expressions are unclear. For these reasons we describe here the most restrictive subset of XPath 2.0 that we believe we can get away with in DFDL, and only add additional features from XPath 2.0 when we know we have to have them, or can see no possible negative impact from having them.

2.1 Location Paths

Location Paths are the most frequently used XPath construct. Location Paths are used to select a set of nodes from the DFDL document.

Location Paths consist of one or more Path Steps separated by the ‘/’ character. They may be absolute or relative.

TBD: In DFDL the node sets returned by an XPath expression must be either empty, or must return exactly 1 node. (?? Are there cases where we need multiple return nodes
.
 ?? Efficiency considerations are what drive the issue) .

2.2 Predicates

Path Steps are allowed to have Predicates. DFDL also supports the predicates syntax on Path Steps, but these are used (TBD: only?) to index arrays. A parser error

will be reported if a Path Step with a Predicate does not evaluate to an array element.

This means that numeric access to the children of sequences is not allowed in DFDL Schemas.

2.3 True and False: Effective Boolean Values

The concepts of True and False in the DFDL expression language are identical to their definitions in the XPath 2.0 language (TBD: citation needed).

Roughly, this means an expression is true if the expression evaluates to a non-Null value that is not FALSE. The expression is false if it evaluates to an empty node list or to FALSE.

2.4 Property-Valued Expressions

A special XPath function dfdl:property() can be called from XPath to obtain the value of a DFDL property binding.

A special XPath function dfdl:isPropertyDefined() can be called from XPath to determine if a property has a binding or not.

It is a schema definition error for an expression to use a property name in either of the above functions where the property name does not correspond to an existing property. This means that the property name must be literal, not computed.

TBD: If a property has an expression containing this call, and this property binding is higher up in the scope, when is the expression evaluated
?
 Once at time of definition when the binding is established or each time the value of the property is requested? What is the current position in the schema of the parser at the time of this expression’s evaluation, i.e., how would relative paths be interpreted for these expressions? This is particularly important for two reasons: suppose a property contains the separator by way of a path into the data. Then everyplace the separator is used we don't want the processor to have to re-evaluate whether the expression, and clearly the path has to be meaningful based on the location where the binding occurred in the schema. Alternatively, suppose we define one property in terms of another. (need example – there was a case where this was important….) then when the property is used you need to re-examine to see if the binding of the other property has changed or been provided when it was not previously. We could require re-evaluation at every use, but allow implementations to optimize by detecting when the value cannot change.

2.5 Variable-Valued Expressions

A special XPath function dfdl:variable() can be called from XPath to obtain the value of a DFDL variable. See Section TBD: xref variables for more details on variables.

It is a runtime error to reference a variable that has not been assigned, and which does not have a default value.

It is a schema definition error to reference a variable from outside the scope of its definition.

2.6 Pattern (Regular Expression) Matching

A special XPath function dfdl:pattern() can be called from XPath to return a value which is the content which matches a regular expression.

TBD: arguments? Obviously one is a string which is the pattern. Is there a second “path” argument as well?

TBD: semantics here of where we start searching, and in what stream/source, and how that location in the source is determined. So that we can talk about not a value matching a pattern, but a source matching it. Presumably you give a path to an element, but instead of referencing that element's value you are referencing that element's representation bits
.

2.7 Dynamic Representation Properties

It is possible for a representation property to be determined at runtime from the data. For example, in some data formats, the delimiter to be used to separate elements is stored as a value of an element of a header record. This allows the delimiter to vary from one data set to another so as not to interfere with characters used in the data.

Reference from DFDL annotations into the data is done through the XPath expression language. Expressions in this language appear as the values of representation property bindings using a syntax which encapsulates the expressions in curly brace characters ‘{“ and ‘}’.

· Single braces are interpreted as surrounding an expression which will be evaluated to obtain the property value. Single braces should be matched.

· Double braces are used to insert literal braces and do not have to be matched.

The expression language is used for specifying paths to other element values and parts of the data as well as to compute values.

The braces are only optional for expressions that are literal constants, e.g., allowing you to write "5" instead of "{5}".

