GWD-I

dfdl-wg@ogf.org

Category: INFORMATIONAL

OGF Data Format Description Language Working Group
2009-02-19
GWD-I

Category: Informational

OGF Data Format Description Language Working Group
2009-02-19

Data Format Description Language (DFDL) v1.0

Core Specification
(Internal Committee Working Document)

Status of This Document

This memo provides information to the Grid community regarding the specification of a Data Format Description Language. The specification is currently a working group internal draft. It does not define any standards or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright © Global Grid Forum 2004, 2005, 2006. All Rights Reserved.

Copyright © Open Grid Forum, 2006, 2007, 2008. All Rights Reserved.

Abstract

This document provides a definition of a standard Data Format Description Language (DFDL). This language allows description of dense binary and legacy data formats in a vendor-neutral declarative manner. DFDL is an extension to the XML Schema Description Language (XSDL).
Revision History

	Latest entry at the top please

	Version
	Author/Contributor
	History
	Date(yyyy-mm-dd)

	033
	Alan Powell
	generatedNewLine renamed outputNewLine
Removed whitespace enums from textTrimKind. NumbercheckPolicy=lax ignores whitespace
removerd integerFormat
numberBase changed to enum
removed lengthUnits=characters from seq, choice
added separatorPosition, separatorIngorCase
Changed Occurs to occursCount, OccursKind to occursCountKind
Removed occursstoValueKind (always logical) and occrsSeparator
Removed textDBCSOnly and textCharacterSize (deferred from v1)
Added extended decimal support for zoned, packed and bcd
Changed defineNumberFormat to defineTextNumberFormat. Added description of defineTextNumberFormat
Split numberFormat into textNumberRepresentation and binaryNumberRepresentation
Removed extended binary decimal
New hidden syntax
lengthKind=endOfParent
Added selector to dfdl:format
Augmented Infoset added
	2008-11-28

	032

	Mike Beckerle

Alan Powell
	Changes and notes added based on review of v32.3. This does not include the changes discussed at the F2F meeting in hursley May 19, 20.21. Rather these changes were based on a review done just before that meeting based on things we have resolved in email and on weekly calls.
Base64Binary removed
Many many small changes. (Tracked)

Removed whole “parse function” semantics at the back.

Reorganized and updated null and defaults sections. Changed Null to nil throughout.

New DFDL Schema UML diagram

Added unparsing property precendence

Expanded calculated values section

Regular Expressions added

Added infoset order

(all previously tracked changes accepted)
	2008-05-25

	031
	Alan Powell
	Rewrite expression language section

Update calculated values

Added entities instead of hex escape

Added parsing property precedence

Added clarification of defaults and empty strings
	2008-02-06

	030
	Mike Beckerle
	Added facets material (how we use them)

choiceKind and length props on choice

Opaque/binary straightened out. (also put in empty sequence stuff.)
Any-element wildcard dimensionality now allowed.

Simplified any-element wildcards (only used for initiator-tagged formats now)

xs:integer type added
First pass at prefix-length strings

Replaced many uses of "length" for arrays with "number of occurrences".

Eliminated encoding="bytes". (it had snuck back in.)

Moved around some scannability stuff. (In anticipation of regexp stuff going back in.)

Tried to get nulls/defaults/optionals material in. Large complex tables, and organization seems problematic still.
	2007-11-29

	029
	Mike Beckerle
	Edited in many more resolutions.

Unfortunately, for a brief period change tracking was off and I didn't notice. I hope not too many changes are unmarked.

'size' changed to 'length' in all sensible places.
	2007-11-21

	028
	Mike Beckerle
	Grammar and figure updates, changes to representation property per discussions. Changed DFDL Information Model to DFDL Schema Model. Merged in Infoset material and Grammar revisions.
	2007-11-16

	027
	Mike Beckerle
	Some comments inserted in review during an IBM internal DFDL meeting
	2007-10-10

	026
	Mike Beckerle
	Comments from DFDL call on 2007-09-19. Merged in Comments by Sandy Gao on version 025 (through section 8).
	2007-10-05

	025
	Mike Beckerle
	Length and Occurs simplifications based on proposals integrated here. E.g., occursUnits is gone.
sequences with length added.

More diagrams of syntax.

	2007-09-11

	024
	Mike Beckerle
	Ongoing simplifications based on recent calls and email discussions

Got rid of pretty much all the null/default/optional complexity. (One new property about nullHasInitiator or not)
Got rid of byte order marks stuff. Model this as a separate hidden field which you refer to from an expression for the byteOrder property.
Got rid of fullUnicodeCharacters – instead we have encoding=UT-16VL (VL for variable length)
Added base64Binary, removed comments w.r.t. are we keeping hexBinary and base64Binary since we are now.

Added table of binary type lengths.
	2007-08-16

	023
	Mike Beckerle
	Regexp and regularExpression -> pattern
Ongoing reorganization. Reordered and organized the properties section to better match the grammar and the division into value and non-value properties.
Introduced concepts of ‘framing’ and ‘content’ to replace ‘independent of physical representation’ and ‘dependent on physical represntation’ which were too confusing.

Added speculative array length algorithm which along with initiators by source to source transformation and speculative parsing allows us to massively simplify the whole nulls/defaults/optionals snarl.

	2007-08-13

	022
	Mike Beckerle
	Re-org of semantics:

 Formal stuff – to the back for implementers.

 Grammars – into the properties discussion.

 Many sections formerly floating around are now in the properties section.
	2007-08-10

	021
	Mike Beckerle
	Many small changes in preparation for big reorg of semantics
Many resolutions from Simon Parker’s review of v019 are in this version.
Added dfdl:typeSubstitution annotation element (we used to call this “use” or “useTypeAlias”.

	2007-08-08

	020
	Mike Beckerle
	added proper citation for OMG CAM model. Merged in commentary by Simon Parker made on draft 019.
repType replaced with ‘representation’ throughout.

Changed assert. Split out dfdl:discriminator per discussion on 2007-07-18 WG call.

Clarified that DFDL info model has only simple types, and complex types with element-only or empty content. (i.e., we don’t have mixed content, nor do we have simple content – which only makes sense with attributes).
	2007-07-18

	019
	Mike Beckerle
	updated "full copyright notice" to OGF text. Merged changes from Martin's 018. Fixed UML diagrams to match slides.
(also got rid of base64binary type from simple types)

Merged in comments on Version 017 by S. Hanson, G. Judd, A. Powell. (Some comments were not applied, just merged in as comment "bubbles" for now..)
	2007-05-02

	018
	Martin Westhead
	Added section "What is DFDL"
	2007-04-24

	017
	Mike Beckerle
	Distributed 016 to S. Hanson, so started a new rev.

Got the parse strategies to the point where this needs more review.

The optional handling can definitely deal with the nulls/missing/optional/default complexity. I was able to directly leverage the flow-charts for parse for this.
	2007-04-19

	016
	Mike Beckerle
	Continuing work on parse strategies and organization for that.
Fixed concept of opaque 'any' wildcards. This required adding a couple more cases to the semantics of 'any', but still these are just source-to-source rewrites for their semantics.
Folded 'uncertainty' material about choices into parse strategy for choice, which does not have varying specialized parse strategies.

Fixed variables discussion. Syntax then semantics.

Broke out array and optional separately. This simplifies the parse strategy discussion substantially.

Factored out all the handling of context and assertions and variable annotations into a common description of the P parse function instead of having it repeated in C, G, S, A, etc.

Finished parse functions (general framework) for arrays and optionals. Didn't really for arrays, but enough is there for the concept to be clear.
This framework can handle null/optional/missing/default issue now.

I put back in the defineProperty annotation because the framework now lets us really bootstrap the definitions of the properties from a very very tiny core DFDL.
	2007-04-15

	015
	Mike Beckerle
	Worked on Parse Strategies Section.
Changed BOMRequired to byteOrderMarkPolicy. Changed enum names.

	2007-04-02

	014
	Mike Beckerle
	Reorganization of sections into better order.

Put in some changes requested during earlier review cycle.

Handled Unordered Groups by way of source-to-source transformation and a data postprocessing step. This is far better than complicating the semantics to deal with unordered stuff.

Filled in Choice parse rule.

Added 'Nested Delimited Constructs' section.

Added a bunch of topics about regexp delimiting, end-of-data delimiting, length protocols and such. These are "tossed into" the parse strategy section, which is currently very disorganized, but at least the notions are captured.
	2007-03-25

	013
	Mike Beckerle
	Incorporated comments on v12 by S. Hanson.

Prepared for reordering grammar section to after parse-strategies section.
	2007-03-25

	012
	Mike Beckerle
	GGF->OGF throughout.

Integrated Tom Sugden’s rewrite to the scoping section, and mods to the Syntax section (which is still not only about syntax)

Put basic arrays material into the properties description section for the occurrences properties.

Much other editing. Removed these to parking lot: Variables Usage Scenarios, Extensibility, Schematron appendix, defineStream and stream changing, conversions search example.
Got rid of DPath. It’s now XPath, albeit with some semantic restrictions (since our model is simpler than the full XML model – e.g., no attributes to address with XPaths)

Merged in and reorganized the Length Protocols material.

Introduced Parse Strategies concept. incorporated "conversions" into parse strategies.
	2007-03-18

	011
	Mike Beckerle
	update to validation error definition. Minor changes elsewhere.
	2007-02-14

	010
	Geoff Judd
	Update Default and Nulls section
	2007-01-24

	009
	Geoff Judd
	Moved some of the Uncertainty material back to the Core document. Specifcially DFDL assertions and unresolvable points of uncertainty.
	2006-09-20

	008
	Geoff Judd
	Removed most of Uncertainty material (including properties) except for a brief summary.
	2006-08-23

	007
	Mike Beckerle
	Applied simplifications as discussed in DFDL WG call on 2006-08-03
	2006-08-10

	006
	Mike Beckerle
	Improved examples in uncertainty section based on feedback from Suman, Steve H. Integrated user-defined properties and Variables material.
	2006-07-21

	005
	Mike Beckerle
	Many, many, (MANY) changes as a result of big full-pass read through.

	2006-07-17

	004
	Mike Beckerle
	integrated material about uncertainty. Point of departure was the document: "Support of Uncertainty in DFDL-007.doc", by Geoff Judd.
Also integrated material about null/default/optional handlings. Point of departure is "Support of Default and Null Values in DFDL-008.doc" by Geoff Judd
	2006-07-14

	003
	Mike Beckerle
	added properties list, and layering material
	2006-07-13

	002
	Robert E. McGrath
	Text from notes on arrays. Section 12 and 17.
	2006-07-07

	001
	Mike Beckerle
	Created this new framework document to combine all the sub-team documents into a combined spec. Started over from version 001 since this is being put together from pieces from all over.
	2006-06-23

TBD: TODO List
· (Note: deferred beyond V1.0) Add: text comments feature (works like escape scheme?)

· Resolve – nulls/defaults/optional complexity with initiators.

· Resolve –lexical analysis issue – speculation doesn’t seem to help us deal with the basic length of a delimited field when we rewrite into 2 fields. I.e., field x followed by a hidden field with an assertion that the 2nd field has the terminator expected value. The field x itself has no length method other than that it abuts what is after it. Must explain how this is resolved.

· Resolve - Sandy's suggestion to go to a two-part description DFDL Schema syntax to Schema components, then schema components to semantics is a good one; however, there is much to do to put this in place.

Notes: mapping schema docs onto schema components. You still have group, element, and type references if you want enough design headroom to admit recursive types someday. Hence, mapping cannot replace relative paths with absolute paths. Furthermore, we cannot describe getting a property as a component-local operation. We must look up the value, walking up the stack until we find it.

We have to create component instances as we need them. Note that it is at component creation time that expressions are evaluated.

We convert the schema docs into schema components, and walk the components producing instances of the schema components, and when parsing instances of the infoset items. For unparsing, we walk the components of the schema consuming (pulling) item instances from the infoset. (We also may augment the infoset with additional items corresponding to hidden elements of the schema)

· Missing a user-oriented section on variables. (User discussion of what “earlier in the data” means for when you can refer to a variable.)

· Choices and discrimination/assert are not described adequately (well this is one of many things not adequately described.

· Escape Schemes – describe basically how lexical analysis works.

· Pattern (Regular expression) updates for everywhere lengths use this. Also what is the regexp special syntax so you can distinguish these from value expressions or literal values?

· Selectors proposal (and clarify relationship to Variables).

· Issue: is an ‘all’ group needed which is unordered, but where order is significant? (Currently, unordered group means unordered, but order is insignificant. Maybe ok for V1.0 of DFDL, because you can make order significant by modeling as an array of choice.)

Throughout: To eliminate ambiguity always qualify a DFDL property with dfdl: in text. (we may make them hyperlinks in a later draft). For example, it gets difficult sometimes to know whether the word 'separator' refers to the property
or to the concept. Using dfdl:separator makes this clear.
Needed:

1. A schema for DFDL annotation elements
2. A schema for DFDL itself (subset of XSDL, and include the above annotation elements schema)

Random Note: On possible extensibility mechanism and Kernel DFDL.
1. source-to-source schema declaration rewrite specified with XSLT.

2. data post-processing rewrite via XQuery or XSLT to match the original logical model.

3. XML all the way down. Input data looks like <bits>0 1 1 0 1 ... </bits>. Bootstrap from there.

This would allow new keywords to be given meaning by end users. Example is the way 'initiatorSeparator' is defined for Any Element Wildcards in unordered groups.

Contents

1Data Format Description Language (DFDL) v1.0

2Revision History

4TBD: TODO List

4TBD: Hints to Authors and Editors

41
Introduction

41.1
Why is DFDL Needed?

41.2
What is DFDL?

41.2.1
Simple Example

41.3
What DFDL is not

41.4
Scope of version 1.0

41.5
Related standards

42
Notational and Definitional Conventions

42.1
Failure Types

42.2
Schema Definition Error

42.3
Processing Errors: Parse Error, Unparse Error

42.3.1
Processing Schema Definition Errors

42.4
Validation Errors

43
Glossary

44
The DFDL Information Set (Infoset)

44.1.1
``No Value''

44.2
Information Items

44.2.1
Document Information Item

44.2.2
Element Information Items

44.3
DFDL Information Item Order

44.4
DFDL Infoset Object model

45
DFDL Schema Component Model

45.1
DFDL Subset of XML Schema

45.2
XSD Facets, min/maxOccurs, default, and fixed

45.2.1
minOccurs and maxOccurs

45.2.2
length, minLength, maxLength

45.2.3
maxInclusive, maxExclusive, minExclusive, minInclusive, totalDigits, fractionDigits

45.2.4
pattern

45.2.5
enumeration

45.2.6
whitespace

45.2.7
default

45.2.8
fixed

46
Syntax Basics

46.1
Namespaces

46.2
The DFDL Annotation Elements

46.2.1
Additional Specialized Annotation Elements

46.3
String Literals in DFDL

46.3.1
DFDL Entities in String Literals

46.3.2
DFDL Expressions in String Literals

46.3.3
DFDL Regular Expressions in String Literals

47
Syntax and Basic Usage of DFDL Annotation Elements

47.1
dfdl:format: Putting Formats to Use

47.1.1
Attributes of dfdl:format

47.1.2
Representation Property Binding Syntax: Attribute Form

47.1.3
Representation Property Binding Syntax: Element Form

47.1.4
Short Form Syntax for Format Annotations

47.1.5
Empty String as a Property Value

47.2
dfdl:defineFormat - Reusable Data Format Definitions

47.2.1
Inheritance for dfdl:defineFormat

47.2.2
Using/Referencing a Named Format Definition

47.3
The dfdl:assert Annotation Element

47.4
The dfdl:discriminator Annotation Element

47.5
The dfdl:DefineEscapeScheme Annotation Element

47.6
The dfdl:hidden Annotation Element

47.7
The dfdl:DefineNumberFormat Annotation Element

47.8
The dfdl:defineVariable Annotation Element

47.9
The dfdl:setVariable Annotation Element

47.9.1
Short Form Syntax for Variable Assignment

47.10
The dfdl:typeSubstitution annotation element

48
Expression language

48.1
Expression Language Data Model

48.2
General Syntax

48.3
XPath Variable Binding

48.4
DFDL XPath subset

48.4.1
XPath subset notes

48.5
Constructors, Functions and Operators

48.5.1
Constructor Functions for XML Schema Built-in Types

48.5.2
Standard XPath Functions

48.5.3
DFDL Functions

48.6
Variables

49
DFDL Regular Expressions

410
Scoping Rules

410.1
Annotation Positioning

410.2
Annotation Overloading

410.3
Annotation Overriding

410.4
Scoping of Type References

410.5
Scoping of Element and Group References

410.6
Scoping of Type Derivations

410.7
Scoping and Expressions

410.8
Scope Resolution Rules for Format Properties

411
DFDL Properties Introduction: The DFDL Parser and Unparser

411.1
Unparsing Must be Unambiguous

411.2
Parser Overview

411.3
DFDL Data Syntax Grammar

411.4
Framing and Content - Length, Start Position, and End Position

411.5
Dynamic Extent

412
Core Representation Properties and their Format Semantics

413
Properties Common to Both Content and Framing

414
Framing

414.1
Aligned Data

414.2
Delimiters – Text Markup

414.2.1
Escape Scheme Properties (dfdl:DefineEscapeScheme Annotation Element)

414.3
Length Properties

414.3.1
Length of Text: Strings or Underlying String Representation of Simple Types

414.3.1.1
Character Width

414.3.1.2
Length (in Bytes) of a Text String

414.3.1.3
Text Length in Characters when Specified in Bytes

414.3.1.4
Prefix-Length Strings

414.3.1.5
Pattern-based Lengths

414.3.2
Length of Simple Number Types with Binary Representations

414.3.3
Length of Bit Fields

415
Simple Types

415.1
Properties Common to All Simple Types with Textual Content

415.2
Properties Specific to TextString

415.2.1
TextString with dfdl:representation=‘xml’

415.3
Properties Specific to TextNumber

415.3.1
The dfdl:DefineNumberFormat Properties

415.4
Properties Specific to TextBoolean

415.5
Properties Specific to Binary Integers

415.6
Properties Specific to Binary Float

415.7
Properties Specific to Opaque Types (hexBinary)

415.8
Properties for Nillable Elements

415.9
Properties for Default Value Control

415.10
Nils, Defaults, and Initiators

415.10.1.1
Initiators and Input

415.10.1.2
Initiators and Output

416
Sequence Groups

416.1
Empty Sequences

416.2
Pattern-Based Lengths for Complex Types - Scanability

416.3
Sequence Groups with Delimiters

416.3.1
Sequence Groups and Separators

416.3.2
Nests of Specified Length within Delimited Constructs

416.3.3
Pattern-based Length and End-of-Data Delimiter

416.3.4
End-of-Data Termination

416.4
Unordered Sequence Groups

417
Assertion and Discriminator Evaluation

418
Choices

418.1
Resolvable Choices

418.2
Unresolvable Choice

418.2.1
Fixed Length

419
Arrays and Optional Elements: Properties for Repeating and Variable-Occurrence Data Items

419.1.1.1
Repeating and Variable-Occurrence Items and Default Values

419.1.1.2
Stop Value Delimited Array Number of occurrences

420
Calculated Value Properties.

4Example: 2d Nested Array

4Example: Packed Decimal Date

421
Any Element Wildcard

422
Non-Primitive DFDL Schema Constructs

422.1
Element Reference

422.2
Group Reference

422.3
Type Reference

422.4
Type Derivations

423
External Control of the DFDL Processor

424
Built-in Specifications

425
Properties Supported by Specialized Annotation Elements

426
Property Precedence

426.1
Parsing

426.2
Unparsing

427
Security Considerations

428
Contributors

429
Intellectual Property Statement

430
Disclaimer

431
Full Copyright Notice

432
References

433
Appendix: About UTF-16 and Unicode Character Codes above 0xFFFF

TBD: Hints to Authors and Editors

· Write in the present tense. We are describing how DFDL IS defined, not how it "Will be" defined someday. Many more people will see this document once DFDL is complete than while it is in formulation.

· Please put in lots of TBDs and/or comments about things unresolved or unclear.
· Please put the letters "TBD" in notes to the authors/editors, not "TODO" or other markers.

· Move discussion of design alternatives and rationale for why things were decided into separate sections which are put in the Appendices in the back matter. Eventually we'll move these out to a separate document for safekeeping.
· Standardize terminology: use 'element' instead of 'field', 'item', 'object etc. Use 'item' as the generalization from element to elements and other things such as model groups.
· Any property that can have empty string as its value must say so in the documentation of the property. E.g., separator.

List of Changes still needed throughout:

Code Examples:

· use style 'codeblock'

· indent 2 spaces per level

· use all spaces, not tabs

· colorize per our standard color scheme to emphasize the important bits. (are we happy with the colorization in the scoping part? I'd propose that as a standard)
· no outline frames around them.

Change discussions of boolean true like "non-null node not equal to FALSE" to just say 'true'. since we have a central discussion of what true and false are for expressions now.

1 Introduction

Data interchange is critically important for most computing. Grid computing and all forms of distributed computing are about getting distributed software and hardware resources to work together. Inevitably these resources read and write data in a variety of formats. General tools for data interchange are essential to solving such problems. Scalable and HPC applications require high-performance data handling, so data interchange standards must enable efficient representation of data. DFDL enables powerful data interchange as well as very high-performance data handling.
We envisage 3 dominant kinds of data in the future:

Textual XML data.

Binary data in standard formats.

Data with DFDL descriptors

Textual XML data is the most successful data interchange standard to date. All such data is by definition new, by which we mean created in the XML era. Because of the large overhead that XML tagging imposes there is often a need to compress and decompress XML data. However, there is a high-cost for compression and decompression unacceptable to some applcations. Standardized binary data is also relatively new, and is more reasonable for larger data because of the reduced costs of encoding and more compact size. Examples of standard binary formats are data described by modern versions of ASN.1, or the use of XDR. These techniques lack the self-describing nature of XML-data. Scientific formats such as NetCDF and HDF are used in some communities to provide self-describing binary data. In the future
there may be standardized binary-encoded XML data as there is a W3C working group that has been formed on this subject.
It is an important observation that both XML format and standardized binary formats are prescriptive in that they specify or prescribe a representation of the data. To use them your applications must be written to conform to their encodings and mechanisms of expression.

DFDL suggests an entirely different scheme. The approach is descriptive in that one chooses an appropriate data representation for an application based on its needs and one then describes the format using DFDL so that multiple programs can directly interchange the described data. DFDL descriptions can be provided by the creator of the format, or developed as needed by third parties intending to use the format. That is, DFDL is not a format for data; it is a way of describing any data format. DFDL is intended for data commonly found in all kinds of calculations including scientific and numeric computations as well as the record-oriented representations found in commercial data processing.

DFDL can be used to describe legacy data files, to simplify transfer of data across domains without requiring global standard formats, or to allow third-party tools to easily access multiple formats. DFDL can also be a powerful tool for supporting backward compatibility as formats evolve.

DFDL is designed to provide this flexibility but to also admit implementations that achieve very high levels of performance. DFDL descriptions are separable and native applications do not need to use DFDL libraries to parse their data formats. DFDL parsers can also be highly efficient. The DFDL language is designed to admit implementations that use lazy evaluation of formats and to support seekable, random access to data. The following goals are achievable by DFDL implementations:

Density: fewest bytes to represent information content (without resorting to compression). Fastest possible I/O.

Optimized I/O. Applications can write data aligned to byte, word, or even page boundaries and to use memory-mapped I/O to insure access to data content with the smallest number of machine cycles for common use cases without sacrificing general access.

DFDL can describe the same kinds of abstract data that other binary or textual data formats can describe, but can go further and describe almost any possible representation scheme for them, For example, DFDL can provide multiple representations for the same logical data but that are optimized for specific uses. It is the spirit of DFDL to support canonical data descriptions that correspond closely to the original in-memory representation of the data, and also to provide sufficient information to write as well as to read the given format.

1.1 Why is DFDL Needed?

Many people ask why DFDL is needed in an era where there are so many standard data formats available. There are a number of social phenomena in the way software is developed which have lead to the current situation where DFDL is needed to standardize description of diverse data formats.
First, programs are very often written speculatively, that is, without any advance understanding of how important they will become. Appropriately given this situation, little effort is expended on data formats since it remains easier to program the I/O in the most straightforward way possible given the programming tools in use. Even something as simple as using an XML-based data format is harder than simply using the native I/O libraries of a programming language.