Note that even for properties which always require an expression to be used, the braces are required.

�Do we mean it must be statically provable that the expression returns only a single node?

This would rule out array-valued expressions. I suspect we may want this to be allowed someday.

This requirement for static single node is conservative however, so it's ok.

�PAGE \# "'Page: '#'�'" ��Unconventional notation. Consider EBNF.

�Of particular note prior and following sibling axis not provided.

�should avoid set valued.

�PAGE \# "'Page: '#'�'" �� Is it possible to police this at all? Strictly speaking, such a restriction is inconsistent with general XPath semantics.

� set construction. Shouldn't be allowed.

Should allow only to construct argument sequent to a function.

�Needed if Max, Min, etc supported. Argument is a sequence. Eg

Max((1,2,3), col)

�These where loosly defined for atomic values in XPath 1.0 and have been superceded by eq ne etc

�Do we need this to reach inside choices. E.g., two arms of a choice both have a name field.

�set semantics. Remove.

�

�Need functions that construct these objects from their obvious constituents, and take them apart.

Probably this is a subset.

� is this same as "dfdl:numberOfOccurrences() and is applicable only to arrays?

�PAGE \# "'Page: '#'�'" �� Surprised to see these at all, but particularly here. Should there be a family of bit manipulation functions? Should they accept other integer types?

�PAGE \# "'Page: '#'�'" �� dfdl:pattern() didn’t make it from ‘previous spec’ (see 2.6 below). Was this intended?

�is this a good name?

�Is this like

../x/y/z/dfdl-property('byteOrder')

or

dfdl-property('byteOrder', ../x/y/z)

�PAGE \# "'Page: '#'�'" ��Yes, I believe so. With multivalued expressions we can describe arrays more easily. Consider slide 72 in Steve’s presentation to OGF20.

�sp23 - we recommend removing the constraint saying the result must be a single node. Note that where the return result of an expression is constrained, we need to be explicit about it. There will be many contexts where an expression must return a single node value of a specific type, and we need to be clear about those cases.

�PAGE \# "'Page: '#'�'" ��I don’t understand the need for this restriction. Elsewhere we allow more freedom.

�Strong typing says we can determine this statically to be a schema validation error.

�Strong typing says we can determine this statically to be a schema validation error.

�sp24 - we should revisit the constraints on the XPath expressions we allow. The problem here is that we don't need a full XPath 2.0 language expressive power, and since an XPath 2.0 implementation is quite burdensome for implementors, we'd like to make the DFDL spec not simply subsume XPath 2.0, but be easier to implement than that. This is a case where just being consistent with existing standards is probably not the way to go. We can say that we want our language to be consistent with XPath 2.0, but a subset is very reasonable for DFDL. MikeB's example is the flattner, the XPath "**" path component. We simply don't need this.

Recommend: we need rationale in the spec here to motivate why it's not just XPath 2.0 in its entirety, and we need to be very precise about the definition of the subset.

�PAGE \# "'Page: '#'�'" ��The most easily defended answer is ‘as late as possible’. The only alternative that makes sense is ‘once, on first use’, but that’s probably too restrictive.

�Resolved that this should be “as early as possible”, not as late as possible. This is the conservative choice. We can liberalize later if needed, but making it more restrictive preserves certain implementation freedoms (static scoping) we’d like to have. When the scope where the property is bound is entered, that is when expressions are evaluated.

�Note: this eliminates the need for a special pattern capability in choice discrimination. You can just use this in a discriminating assertion.

�PAGE \# "'Page: '#'�'" ��As a free-standing function there is no context, so another argument is needed. DFDL should provide XPath external functions that help with integration, but this one might be beyond our brief. Regex syntax is unspecified: presumably we’ll pick XSD syntax.

�PAGE \# "'Page: '#'�'" ��This sounds dangerous and difficult. Limit it to element content identified by location path?

�This is just conservative. We can liberalize later if we want, but there’s value to being able to cut and paste things around and not have to worry about whether you have to insert braces or not, so while this seems annoying, in real examples it might be better to just be annoyingly consistent.