At some point however, it is realized that the program is important because either lots of people are using it, or it has become important for business or organizational needs to start using it in larger scale deployments. At that point it is often too late to go back and change the data formats. For example, there may be real or perceived business costs to delaying a deployment of a program for a rewrite just to change the data formats, particularly if such rewriting will reduce performance of the program and increase costs of deployment. (It takes longer to program, but at least it's slower when you are done()

Additionally, the need for data format standardization for interchange with other software may not even be clear at the point where a program first becomes 'important'. Eventually, however, the need for data interchange with the program becomes apparent.
The above phenomena are not something that is going away any time soon. There are of course efforts to much more smoothly integrate standardized data format handling into programming languages. Nevertheless we see a critical role for DFDL since it allows after-the-fact description of a data format.
1.2 What is DFDL?

DFDL is a language for describing data formats. A DFDL description allows data to be read from its native format and be presented as an instance of a logical data model
or indeed converted to the corresponding XML document. DFDL also allows data to be taken from an instance of a logical data model and written out to its native format.

DFDL achieves this by leveraging W3C XML Schema Definition Language (XSDL).

An XML Schema is written for the logical model of the data. The schema is augmented with special DFDL annotations. These annotations are used to describe the native representation of the data. This is an established approach that is already being used today in commercial systems such as IBM’s WebSphere Business Integrator Message Broker and Microsoft’s BizTalk flat file.

1.2.1 Simple Example
Consider the following XML data:

<w>5</w>

<x>7839372</x>

<y>8.6E-200</y>

<z>-7.1E8</z>

The logical model for this data can be described by the following fragment of an XML Schema document which simply provides description of the name and type of each element:

 <complexType name="example1">
<xs:sequence>

 <xs:element name="w" type="int"/>

 <xs:element name="x" type="int"/>

 <xs:element name="y" type="double"/>

 <xs:element name="z" type="float"/>

</xs:sequence>

 </complexType>

Now, suppose we have the same data but represented in a non-XML format. A binary representation of the data could be visualized like this (shown as hexadecimal):

0000 0005 0077 9e8c

169a 54dd 0a1b 4a3f

ce29 46f6

Now to describe this in DFDL we take our original XML Schema document that described the data model and we annotate the type definition as follows:
 <xs:complexType name="example1">

 <xs:annotation>

 <xs:appinfo>

 <dfdl:format representation="binary"
 byteOrder="bigEndian"
 lengthKind="implicit"
 floatType="ieee" />

 </xs:appinfo>
 </xs:annotation>

 <xs:sequence>

 <xs:element name="w" type="int"/>

 <xs:element name="x" type="int "/>

 <xs:element name="y" type="double"/>

 <xs:element name="z" type="float" />

 </xs:sequence>

</xs:complexType>
This simple DFDL annotation expresses that the data is represented in a binary format and that the byte order will be big endian. This is all that a DFDL parser needs to read the data.
Similarly consider if the same data were represented in a text format:

5, 7839372, 8.6E-200, -7.1E8

Once again we can annotate the same data model, this time with properties that provide the character encoding, the field separator (comma) and the decimal separator (period):

<xs:complexType name="example1">

 <xs:annotation>

 <xs:appinfo>

 <dfdl:format representation=“text”

 encoding=“UTF-8”

 textNumberFormatRef="myNumFormat">

 separator="," />
 </xs:appinfo>

</xs:annotation>

<xs:sequence>

<xs:element name="w" type="int"/>

<xs:element name="x" type="int"/>

<xs:element name="y" type="double"/>

<xs:element name="z" type="float"/>

</xs:sequence>

</xs:complexType>

1.3 What DFDL is not
DFDL maps data from a non-XML representation to an instance of a logical data model. This can be thought of as a data transformation. However, DFDL is not intended to be a general transformation language and in particular DFDL does not intend to provide a mechanism to map data to arbitrary XML models. There are a couple of specific limitations on the data models that DFDL can work to:
1. DFDL uses a subset of XML Schema, in particular you cannot use XML attributes in the data model

2. The order of the data in the data model must correspond to the order and structure of the data being described.
This latter point deserves some elaboration. The XML schema used must be suitable for describing the physical data format. There must be a correspondence between the XML schema's constructs and the physical data structures. E.g., generall the elements in the XML Schema must match the order of the physical data. DFDL does allow for certain physically unordered formats as well.

The key concept here is that when using DFDL you do not get to design an XML Schema to your preference and then populate it from data. That would involve describing the data format, and describing a transformation for mapping it to the XML schema you have designed. DFDL is only about the format part of this problem. There are other languages, such as XSLT, which are for transformation. In DFDL you describe only the format of the data, and this format constrains the nature of the XML schema you must use in its description.
1.4 Scope of version 1.0
Goals:

1. Leverage XML technology and concepts

2. Support very efficient parsers/formatters

3. Avoid mistake of specs which require data copying

4. Support round-tripping i.e., read and write data in described format from same description

5. Keep simple cases simple

6. Simple descriptions should be "human readable" to the same degree that XSDL is.

General Features:

a) Basic Text/Binary data capabilities

b) TBD: Inclusion of static info, e.g. “units”

c) Validate the data when parsing using XSDL validation.
d) Defaulted input for missing values

e) Reference – use of a previously read value in subsequent expressions

f) Choice – use of a previously read value to select among format variations

g)
Hidden Elements - Basic Layering description of an intermediate representation not exposed in the final result

h) Basic Math – in DFDL expressions

i) Very general parsing capability: Lookahead/Push-back

Version 1.0 of DFDL is a language capable of expressing a wide array of binary and text-based data formats.

DFDL is capable of describing binary data as found in the data structures of Cobol, C, PL1, Fortran, etc. In particular, it is able to describe repeating sub-arrays where the length of an array is stored in another location of the structure.

DFDL is capable of describing a wide variety of textual data formats such as HL7.

DFDL has certain composition properties. I.e., two formats can be nested or concatenated and a working format results.
The following topics have been deferred to future versions of the standard:

· Extensibility: There are real examples of proprietary data format description languages that we use as our base of experience from which to derive standard DFDL. However, there are no examples of extensible format description languages; hence, while extensibility is desirable in DFDL, there is not yet a base of experience with extensibility from which to derive a standard.

· Rich Layering: Some formats require data to be described in multiple passes. Combining these into one DFDL schema requires very rich layering functionality. In these layers one element's value content becomes the representation of another element. DFDL V1.0 allows description of only a limited kind of layering.
1.5 Related standards

1. Prescriptive systems:

a. W3C binary XML (http://www.w3.org/XML/Binary/)

2. Descriptive systems:

a. ASN1 Encoding Control Notation

b. ITU-T X.692

2 Notational and Definitional Conventions

The key words must, must not, required, shall, shall not, should, should not, recommended, may, and optional in this Working Draft are to be interpreted as described in [RFC 2119]. Note that for reasons of style, these words are not capitalized in this document.

2.1 Failure Types

Herein where the phrase "must be consistent with" is used, it is assumed that a conforming DFDL implementation must check for the consistency and issue appropriate diagnostic messages when inconsistency is found.

There are several kinds of failures that can occur when a DFDL processor is handling data and/or a DFDL schema.

2.2 Schema Definition Error

When the DFDL schema itself contains an error, it implies that the DFDL processor cannot process data because the DFDL schema is not meaningful. It may be ambiguous, or contain conflicting definitions. Equivalently, we can say that there is no possible data that conforms to the schema; hence, the schema cannot be meaningful. All conforming DFDL processors must detect all schema definition errors, and must issue some kind of appropriate diagnostic message. The behavior of a DFDL processor after a schema definition error is detected is out of scope for this specification.
When a Schema definition error can be detected given only the schema, it is desirable, though not required by the DFDL standard, that such errors be detected and diagnostic messages issued before any data is processed.
 Of course not all schema definition errors can be detected without reference to data as some representation properties may obtain their values from the data
.
The expression language included within DFDL is strongly, statically type checkable. This means that type checking of expressions can be performed without processing data, and implementations are encouraged to perform this checking statically so that schema definition errors having to do with type inconsistencies can be detected before a DFDL schema is used to process data. (Static type checking also enables higher performance implementations and enables implementation techniques that would not be applicable if the expression language was not statically type checkable.)
2.3 Processing Errors: Parse Error, Unparse Error

If a DFDL schema contains no schema definition errors, then there is the additional possibility that when processing data using a DFDL schema, the data itself does not conform to the format described by the schema. In the input direction this is known as a parse error. In the output direction an unparse error.
In addition, using the expression language of DFDL, it is possible to have runtime errors (for example, mathematical underflow or division by zero). These are also processing errors, and can be classified as parse or unparse errors depending on the action of the DFDL processor at the time of the error.

Parse errors can be suppressed by certain uses of the choice construct. See section (TBD: xref to choice). We will use the phrase suppressed parse error to describe this situation. A parse error that is not suppressed in this way is an effective parse error. DFDL does not describe the behavior of parsers after effective parse errors occur.
It is expected that DFDL implementations will provide a variety of mechanisms for dealing with effective parse errors such as means of specifying retry points or means of skipping some data so as to recover from the error in some way.
Note that neither schema definition errors nor validation errors can ever be suppressed by choice constructs.
Exceptions that occur in the evaluation of the DFDL expression language are processing errors.
Non-conformance with minOccurs and maxOccurs constraints is a processing error.

2.3.1 Processing Schema Definition Errors

There are some errors which when detected statically are schema definition errors - these indicate that the schema cannot be meaningful. However, there are situations where these same errors cannot be detected until data is available. An example of this is that a format using nested delimited data may be ambiguous if the delimiters are not distinct. If the delimiters are known statically then this is a schema definition error which can be detected before data processing. However, if the delimiters are stored within the data, perhaps as elements of a header part of the data, then this ambiguity cannot be discovered until the data is available. DFDL implementations are not required to perform analysis which finds these ambiguities so as to be able to properly categorize them as schema definition errors.. Rather, a valid DFDL implementation can attempt to parse the data and produce a processing error when the processing fails. A valid DFDL implementation might not be able to tell the difference between ambiguity of the data format, or an error in the data itself (non-conformance to an unambiguous schema).

Because of this, in order to insure consistent behavior from DFDL implementations, these implementations must NOT classify schema-definition errors
that are not detected until processing time as schema definition errors. Rather, these are processing errors.

2.4 Validation Errors

Logical validation checks are constraints expressed in XSDL and they apply to the logical content of the model
. Hence, parsing must successfully construct logical data from the representation in order for validation checks to be meaningful. This implies that validation errors cannot affect the ability of a DFDL processor to successfully parse or unparse data.

DFDL processors may provide both validating and non-validating behaviors on either or both of parse and unparse. (A DFDL implementation could support validate on parse, but not support it on unparse and still be considered conforming.)
The behavior of a DFDL processor after a validation error is not specified by the DFDL language.

An unparse validation error is defined in terms of a parse validation error. Specifically, an unparse validation error occurs when the physical representation being output would generate a validation error when parsing the data representation using the same DFDL schema.

The DFDL choice construct ignores validation errors. Hence, validation errors cannot cause selection of other choice alternatives when parsing.
The following DFDL schema constructs are allowed in DFDL and are checked when validating:

1. XSDL pattern facet - (for xs:string type elements only)
2. XSDL minLength, maxLength (note: length should be used for fixed length case)

3. XSDL minInclusive, minExclusive, maxInclusive, maxExclusive

4. XSDL enumeration

When a DFDL assertion is used to discriminate a choice or other point of uncertainty when parsing, then that assertion is essential to parsing and it is evaluated irrespective of whether validation is enabled or disabled.
Note that occurs checking, i.e., non-conformance with minOccurs and maxOccurs whether parsing or unparsing is a processing error, not a validation error.

3 Glossary

TBD: insert terms from infoset and schema components sections, also grammar section.

DFDL – Data Format Description Language

Data Item, or Item - A part of the data described by an element declaration, and element reference, a sequence group or a choice group construct.
Element - A part of the data described by an element declaration

in the schema.
Byte - The term “byte” herein refers to an 8-bit octet.

DFDL Processor - A program that uses DFDL descriptors in order to process data described by them.

DFDL Schema - an XML Schema containing DFDL annotations to describe data format.

Array - The set of adjacent elements whose XSDL element declaration
specifies the potential for it to have more than one occurrence (maxOccurs > 1). Of course any given array instance can have any number of elements, including zero elements or exactly 1 element as long as the occurrence constraints are met. An optional element (maxOccurs=1, minOccurs=0) is not considered to be an array as described in this document. (The term for any variable-occurrence item, generalizing the notion of variable-length array and optional element is 'variable-occurrence item'.) Note that a sequence is not to be confused with an array. A sequence is a complex tuple type for an element, the children of a sequence can be of different types. All elements of an array have the same type.

Optional Element - this term refers to an element declaration or reference with maxOccurs=1, and minOccurs=0.

Optional Item - an item with minOccurs=0, so that it is in fact possible for there to be no occurrences at all. Optional Elements are optional items obviously, but Variable-occurrence arrays where minOccurs=0 are also optional items.

Scalar Element – Not an array and not optional. Specifically maxOccurs=1 and minOccurs=1. Scalar is not to be confused with 'simple'. Scalar is only about the dimensionality of the data, not its complexity/simplicity.

Length - When discussing data items and their representations, the term 'length' is used to refer to the measure of the size of the representation of an item in units of bits, bytes, or characters. The length of an array is the number of bits, bytes, or characters making up its representation, and has nothing to do with the number of occurrences, or dimensionality, of the array. Any item or array has length. Only arrays and optional elements have occurrences.
Number of Occurrences - we use this term to discuss dimensionality of arrays and the presence/absence of optional elements.
Variable-Occurrence Item - Optional elements have a variable number of occurrences (0 or 1) and arrays also can have a variable number of occurrences (when minOccurs < maxOccurs). So when we say an item with a variable number of occurrences, this can mean either an optional element, or an array where minOccurs < maxOccurs. In either array or optional elements, we have the additional constraint that the DFDL representation properties do not preclude a variable number of occurrences.

Fixed-Occurrence Item - An array has fixed number of occurrences when minOccurs = maxOccurs, or when the DFDL representation properties preclude a variable number of occurrences. An optional element has a fixed number of occurrences when the DFDL representation properties preclude a variable number of occurrences.
Required Element - A scalar element is required. An element of a fixed-occurrence array is required. An element of a variable-occurrence array is required if its index is less than or equal to the value of minOccurs. All other elements are not required.
 “Rep. Prop.” Or “Rep property” – an abbreviation of “representation property”.
Physical layer – A DFDL Schema adds format annotations onto a XSDL language schema. The annotations describe the physical representation or physical layer of the data.

Logical layer - A DFDL Schema with all the DFDL annotations ignored is an ordinary XSDL language schema. The logical structure described by this XSDL is called the DFDL logical layer.

Format Annotations - the syntactic elements by which format information is decorated onto XML Schemas

Format Properties - the attributes on format annotations which specify characteristics of data format. These are distinguished from the control attributes on format annotations which control whether the annotations are to be used as a whole, or the scoping of those annotations over what parts of the XML Schema.

Full Schema
- The set of all declarations and definitions in the schema, including all included and imported schemas taken together. This includes both the XSDL declarations and definitions, and the DFDL definitions provided in the top-level DFDL annotations.

Contiguous - An element has a contiguous representation if all parts of its representation are adjacent in the input/output stream. Most simple types have contiguous representations naturally. Groups containing elements that are themselves contiguous are also considered to have contiguous representations irrespective of alignment fill or padding of any kind that exists within the group. Similarly, arrays containing elements that are themselves contiguous are also contiguous. An example of a non-contiguous representation would be a nillable element, where a flag is used to determine whether or not the element is nil, and the location of that flag is not adjacent to the value representation.
Adjacent - Two parts of the input/output stream are adjacent if they are at consecutive addresses.

Addressable Unit, or Unit - This is the unit of storage that makes up the input or output stream holding the representation of the data. Commonly the units are bits, bytes, or characters.

4
The DFDL Information Set (Infoset)

This section defines an abstract data set called the DFDL Information Set (Infoset). Its purpose is to define the content that must be provided:

1. to an invoking application by a DFDL parser when parsing DFDL-described data using a DFDL Schema;

2. to an DFDL unparser by an invoking application when generating DFDL-described data using a DFDL Schema

The DFDL Infoset contains enough information to support round-tripping. That is, for a given DFDL infoset instance I created by a DFDL parser from DFDL-described data D using DFDL Schema S, it must be possible to re-create infoset I by first invoking a DFDL unparser to create DFDL-described data D’ using S, then re-invoking a DFDL parser to re-parse D’ using S.

There is no requirement for DFDL-described data to be valid in order to have a DFDL information set.

DFDL information sets may be created by methods (not described in this specification) other than parsing DFDL-described data.

A DFDL information set consists of a number of information items; or just items for short the information set for any well-formed DFDL-described data will contain at least a document information item and one element information item. An information item is an abstract description of a part of some DFDL-described data: each information item has a set of associated named members. In this specification, the member names are shown in square brackets, [thus]. The types of information item are listed in Section TBD Information Items.

The DFDL Information Set does not require or favor a specific interface or class of interfaces. This specification presents the information set as a modified tree for the sake of clarity and simplicity, but there is no requirement that the DFDL Information Set be made available through a tree structure; other types of interfaces, including (but not limited to) event-based and query-based interfaces, are also capable of providing information conforming to the DFDL Information Set.

The terms "information set" and "information item" are similar in meaning to the generic terms "tree" and "node", as they are used in computing. However, the former terms are used in this specification to reduce possible confusion with other specific data models.

4.1.1 ``No Value''

Some members may sometimes have the value no value, and it is said that such a member has no value. This value is distinct from all other values. In particular it is distinct from the empty string, the empty set, and the empty list, each of which simply has no members, and the special value nil.

4.2 Information Items

An information set contains two different types of information item, as explained in the following sections. Every information item has members. For ease of reference, each member is given a name, indicated [thus].

4.2.1 Document Information Item

There is exactly one document information item in the information set, and all other information items are accessible directly through the [root] member of the document information item or indirectly through the root element.

There is no specific DFDL schema component that corresponds to this item. It is a concrete artifact representing and describing the information set.

The document information item has the following members:

1. [root] The element information item corresponding to the root global element declaration of the DFDL Schema.

2. [dfdlVersion] String. The version of the DFDL specification to which this information set conforms.

3. [schema] String. A reference to a DFDL schema associated with this information set, if any. If not empty, the value must be an absolute Schema Component Designator [http://www.w3.org/TR/xmlschema-ref].
4.2.2 Element Information Items

There is an element information item for each value parsed from the non-hidden DFDL-described data. This corresponds to an instance of an non-hidden element declaration of simple type in the DFDL Schema and is known as a simple element information item.

There is an element information item for each explicitly declared structure in the DFDL-described data. This corresponds to an instance of an element declaration of complex type in the DFDL Schema and is known as a complex element information item.

In this information set, as in an XML document, an array is just a set of adjacent elements
with same name and namespace. To represent the array explicitly, introduce a new complex element to contain those elements. This corresponds to a new complexType declaration in a DFDL schema.

One of the element information items is [root] member of the document information item, corresponding to the root element declaration of a DFDL Schema, and all other element information items are accessible by recursively following its [children] member.

An element information item has the following members:

1. [namespace] String. The namespace, if any, of the element. If the element does not belong to a namespace, the value is the empty string.

2. [name] String. The local part of the element name.

3. [document] The document information item representing the dfdl information set that contains this element. This element is empty except in the root element of an information set.

4. [datatype] String. The name of the XML Schema 1.0 built-in simple type to which the value corresponds. DFDL supports a subset of these types listed in the specification at section 4.1. In a complex element information item this member has no value.

5. [dataValue] The value in the value space of the [datatype] member or special value nil. In a complex element information item this member has no value.
6. [children] An ordered set of zero or more element information items. The order they appear in the set is the order implied by the DFDL Schema. ‘Ordered set’ is not formally defined here, but two operations are assumed: ‘size

’ gives the number of information items, and ‘at (index)’ gives the element at ordinal position ‘index’ starting from 1. In a simple element information item this member has no value. In a document information item this member contains exactly one element information item.

7. [parent] The complex element information item which contains this information item in its [children] member. In the root element of an information set this member is empty.

8. [schema] String. A reference to a schema component associated with this information item, if any. If not empty, the value must be an absolute or relative Schema Component Designator.
4.3 Unresolved Information Items
There is an unresolved information item for each unresolvable choice defined in the DFDL schema. An unresolveable choice is a choice that cannot be resolved by inspecting the bit stream alone. It allows an external application to resolve the choice.
An unresolved information item contains the unparsed section of the bit stream that represents the items of the choice. The unresolved information item may be represented to the parser with the schema member set to the schema component that is associated with the choice that should be made.
An unresolved information item has the following members:

1. [dataValue] The value in the value space of the hexBinary.
2. [datatype] String. Will always be ‘hexBinary’
3. [parent] The complex element information item which contains this information item in its [children] member.

4. [schema] String. A reference to a schema component associated with this information item, if any. If not empty, the value must be an absolute or relative Schema Component Designator.
4.4 DFDL Information Item Order

On parsing and unparsing information items will be presented in the order they are defined
in the DFDL Schema.

4.5 DFDL Infoset Object model

By way of illustration, the DFDL information set is presented below as an object model using a Unified Modeling Language (UML) class diagram, augmented using the Object Constraint Language (OCL) [http://www.omg.org/technology/documents/modeling_spec_catalog.htm].

The structure of the information set follows the Composite design pattern. In case of inconsistency or ambiguity, the preceding discussion takes precedence.

DFDL is able to describe the format of the physical representation for data whose structure conforms to this model. Note that this model allows hierarchically nested data, but does not allow representation of arbitrary connected graphs of data objects.

[image: image1.jpg]Didiinformationiter
schema: string

7

.

Document
dfdiVersion: string

inv childOrRoot: N

document->isEmpty()
xor parent->isEmpty()

Element

[—aocument —Toor |

namespace: string
name: string

o Chiarem {ordereay

SimpleElement

ComplexElement

dataValue

datatype: string

[—parent

DFDL Augmented Infoset
Definition: augmented infoset. When unparsing one begins with the DFDL schema and conceptually with the logical infoset. As the values of items are filled in by defaulting, and by use of the DFDL outputValueCalc property (including on hidden items), these new item values augment the infoset. The resulting infoset is called the augmented infoset.
Definition: an element declaration in the schema describes a potentially represented item if that element declaration does not have an inputValueCalc property. Whether the element declaration describes an item that is actually represented or not depends on whether the element declaration is for a required or optional element, and whether the element has a corresponding value in the augmented infoset.
When unparsing, an element declaration and the infoset are considered as follows:
a) If the element declaration has a dfdl:outputValueCalc property then the expression which is the dfdl:outputValueCalc property value is evaluated and the resulting value becomes the value of the element item in the augmented infoset. Any pre-existing value for the infoset item is superseded by this new value.
References to other augmented infoset items from within the outputValueCalc expression must obtain their values from the augmented infoset directly (when the value is already present) or by recursively using these methods (a) and (b) as needed.

b) If the element declaration has no corresponding value in the augmented infoset, and the element declaration is for a required item, and it has a default value specified, then an element item having the default value is created in the augmented infoset.

c) If any infoset item’s value is requested recursively as a part of (a) above and (a) does not apply, and the corresponding value is not present, and (b) does not apply then it is a processing error.

Given this augmented infoset, then if the potentially represented element declaration has a corresponding infoset item then that item is serialized according to its DFDL properties. If the element declaration is for a required item, and there is no value in the augmented infoset then it is a processing error.

Because rule (a) above is used even if the augmented infoset item already exists and has a value, it is possible for an outputValueCalc expression to be evaluated multiple times. DFDL implementations are free to cache values and avoid this repeated evaluation for efficiency, as the semantics of DFDL require that the outputValueCalc expression return the same value every time it is evaluated.

4.6 In expressions, the function dfdl:length() can be called to determine the representation length of an item. If an element declaration is not potentially represented, then dfdl:length() is defined to return 0.
5 DFDL Schema Component Model

When using DFDL, the format of data in a data stream, file, buffer or other is described by means of a DFDL Schema.
The DFDL Schema Component Model is shown in conceptual UML below. First the model for elements, groups, wildcards and the top of the type hierarchy:
[image: image2.png]Term

Particle

0.1

ModelGroup

0.1

ase

TypeR:

eference

TypeDefinition

ElementType

Figure 1 DFDL Schema UML diagram

The simple types are shown below. The graph shows all the types defined by XML Schema version 1.0, and the subset of these types supported by DFDL are shown in green (shaded).

[image: image3.wmf]anySimpleType

string

QName

NOTATION

float

double

decimal

boolean

hexBinary

anyURI

normalizedString

token

language

Name

NMTOKEN

NMTOKENS

NCName

ID

IDREF

ENTITY

IDREFS

ENTITIES

integer

long

nonPositiveInteger

nonNegativeInteger

negativeInteger

positiveInteger

unsignedLong

unsignedInt

unsignedShort

unsignedByte

int

short

byte

date

time

dateTime

gYear

gYearMonth

gMonth

gMonthDay

gDay

duration

base64Binary

Figure 2 DFDL simple types

These types are defined as they are in XML Schema, with exceptions for:
String – In DFDL a string can contain any character codes. None are reserved. (Including particularly, the character with character code 0, which is not allowed in XML documents.)
Each object defined by a class in the above UML is called a DFDL Schema component.

We express the DFDL Schema Model using a subset of the XML Schema Description Language (XSDL). XSDL provides a standardized schema language suitable for expressing the DFDL Schema Model.

A DFDL Schema is an XML Schema containing only a restricted subset of the constructs available in full W3C XML Schema Description Language.
 Within this XML Schema, special DFDL annotations are distributed which carry the information about the data format or representation.

A DFDL Schema is a valid XML Schema. However, the converse is not true since the DFDL Schema Model does not include many concepts that appear in XML Schema.
5.1 DFDL Subset of XML Schema

The DFDL subset of XSDL is a general model for hierarchically-nested data. It lacks the XSDL features used to describe the peculiarities of XML as a syntactic textual representation of data.

The following lists detail the similarities and differences between general XSDL and this subset.

DFDL
 Schemas consist of:

· standard XSDL namespace management

· standard XSDL import and include management for multiple file schemas

· local element declarations with dimensionality via maxOccurs and minOccurs.

· global element declarations

· complexType definitions with empty or element-only content
· DFDL appinfo annotations describing the data format

· These simple types: string, float, double, decimal, integer, long, int, short, byte, unsignedLong, unsignedInt, unsignedShort, unsignedByte, boolean, date, time, dateTime, duration, hexBinary

· These facets: length, minLength, maxLength, minInclusive, maxInclusive, minExclusive, maxExclusive, totalDigits, fractionDigits, enumeration, pattern (for xs:string type only)

· fixed values
· default values

· 'sequence' model groups
· 'choice' model groups

· simple type derivations derived by restriction from the allowed built-in types
· Reusable Groups: named model group definitions
· Element references with dimensionality via maxOccurs and minOccurs.
· Group references without dimensionality
· xs:any element wildcards with dimensionality via maxOccurs and minOccurs
· xs:nillable="true" only on elements of simple type.

The following constructs from XML Schema are not used as part of the DFDL Schema Model of DFDL v1.0 schemas; however, they are all reserved for future use since the data model may be extended to use them in future versions of DFDL. By reserved we mean that conforming DFDL v1.0 implementations MAY NOT assign semantics to them.
(TBD: need means for an implementation to indicate it is using non-standard extensions?)
· Attribute declarations (local or global)
· Attribute references
· Attribute group definitions
· complexType derivations

 where the base type is not AnyType.
· complex types having mixed content or simple content

· Union and list simple types
· These atomic simple types: normalizedString, token, Name, NCName, QName, language, positiveInteger, nonPositiveInteger, negativeInteger, nonNegativeInteger, gYear, gYearMonth, gMonth, gMonthDay, gDay, ID, IDREF, IDREFS, ENTITIES, NMTOKEN, NMTOKENS, NOTATION, anyURI, base64Binary
· maxOccurs and minOccurs on model groups

· Identity Constraints
· Substitution Groups

· 'all' groups

· Redefine - This version of DFDL does not support xsd:redefine. DFDL schemas must not contain xsd:redefine directly or indirectly in schemas they import or include.

· nillability on elements of complex type.

· whitespace facet

· recursively-defined types and elements (defined by way of type, group, or element references)

5.2 XSD Facets, min/maxOccurs, default, and fixed

XSD element declarations and references can carry several attributes that express constraints on the described data. These attributes include

· the facets

· minOccurs, maxOccurs

· default

· fixed

The facets are:

· length, minLength maxLength
· pattern
· enumeration
· maxInclusive, maxExclusive, minExclusive, minInclusive
· totalDigits, fractionDigits
The sections below describe which of these are used by DFDL schemas and how.

5.2.1 minOccurs and maxOccurs

The minOccurs value is used:

· to determine if an element declaration or reference is scalar or array

· to determine the required minimum number of occurrences of an array both when parsing and unparsing

The maxOccurs value is used:

· to determine if an element declaration or reference is scalar or array

· when dfdl:occursCountKind=”implicit”, then the maxOccurs value is the fixed number of occurrences of the array elements. It is a schema definition error if minOccurs is not equal to maxOccurs.

· to determine the maximum acceptable number of occurrences of an array both when parsing and unparsing.

It is a parse error when an array is found to have a number of occurrences not conforming to the minOccurs and maxOccurs constraints in the absence of a default value specification.

Note that specifically, this is not a validation error, it is a processing error. E.g., if the array occurrences are delimited, we might be able to successfully separate them from each other and the surrounding data depending on the delimiter specifications; however, if the number of these occurrences is not conforming to the minOccurs and maxOccurs cardinality constraints then it is a processing error.

5.2.2 length, minLength, maxLength

These facets are used:

· when dfdl:lengthKind=”implicit”. In that case the length is given by the value of xs:maxLength
or xs:length (whichever one is specified. Both may not be specified.) In this case minLength if specified is required to be equal to maxLength (schema definition error otherwise..

· When an element declaration specifies a default value, and has type xs:string, then xs:minLength must be specified and must be 1 or greater. It is a schema definition error otherwise.
· For validation of variable length string elements.

It is a parse error when a fixed-length string is found to have a number of characters not equal to the fixed number. E.g., if a fixed-length string also has delimiters we might be able to successfully separate it from the surrounding materials depending on the delimiter specifications; however, if the length of the fixed-length string is not equal to the number specified as the fixed length then it is a parse error (not simply a validation error).

5.2.3 maxInclusive, maxExclusive, minExclusive, minInclusive, totalDigits, fractionDigits

· Used for validation only

The format of numbers is not derived from these facets. Rather the dfdl:textNumberFormat properties are used to specify the format.

(TBD: suggest DFDL warning or perhaps schema definition error if format and number range facets are incompatible. E.g., minInclusive = 1000, but format has only 3 digits. This is no different than just a conflict among these facets themselves. E.g., minInclusive=1000, totalDigits=2.)

5.2.4 pattern

· allowed only on elements of type xs:string or derived from it.

· used for validation only

It is important to avoid confusion of the pattern facet with other uses of regexp that are needed in DFDL. E.g., to determine the length of an element by regular expression matching.

Note: in XSD, pattern is about the lexical representation of the data, and since all is text there everything has a lexical representation. In DFDL only strings are guaranteed to have a lexical and logical value that are identical.

5.2.5 enumeration

Enumerations are used to provide a list of valid values in XSD.

· Used for validation only

Note: in DFDL we do not use XSD enumeration as a means to define symbolic constants. These are captured using dfdl:defineVariable constructs so they can be referenced from expressions.

5.2.6 whitespace

This section is here to remind the reader that the whitespace facet is not allowed in DFDL v1.0

Use DFDL properties to describe string padding and trimming and justification. Rationale: this is much too easily confused with other needed ways to express the handling of string content.
5.2.7 default

The 'default' attribute is used:

· to provide the logical value of a required element while parsing when the representation is empty (content length is zero).

· to provide the logical value of a required element when unparsing when the DFDL information set does not have a value for the element.

5.2.8 fixed

The 'fixed' attribute is used:

· to constrain the logical value of a required element while parsing.
· to provide the logical value of a required element when unparsing when the DFDL information set does not have a value for the element.

Note that a 'fixed' attribute can cause parsing to backtrack and try other alternatives
. When data is encountered and it does not match what is specified on the 'fixed' attribute, then it is a parse error. That is, the fixed value is used for parsing, not only for validation checking.

6 Syntax Basics

Using DFDL, a data format is described by placing special annotations at various positions within an XML schema. This XML schema conveys the basic structure of the data format, while the annotations fill in the detail. Annotations are used to describe aspects such as the file encoding and byte ordering, as well as declaring variables for reference elsewhere, and specifying properties that govern the capabilities of the DFDL processor. A DFDL processor requires these annotations, along with the structural information of the enclosing XML schema, to make sense of the physical data model.

6.1 Namespaces

The xs:appinfo source URI http://www.ogf.org/dfdl/ is used to distinguish DFDL annotations from other annotations.
The element and attribute names in the DFDL syntax are in a namespace defined by the URI http://www.ogf.org/dfdl/dfdl-1.0. All symbols in this namespace are reserved. DFDL implementations may not provide extensions to the DFDL standard using names in this namespace. Within this specification, the namespace prefix for DFDL is “dfdl” referring to the namespace http://www.ogf.org/dfdl/dfdl-1.0.
The content of the DFDL annotations, that is, the attributes and sub-elements of the DFDL annotation elements, as well as the XSD subset used by DFDL are specified by an XML schema available for validation from the OGF web site. This XML Schema is non-normative. In cases where this document differs from that XML Schema for DFDL, this document is definitive.

A DFDL Schema document contains XML Schema annotation elements

and attributes
which define and assign names to parts of the format specification

. These names are defined in the target namespace of the schema document where they reside.
 A DFDL schema document can include or import another schema document, and namespaces work in the usual manner for XML schema documents. The full schema is the schema including all additional schemas referenced through import and include
. Generally in this specification when we refer to the DFDL Schema we mean the full schema. When we refer to a specific document we will use the term DFDL Schema document.
6.2 The DFDL Annotation Elements
DFDL annotations must be positioned specifically where DFDL annotations are allowed within an XML Schema document.
These positions are known as annotation points. When an annotation is positioned at an annotation point, it binds some additional information to the schema
component that encloses it. For instance, an annotation could be used to bind a UTF-8 encoding to a userName element
. The description of a data format is achieved by correctly placing annotations on the structural components of the schema.

DFDL specifies a collection of annotations for different purposes. These are described in Table 1.

Table 1 - DFDL Annotation Elements

	Annotation Element(s)
	Description

	assert
	Defines an assertion to use for predicate testing to assert specific properties of correct data. Assert is used only when parsing data.

	discriminator
	Defines a test to be used when resolving uncertainties such as choice branches and strict wildcards..

	defineFormat
	Defines a reusable data format by collecting together other annotations and associating them with a name that can be referenced from elsewhere.

	defineVariable
	Defines a variable that can be referenced elsewhere. This can be used to communicate a parameter from one part of processing to another part.

	defineEscapeScheme
	Defines the scheme by which quotation marks and escape characters can be specified. This is for use with delimited text formats.

	format
	Defines the data format properties that apply to part of the logical data models. This includes aspects such as the encodings, field separator, and many more.

	hidden
	Defines a hidden element that appears in the schema for use by the DFDL processor, but is not part of the logical data model described by the schema.

	defineTextNumberFormat
	Defines a reusable text number format.

	textNumberFormat

	Defines the format used for expressing numbers in the logical data model by way of a template pattern string. This includes aspects such as radix, field separators, digit grouping separators, leading or trailing signs, etc.

	property
	Used in the syntax of dfdl:format annotations. See section 7.1.4.2.

	setVariable
	Sets the value of a variable whose declaration is in scope

	typeSubstitution
	Declares substitution of format-annotated types for non-annotated types. For example, this allows types like “xs:int” to be overloaded to mean a specific DFDL-specified representation of that type of integers.

6.2.1 Additional Specialized Annotation Elements

Given the large number of representation properties, it is useful to have some specialized annotation elements that are variants of dfdl:format but which do not accept all possible representation properties. Instead these accept only the subset of the representation elements that are suitable for the matching annotated XSDL construct. DFDL provides these additional specialized annotation elements:

1. dfdl:sequence

2. dfdl:choice

3. dfdl:element

4. dfdl:any

These are equivalent to writing a dfdl:format annotation containing the same representation property bindings. See Section 25 for a list of the properties accepted by these annotation elements.
6.3 String Literals in DFDL

A literal string in a DFDL Schema is written in the character set encoding specified by the XML directive that begins all XML documents:

<?xml version="1.0" encoding="UTF-8" ?>

In this example, the DFDL schema is written in UTF-8, so any literal strings contained in it, and particularly string literals found in its representation property bindings in the format annotations, are expressed in UTF-8.

However, these strings are being used to describe features of text data that are commonly in other character sets. E.g., we may have EBCDIC data which is comma separated. A comma in EBCDIC does not have the same character code as a Unicode comma. However, when we indicate that an item is "," (comma) separated and we specify this using a string literal along with specifying the 'encoding' property to be 'ebcdic-cp-us' then this means that the data is separated by EBCDIC commas regardless of what character set encoding is used to write the DFDL Schema.

<?xml version="1.0" encoding="UTF-8" ?>

....

....

....<dfdl:format encoding='ebcdic-cp-us' separator=","/>

.....

When a DFDL processor uses the separator expressed in this manner, the string literal "," is translated into the character set encoding of the data it is separating as specified by the encoding representation property. Hence, in this case we would be searching the data for a character with codepoint 0x6B (the EBCDIC comma), not a UTF-8 or Unicode (0x2C) comma which is what exists in the DFDL schema document file.

6.3.1 DFDL Entities in String Literals

DFDL entities provide the ability to specify characters that are not valid in XML documents. These are convenient mnemonic names for common non-printable characters. DFDL entities also provide a way to specify raw hex characters that will be used directly without character set translation.

DFDL entities are based on XML entities, which can also be used in DFDL schema. However DFDL entities overcome the restrictions of XML entities which do not allow invalid XML characters such as 0x00 to be specified and which do not support raw hex characters.
It is sometimes more convenient to avoid character set translation and just provide the string literal required in hex form so that one can avoid having to figure out what the corresponding character is in the DFDL schema's own encoding to the character code point of interest in the encoding of the data being processed.
This is particularly important for the non-printing characters where the mapping to/from the character set of the DFDL schema may be non-obvious. There is also the potential of the DFDL schema document being in a character set such as US-ASCII that simply can’t represent a character which is in the data. Using raw hex to describe the actual code point of the character in the data allows DFDL to conveniently get around these limitations.

Reference ::= EntityRef | CharRef
CharRef ::= '%#' [0-9]+ ';'

| '%#x' [0-9a-fA-F]+ ';'

| '%#r' [0-9a-fA-F]{2} ';'
If the character reference begins with "%#x ", the digits and letters up to the terminating ; provide a hexadecimal representation of the character's code point in ISO/IEC 10646. If the character reference begins with "%#r ", the digits and letters up to the terminating ; provide a hexadecimal representation of the single byte that is inserted directly without any character translation. If it begins just with "%#", the digits up to the terminating ; provide a decimal representation of the character's code point in ISO/IEC 10646.

When using the %#r format, if the character set encoding is wider than a single byte, then multiple %#r sequences may be required to represent a complete character code. For example, if the character encoding is UTF-16BE , which is 2 bytes wide, then %#r00%#r2C would represent the character code for a “,” (comma), and the first byte of %00 which is a zero byte, is required.

It is a schema definition error
if the consecutive %#r sequences do not represent valid character sequences in the specified character set.
%% - Inserts a single literal "%" into the string literal. This "%" is subject to character set translation as is any other character.

EntityRef ::= '%' Name ';'
where name is one of the mnemonics given in the following tables.
	Mnemonic
	Meaning
	Unicode value

	NUL
	null
	U+0000

	SOH
	start of heading
	U+0001

	STX
	start of text
	U+0002

	ETX
	end of text
	U+0003

	EOT
	end of transmission
	U+0004

	ENQ
	enquiry
	U+0005

	ACK
	acknowledge
	U+0006

	BEL
	bell
	U+0007

	BS
	backspace
	U+0008

	HT

	horizontal tab
	U+0009

	LF
	line feed
	U+000A

	VT
	vertical tab
	U+000B

	FF
	form feed
	U+000C

	CR
	carriage return
	U+000D

	SO
	shift out
	U+000E

	SI
	shift in
	U+000F

	DLE
	data link escape
	U+0010

	DC1
	device control 1
	U+0011

	DC2
	device control 2
	U+0012

	DC3
	device control 3
	U+0013

	DC4
	device control 4
	U+0014

	NAK
	negative acknowledge
	U+0015

	SYN
	synchronous idle
	U+0016

	ETB
	end of transmission block
	U+0017

	CAN
	cancel
	U+0018

	EM
	end of medium
	U+0019

	SUB
	substitute
	U+001A

	ESC
	escape
	U+001B

	FS
	file separator
	U+001C

	GS
	group separator
	U+001D

	RS
	record separator
	U+001E

	US
	unit separator
	U+001F

	SP
	space
	U+0020

	DEL
	delete
	U+007F

	NBSP
	no break space
	U+00A0

	 NEL
	Next line
	U+0085

	 LS
	Line separator
	U+2028

The following generic mnemonics are provided

	Mnemonic
	Meaning
	Unicode value

	NL
	Newline

On parse any NL character or combination of characters

On unparse the value of the dfdl:outputNewLine property is output
	· U+000A LF

· U+000D CR

· U+000D U+000A CRLF

· U+0085 NEL

· U+2028 LS

	WSP
	Whitespace

On parse any white space character

On unparsed a space (SP) is ouput
	 U0009-U000D (Control characters)

 U0020 SPACE

 U0085 NEL

 U00A0 NBSP

 U1680 OGHAM SPACE MARK

 U180E MONGOLIAN VOWEL SEPARATOR

 U2000-U200A (different sorts of spaces)

 U2028 LSP

 U2029 PSP

 U202F NARROW NBSP

 U205F MEDIUM MATHEMATICAL SPACE

 U3000 IDEOGRAPHIC SPACE

	OWSP
	Optional Whitespace

On parse whitespace characters are ignored

On unparse nothing is output
	 U0009-U000D (Control characters)

 U0020 SPACE

 U0085 NEL

 U00A0 NBSP

 U1680 OGHAM SPACE MARK

 U180E MONGOLIAN VOWEL SEPARATOR

 U2000-U200A (different sorts of spaces)

 U2028 LSP

 U2029 PSP

 U202F NARROW NBSP

 U205F MEDIUM MATHEMATICAL SPACE

 U3000 IDEOGRAPHIC SPACE

Using these dfdl enties one can create string literals which are a mix of text and hex-specified data.

6.3.2 DFDL Expressions in String Literals

Some DFDL properties that accept string literals allow DFDL expressions [see Expression language] to be used instead of string literals so that the property can be set dynamically at processing-time.

· The syntax of expressions is “{“ expression “}”
· The “{{“ escape sequence must be used when a single “{“ character is required in a string literal
.
6.3.3 DFDL Regular Expressions in String Literals

The DFDL lengthPattern property expects a regular expression to be specified. The DFDL Regular Expression language is define in section DFDL Regular Expressions

7 Syntax and Basic Usage of DFDL Annotation Elements

This section describes the syntax of each of the DFDL annotation elements along with discussion of their basic meanings.
7.1 dfdl:format: Putting Formats to Use

A data format can be 'used' or put into effect for a part of the schema by use of the dfdl:format annotation element.

The dfdl:format annotation element is not allowed at the top level of a schema, that is as an annotation child element on the xs:schema element
. However, it is allowed as an annotation on any declaration or definition of the schema (element, type, or group

) local or global
, as well as on element and group references and wildcards. Here is an example:
<xs:schema ...>

...

 <element name="foo">

 <complexType>

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:format ref=”aBaseConfig”

 representation="text"

 encoding="UTF-8"/>
 </xs:appinfo>

 </xs:annotation>

...content here is described by the specified representation properties ...

</element>

...

</xs:schema>
7.1.1 Syntax of dfdl:format
	Property Name
	Description

	ref
	QName
Reference to a named defineFormat annotation that provides a reusable set of dfdl format properties
The ref property is always local to the format block on which it is used even when specified on a complex type.
See 7.2 dfdl:defineFormat - Reusable Data Format Definitions

	selector
	Qname
An indentifier that allows different format blocks to be selected depending on a externally provided selector

The selector property is always local to the format block on which it is used even when specified on a complex type.

	representation properties
	All other attributes on dfdl:format annotation elements are representation property bindings. These are defined in sections starting with section 11 DFDL Properties Introduction: The DFDL Parser and Unparser

7.1.2 Ref Property

A named, reusable, format definition is used by referring to its name from a dfdl:format annotation using the 'ref' attribute. For example:

<dfdl:format ref=”reusableDef" encoding="ebcdic-cp-us" />

7.1.3 The behavior of this format definition is as if all representation properties defined by the named format definition were instead written directly on this dfdl:format annotation; however, these are superceded by any representation properties that are defined here such as the encoding property in the example above.

7.1.4 Selector property

7.1.5 The selector property provides an identifier for a dfdl:format block and allows one of a number of format blocks specified at the same annotation point to be selected based on an externally specified selector parameter
. The purpose of selectors is to make it easy to defined more than one physical representation for the same logical structure.
7.1.6 When an external selector parameter is provided then the format block with a selector property that matches the external selector is used and all other format blocks at the same annotation point are ignored. If there is no format block with matching selector property at an annotation point then the format block with no selector property is used
. In dfdl V1.0 only one external selector can be specified.
7.1.7 Format properties specified in short form (see below) are considered to be part of the format block with no selector specified
<xs:schema ...>

...

 <element name="foo">

 <complexType>

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:format ref=”aBaseConfig” selector=“formatText“
 representation="text"

 encoding="UTF-8"/>
 <dfdl:format ref=”aBaseConfig” selector=“formatBin“

 representation="binary"

 />
 <dfdl:format ref=”aBaseConfig”
 representation="binary"

 />
 </xs:appinfo>

 </xs:annotation>

...content here is described by the specified representation properties ...

</element>

...

</xs:schema>
7.1.8 Representation Property Binding Syntax
The format representation properties may be specified in one of three forms
1. Attribute form

2. Element form

3. Short form

7.1.9 Representation Property Binding Syntax: Attribute Form
Within the dfdl:format annotation elements are bindings for representation properties of the form:

 Property="Value"

For example:
 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:format

 encoding=”utf-8”
 separator=”\n”
 />

 </xs:appinfo>

 </xs:annotation>

The Property is the name of the representation property. The Value is an XML string literal corresponding to a value of the appropriate type.

7.1.10 Representation Property Binding Syntax: Element Form

The representation properties can sometimes have complex syntax, so an element form for representation property bindings is provided as element content within the dfdl:format element. This is provided to ease syntactic expression difficulties:

Element form looks like this:

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:format>

 <dfdl:property name='encoding'>utf-8</dfdl:property>

 <dfdl:property name='separator'>\n</dfdl:property>

 </dfdl:format>

 </xs:appinfo>

</xs:annotation>

All representation properties can have their bindings expressed in attribute form or element form. Element form is mostly used for properties that themselves contain the quotation mark characters and escape characters so that they can be expressed without concerns about confusion with the XSDL syntax use of these same characters. CDATA encapsulation can be used so as to allow malformed XML and mismatched quotes to easily be used as representation property values:
<dfdl:property name=’initiator’><[CDATA[<!--]]></dfdl:property>

It is a schema definition error if the same property is expressed both as an attribute and using a ‘dfdl:property’ sub-element of a format annotation.

There are also some representation properties which always need element-based syntax. For example, see Section 14.2.1 Escape Scheme Properties.

The dfdl:format 'ref' and selector attributes must be expressed as an attribute since it is not a representation property.

7.1.11 Short Form Syntax for Format Annotations

To save textual clutter, short-form syntax for format annotations is also allowed. Non-native
a
ttributes are examined by the DFDL processor. Those which are in the namespace "dfdl" and whose local name matches one of the DFDL representation properties are assumed to be equivalent to specific DFDL long-form annotations.

For example the two forms below are equivalent in that they describe the same data format. The first is a short-form of the second:

<xs:element name="foo">

 <xs:complexType>

 <xs:sequence dfdl:separator="\t" >

 ...

 </xs:sequence>

 </xs:complexType>

</xs:element>

<xs:element name="foo">

 <xs:complexType>

 <xs:sequence>

 <xs:annotation><xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:format separator="\t" />

 </xs:appinfo></xs:annotation>

 ...

 </xs:sequence>

 </xs:complexType>

</xs:element>

Another example:

<xs:element name="foo" type="xs:int" maxOccurs="unbounded"

 dfdl:representation="text"

 dfdl:initiator="{"
 dfdl:terminator=”}”/>

<xs:element name="foo" type="xs:int" maxOccurs="unbounded">

 <xs:annotation><xs:appinfo source=”http://www.ogf.org/dfdl/”>
 <dfdl:format representation="text"
 initiator=”{“

 terminator="}"/>

 </xs:appinfo></xs:annotation>

</xs:element>

Note that short form syntax can be used not only for representation property bindings, but also for the ‘ref’ special attributes.

7.1.12 Empty String as a Property Value
DFDL provides no mechanism to un-set a property. Setting a representation property's value to the empty string doesn't remove the value for that property, but sets it to the empty string value. This may not be appropriate as a value for certain properties.
For example, in delimited text representations, it is sensible for the separator to be defined to be the empty string. This turns off use of separator delimiters. For many other string-valued properties, it is a schema definition error to assign them the empty string value. For example the character set encoding property cannot be set to the empty string.
7.2 dfdl:defineFormat - Reusable Data Format Definitions

One or more dfdl:defineFormat annotation elements can appear within the annotation children of the xsd:schema element. The dfdl:defineFormat elements may only appear as annotation children of the xs:schema

element.
The order of their appearance does not matter, nor does their position relative to other non-annotation children of the xsd:schema element.
Each dfdl:defineFormat has a required name
attribute and an optional baseFormat attribute.
The construct creates a named data format definition. The value of the name attribute is of XML type NCName. The format name will become a member of the schema’s target namespace

. These names must be unique within the namespace. Top level defined formats are added to the DFDL processor’s global context using their fully namespace-qualified names as the identifiers.

If multiple format definitions have the same 'name' attribute, in the same namespace, then it is a schema definition error.
Each dfdl:defineFormat annotation element contains other format annotation elements as detailed below.

Here is an example of a format definition:

<xs:schema ...>

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:defineFormat name=”myConfig”

 baseFormat="someOtherFormat">

 <dfdl:format encoding="utf-8"

 separator="\n" />

 <dfdl:format representation=”text”

 ref=”textSpecialFormat1” />
 </dfdl:defineFormat>
 </xs:appinfo>

</xs:annotation>

...

</xs:schema>
Besides the dfdl:format annotation element, a dfdl:defineFormat annotation can also contain any of the other DFDL annotation elements for purposes of giving a reusable name to a collected consistent set of definitions.
 The annotations defined in the contained dfdl:format add and/or override the properties inherited from the base format.
A dfdl:defineFormat serves only to supply a named definition for a format for reuse from other places. It does not cause any use of the representation properties it contains to describe any actual data.

7.2.1 Inheritance for dfdl:defineFormat

A dfdl:defineFormat declaration can inherit from another named format definition by use of the 'baseFormat' attribute. This allows a single-inheritance hierarchy which reuses definitions. When one definition extends another in this way, any property definitions contained in its direct elements override those in any inherited definition.

Conceptually, the baseFormat and ‘ref’ inheritance chains can be flattened and removed by copying all inherited property bindings and then superseding those for which there is a local binding. Throughout this document we will assume baseFormat inheritance is fully flattened

. That is, all baseFormat and ‘ref’ inheritance is first removed by flattening before any other examination of properties occurs.

7.2.2 Using/Referencing a Named Format Definition

See section 7.1.2 Ref Property

7.3 The dfdl:assert Annotation Element

DFDL assertions can be placed on elements and groups within a DFDL model. These assertions contain a test condition that is an expression that evaluates to true or false. The assertion is said to be successful if the test evaluates to true and unsuccessful (or fails) if the test evaluates to false. The assertions are executed during a parse (and specifically not during unparse) and are separate from logical validation.

The syntax of a DFDL assertion is a “dfdl:assert” element with a number of attributes. The value of the dfdl:assert element is the predicate test expression. The message attribute defines text to be used as a diagnostic code or for use in an error message. The DFDL specification does not specify how a DFDL processor uses this message text.

The dfdl:assert annotation element can be used to assert truths about a DFDL model when parsing the data. These checks are separate from validation checking and are performed even when validation is off. This distinction is needed to ensure that switching validation off does not affect parsing.
Examples of dfdl:assert elements are below :

<dfdl:assert message="{ $msgs/error97 }”> ../x != “’” </dfdl:assert>

<dfdl:assert message="Value is not zero.” test=” ../x != 0” />

<dfdl:assert message="Precondition violation.”><[CDATA[

 ../x <= 0 and ../y != ‘-->” and ..y != “<!—“

]]>

</dfdl:assert>

<dfdl:assert message=”Postcondition violation.”

 timing=”after”> ../x != “’” </dfdl:assert>

The element value contains a Boolean-valued expression
. The assertion is said to hold if the expression evaluates to true. The assertion is said to fail if the expression evaluates to false.
The timing attribute is either "before" or "after", with a default value of "before". These control whether the assertion tests a precondition or postcondition.
An assertion failure causes a processing error.

If a processing error occurs during the evaluation of the test expression then the assertion also fails.

7.4

The dfdl:discriminator Annotation Element

DFDL discriminators can be placed on elements and groups within a DFDL model. A discriminator contains a test condition that is an expression that evaluates to true or false. The discriminator is said to be successful if the test evaluates to true and unsuccessful (or fails) if the test evaluates to false. Discriminators are executed during a parse and are separate from logical validation.

The syntax of a DFDL discriminator is a “dfdl:discriminator” element with an optional test attribute. The content of the dfdl:discriminator element is the test predicate expression. Optionally, the test attribute can be used instead of the dfdl:discriminator annotation element content in which case there can be no content.

Examples of dfdl:discriminator elements are below :

<dfdl:discriminator> ../recType = 0</dfdl:discriminator>

<dfdl:discriminator test=" ../recType = 0" />

When the discriminator’s expression evaluates to "false", then it causes a processing error, and the discriminator is said to fail.
Discriminators control parsing for choice constructs. See the section (TBD: xref choice semantics) for more details.

7.5 The dfdl:DefineEscapeScheme Annotation Element

TBD: take from properties section once properties have stabilized.
Note that the name attribute is a NCName (uses target namespace of the schema).

The ref attribute is a QName.

Escape scheme names are distinguished from the names of other objects. That is one can have a definedFormat name or a textNumberFormat name with the same name as an escape scheme without conflict.

7.6 The dfdl:hidden Annotation Element

Some fields in the physical stream provide information about other fields in the stream and are not really part of the data. For example a field could give the number of repeats in a following array. These fields may not be of interest to an application so may be removed from the Infoset on parsing by marking them as hidden. The dfdl:hidden annotation allows fields to be defined that will not be added to the Infoset on parsing and will not be expected in the Infoset on unparsing.
<xs:element name="root">

 <xs:complexType>

 <xs:sequence>
 <xs:element name="firstElement" type="xs:int"
 <xs:sequence>
 <xs:annotation><xs:appinfo source=http://www.ogf.org/dfdl/" />

 <dfdl:hidden groupref="tns:hiddenRepeatCount">

</xs:appinfo></xs:annotation>

 </xs:sequence>
 <xs:element name="arrayElement" type="xs:int"

 minOccurs="0" maxOccurs="unbounded"
 dfdl:occursCountKind=”explicit”

 dfdl:occurCount= “{./repeatCount}” />

 </xs:sequence>
 </xs:complexType>

</xs:element>

<group name="hiddenRepeatCount" >
 <sequence>
 <element name="repeatCount" type=int
 dfdl:outputValueCalc=”{count(./arrayElement)}”
 dfdl:representation=”binary” dfdl:lengthKind=”implicit” />
 </sequence>
</group>
We can refer to the element from inside a DFDL annotation using the same XPath expression that we would have if it were not hidden.

Hidden elements can (typically will) contain the regular DFDL annotations to defined their physical properties and on unparsing to set their value. They are processed using the same behavior as non-hidden elements.

Hidden elements can only appear in the document in places where the element would be legal if it appeared outside the annotation. (This ensures that all XPath references to hidden elements are well defined.)

Hidden elements may appear within the structure of hidden elements.
Properties for dfdl:hidden
	Property Name
	Description

	groupref
	QName

Reference to a model group definition that defines the hidden element or elements.
The model group within the model group definition must be a sequence
Annotation: dfdl:hidden

7.7 The dfdl:DefineTextNumberFormat Annotation Element

One or more dfdl:defineTextNumberFormat annotation elements can appear within the annotation children of the xsd:schema element. The dfdl:defineTextNumberFormat elements may only appear as annotation children of the xs:schema element
.

The order of their appearance does not matter, nor does their position relative to other non-annotation children of the xsd:schema element.

Each dfdl:defineTextNumberFormat has a required name attribute.

The construct creates a named text number format definition. The value of the name attribute is of XML type NCName. The name will become a member of the schema’s target namespace. These names must be unique within the namespace. Top level defined textnumberformats are added to the DFDL processor’s global context using their fully namespace-qualified names as the identifiers.

If multiple textnumberformat definitions have the same 'name' attribute, in the same namespace, then it is a schema definition error
.

Each dfdl:defineTextNumberFormat annotation element contains a textNumberFormat annotation elements as detailed below.

Here is an example of a textnumberformat definition:

<xs:schema ...>

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:defineTextNumberFormat name=”mynumberformat”>
 <dfdl:textNumberFormat numberPattern= “+###,##0.00;(###,##0.00)”
 numberDecimalSeparator ="." />
 </dfdl:defineTextNumberFormat>
 </xs:appinfo>

</xs:annotation>

...

</xs:schema>
A dfdl:defineTextNumberFormat serves only to supply a named definition for a format for reuse from other places. It does not cause any use of the representation properties it contains to describe any actual data.

7.7.1 Using/Referencing a Named textNumberFormat Definition

A named, reusable, number format definition is used by referring to its name from a textNumberFormatRef property on an element. For example:

<xs:element name="foo" type="xs:int" >
 <xs:annotation><xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:format representation="text"
 numberFormat=”text"
 textNumberFormatRef="mynumberFormat"/>

 </xs:appinfo></xs:annotation>
</xs:element>

7.8 The dfdl:textNumberFormat Annotation Element
7.9 The textNumberFormat annotation is used within a defineTextNumberFormat annotation to group the properties of a number that has a text representation. It allows a common set of attributes to be defined that can be reused. The syntax of textNumberFormat is defines in section: 15.3.1 The dfdl:TextNumberFormat Properties

7.10 The dfdl:defineVariable Annotation Element
Variables provide a means for communication within a DFDL schema. A variable is defined in one place of the schema, then set somewhere within the scope
of that definition
, and referenced elsewhere in the scope.

A new variable is introduced using dfdl:defineVariable:

<dfdl:defineVariable name="EDIFACT_DS" type="xs:string"

 defaultValue="," />

<dfdl:defineVariable name="alignUnitBits" type
="xs:long">

 { if dfdl:property("alignmentUnits") = "bits" then 1 else 8 }
</dfdl:defineVariable>

The name of a newly defined variable is placed into the target namespace of the schema component containing the annotation. Variable names are distinct from format, escape scheme, and number format names and so cannot conflict with them. The defaultValue is optional. It can be specified as an attribute or as the element value as shown in the examples above. If not provided then the variable has no default value.

Note the value of the name attribute is an NCName.

Variables can be defined at any annotation point of the schema except top level. They define the property or variable name over the scope implied by the position of the variable definition
.

The definition defines the scope of both the name and the value of the variable. If the variable has a default value, or has been assigned (see setVariable below), then that default value or assigned value can be referenced from anywhere within the scope of the definition. See the section on scoping below
.

Variable definitions may be included inside dfdl:defineFormat annotations
. In this case the definitions are put into use by the 'ref' attribute of the dfdl:format (or equivalent) annotation.

Normally variable definitions are introduced at a scope covering a sequence group. This is due to the single-assignment rule for variables which is described further below.

7.11 The dfdl:setVariable Annotation Element

Variables get their values either by default, or by assignment using the dfdl:setVariable annotation. For example:

<element name="ds" type="string">

 <annotation><appinfo ...>

 <dfdl:setVariable name="ibmEDI:EDIFACT_DS" value="{ $(.
) }" />

 <dfdl:setVariable name="delta"> { $(.) } </dfdl:setVariable>

 </appinfo></annotation>

</element>

The name attribute is a QName. That is, it may be qualified with a namespace prefix.

In the above, the element named "ds" contains the string to be used as the ibmEDI:EDIFACT_DS delimiter
at other places in the data, so the above defines the value of the ibmEDI:EDIFACT_DS variable to take on the value of this element.

Note that the syntax supports both a value attribute and the value being specified by the element value. Only one or the other may be present. (Schema definition error otherwise.)
Note that setVariable value expressions (TBD: reference to expression language section) are evaluated after the logical value of the construct where they are found has been created. Hence, depending on the relative path value "." in an expression in a setVariable is allowed.
The name of a variable is defined in the target namespace of the schema containing the definition.

The declaration of a variable must be in scope at the point of the assignment, and at the point of reference.

7.11.1 Short Form Syntax for Variable Assignment

There is a short form syntax for variable assignments which uses non-native attributes.

<xs:element name="ds" type="string"

 dfdl:length="1"

 dfdl:setVariableName="ibmEDI:EDIFACT_DS"

 dfdl:setVariableValue="{ $(.
) }" $(.) }"

/>
Notice that two annotation non-native attributes are required. One to give the name of the variable to be set, the other to give the value. This syntax can set only one variable per XSDL construct. To set more than one annotation from the same construct one must use the long form annotations.

7.12 The dfdl:typeSubstitution annotation element

This annotation is used to overload non-annotated types with annotated meanings.

<dfdl:typeSubstitution forThisType="xs:int"

 useThisType="abc:Int32BigEndian" />

The two attributes forThisType and useThisType
are used to name the types being substituted. The substituted type (useThisType’s value) must be derived from the type named in the ‘forThisType’ attribute.
This annotation element obeys the basic DFDL scoping rules. Within the scope of this annotation, it is as if any use
of this type is replaced by use of the ‘useThisType’ attribute value. Note that the derivation of the type specified in the ‘useThisType’ attribute itself cannot be within this same scope (a schema definition error if it is.)
8 Expression language

The DFDL expression language allows the processing of values conforming to the data model defined in the DFDL Data Model. It allows
properties in the DFDL schema to be dependent of the contents of an instance of a DFDL document, a DFDL variable or another property in the schema. For example the length of an element
can be made dependent on the contents of another element in the document.

The main uses of the expression language are

1. When a DFDL property needs to be set dynamically at parse time from the contents of one or more elements of the data. Properties such as
 initiator, terminator, length, separator, and nilValues accept an expression.

2. In a dfdl:assert annotation

3. In a dfdl:discriminator annotation to resolve uncertainty when parsing

4. In an inputValueCalc property to derive the value of an element in the logical model that doesn’t exist in the physical data.

5. In an outputValueCalc property to set a value into an element on output.

6. As the value in a dfdl:setVariable annotation or the defaultValue in a dfdl:defineVariable.

The DFDL expression language is a subset of XPath 2.0 (TBD: ref). DFDL uses a subset of XML Schema and has a simpler information model, so only a subset of XPath 2.0 expressions is meaningful in DFDL Schemas. For example there are no attributes in DFDL so the attribute axis is not needed.

8.1 Expression Language Data Model

The DFDL expression language operates on the DFDL infoset with the addition of the hidden elements.

During parsing, expressions can reference any element preceding the current position. During parsing only a limited degree of reference to elements following the current position. Forward reference can occur only in the context of a discriminator format annotation and implementations may have varying ability to support forward reference.

During unparsing, expressions can reference any element either preceding or following the current element in the datastream.
8.2 General Syntax

DFDL expressions follow the XPath 2.0 syntax rules but are always enclosed in curly braces “{“ and “}”.

When expressions are used for a property which accepts a string literal then “{{“ should be used to escape when a “{“ is required as a character.

Examples

	{ /book/title }

	{ $x+2 }

	{ if (fn:exists(../field1)) then 1 else 0 }

The result of evaluating the expression must be a single atomic value of the type expected by the context. Expressions must not return a sequence containing more than one item or a processing error will occur
.
 If the expression returns an empty sequence it will be treated as returning NIL.

8.3 XPath Variable Binding

XPath supports the ability to refer to variables inside an expression that have been assigned prior to evaluation. DFDL binds these variables to DFDL variables that have previously been defined by a dfdl:defineVariable property.

8.4 DFDL XPath subset

Refer to XML Path Language (XPath) 2.0 [ref] for a description of XPath expressions

	XPath
	 ::=
	"{" Expr "}"

	Expr
	 ::=
	ExprSingle

	ExprSingle
	 ::=
	 IfExpr
| OrExpr

	IfExpr
	 ::=
	"if" "(" Expr ")" "then" ExprSingle "else" ExprSingle

	OrExpr
	 ::=
	AndExpr ("or" AndExpr)*

	AndExpr
	 ::=
	ComparisonExpr ("and" ComparisonExpr)*

	ComparisonExpr
	 ::=
	AdditiveExpr ((ValueComp
) AdditiveExpr)?

	
	
	

	AdditiveExpr
	 ::=
	MultiplicativeExpr (("+" | "-") MultiplicativeExpr)*

	MultiplicativeExpr
	 ::=
	UnaryExpr (("*" | "div" | "idiv" | "mod") UnaryExpr)*

	UnaryExpr
	 ::=
	("-" | "+")* ValueExpr

	ValueExpr
	 ::=
	PathExpr

	ValueComp
	 ::=
	"eq" | "ne" | "lt" | "le" | "gt" | "ge"

	PathExpr
	 ::=
	("/" RelativePathExpr?)
| RelativePathExpr

	RelativePathExpr
	 ::=
	StepExpr (("/") StepExpr)*

	StepExpr
	 ::=
	FilterExpr | AxisStep

	AxisStep
	 ::=
	(ReverseStep | ForwardStep) PredicateList

	ForwardStep
	 ::=
	(ForwardAxis NodeTest) | AbbrevForwardStep

	ForwardAxis
	 ::=
	("child" "::")
| ("self" "::")

	AbbrevForwardStep
	 ::=
	NodeTest

	ReverseStep
	 ::=
	(ReverseAxis NodeTest) | AbbrevReverseStep

	ReverseAxis
	 ::=
	("parent" "::")
")

	AbbrevReverseStep
	 ::=
	".."

	NodeTest
	 ::=
	 NameTest

	NameTest
	 ::=
	QName

	FilterExpr
	 ::=
	PrimaryExpr PredicateList

	PredicateList
	 ::=
	Predicate*

	Predicate
	 ::=
	"[" Expr "]"

	PrimaryExpr
	 ::=
	Literal | VarRef | ParenthesizedExpr | ContextItemExpr | FunctionCall

	Literal
	 ::=
	NumericLiteral | StringLiteral

	NumericLiteral
	 ::=
	IntegerLiteral | DecimalLiteral | DoubleLiteral

	VarRef
	 ::=
	"$" VarName

	VarName
	 ::=
	QName

	ParenthesizedExpr
	 ::=
	"(" Expr? ")"

	ContextItemExpr

	 ::=
	"."

	FunctionCall
	 ::=
	QName "(" (ExprSingle ("," ExprSingle)*)? ")"

8.4.1 XPath subset notes

1. Only If and path expressions are supported

2. Only the child, parent and self axes are supported

3. Predicates are only used to index arrays and so must be integer expressions otherwise a schema definition
error occurs

4. A subset of the XPath 2.0 operators are supported

8.5 Constructors, Functions and Operators

8.5.1 Constructor Functions for XML Schema Built-in Types

The following constructor functions for the built-in types are supported:

· xs:string($arg as xs:anyAtomicType
?) as xs:string?
· xs:boolean($arg as xs:anyAtomicType?) as xs:boolean?
· xs:decimal($arg as xs:anyAtomicType?) as xs:decimal?
· xs:float($arg as xs:anyAtomicType?) as xs:float?
· xs:double($arg as xs:anyAtomicType?) as xs:double?
· xs:duration($arg as xs:anyAtomicType?) as xs:duration?
· xs:dateTime($arg as xs:anyAtomicType?) as xs:dateTime?
· xs:time($arg as xs:anyAtomicType?) as xs:time?
· xs:date($arg as xs:anyAtomicType?) as xs:date?
· xs:hexBinary($arg as xs:anyAtomicType?) as xs:hexBinary?
· xs:integer($arg as xs:anyAtomicType?) as xs:integer?
· xs:long($arg as xs:anyAtomicType?) as xs:long?
· xs:int($arg as xs:anyAtomicType?) as xs:int?
· xs:short($arg as xs:anyAtomicType?) as xs:short?
· xs:byte($arg as xs:anyAtomicType?) as xs:byte?
· xs:unsignedLong($arg as xs:anyAtomicType?) as xs:unsignedLong?
· xs:unsignedInt($arg as xs:anyAtomicType?) as xs:unsignedInt?
· xs:unsignedShort($arg as xs:anyAtomicType?) as xs:unsignedShort?
· xs:unsignedByte($arg as xs:anyAtomicType?) as xs:unsignedByte?
· xs:yearMonthDuration($arg as xs:anyAtomicType?) as xs:yearMonthDuration?
· xs:dayTimeDuration($arg as xs:anyAtomicType?) as xs:dayTimeDuration?
A Special Constructor Function for xs:dateTime

A special constructor function is provided for constructing a xs:dateTime value from a xs:date value and a xs:time value.

fn:
dateTime($arg1 as xs:date?, $arg2 as xs:time?) as xs:dateTime?
8.5.2 Standard XPath Functions

Boolean functions

The following additional constructor functions are defined on the boolean type.

	Function
	Meaning

	fn:true
	Constructs the xs:boolean value 'true'.

	fn:false
	Constructs the xs:boolean value 'false'.

The following functions are defined on boolean values:

	Function
	Meaning

	fn:not
	Inverts the xs:boolean value of the argument.

Numeric Functions

The following functions are defined on numeric types. Each function returns a value of the same type as the type of its argument.

	Function
	Meaning

	fn:abs
	Returns the absolute value of the argument.

	fn:ceiling
	Returns the smallest number with no fractional part that is greater than or equal to the argument.

	fn:floor
	Returns the largest number with no fractional part that is less than or equal to the argument.

	fn:round
	Rounds to the nearest number with no fractional part.

	fn:round-half-to-even
	Takes a number and a precision and returns a number rounded to the given precision. If the fractional part is exactly half, the result is the number whose least significant digit is even.

String Functions

The following functions are defined on values of type xs:string and types derived from it.

	Function
	Meaning

	fn:concat
	Concatenates two or more xs:anyAtomicType arguments cast to xs:string.

	fn:substring
	Returns the xs:string located at a specified place within an argument xs:string.

	fn:string-length
	Returns the length of the argument.

	fn:upper-case
	Returns the upper-cased value of the argument.

	fn:lower-case
	Returns the lower-cased value of the argument.

	Function
	Meaning

	fn:contains
	Indicates whether one xs:string contains another xs:string. A collation may be specified.

	fn:starts-with
	Indicates whether the value of one xs:string begins with the collation units of another xs:string. A collation may be specified.

	fn:ends-with
	Indicates whether the value of one xs:string ends with the collation units of another xs:string. A collation may be specified.

	fn:substring-before
	Returns the collation units of one xs:string that precede in that xs:string the collation units of another xs:string. A collation may be specified.

	fn:substring-after
	Returns the collation units of xs:string that follow in that xs:string the collation units of another xs:string. A collation may be specified.

Date, Time and Duration functions:

None

	Function
	Meaning

	fn:years-from-duration
	Returns the year component of an xs:duration value.

	fn:months-from-duration
	Returns the months component of an xs:duration value.

	fn:days-from-duration
	Returns the days component of an xs:duration value.

	fn:hours-from-duration
	Returns the hours component of an xs:duration value.

	fn:minutes-from-duration
	Returns the minutes component of an xs:duration value.

	fn:seconds-from-duration
	Returns the seconds component of an xs:duration value.

	fn:year-from-dateTime
	Returns the year from an xs:dateTime value.

	fn:month-from-dateTime
	Returns the month from an xs:dateTime value.

	fn:day-from-dateTime
	Returns the day from an xs:dateTime value.

	fn:hours-from-dateTime
	Returns the hours from an xs:dateTime value.

	fn:minutes-from-dateTime
	Returns the minutes from an xs:dateTime value.

	fn:seconds-from-dateTime
	Returns the seconds from an xs:dateTime value.

	fn:timezone-from-dateTime
	Returns the timezone from an xs:dateTime value.

	fn:year-from-date
	Returns the year from an xs:date value.

	fn:month-from-date
	Returns the month from an xs:date value.

	fn:day-from-date
	Returns the day from an xs:date value.

	fn:timezone-from-date
	Returns the timezone from an xs:date value.

	fn:hours-from-time
	Returns the hours from an xs:time value.

	fn:minutes-from-time
	Returns the minutes from an xs:time value.

	fn:seconds-from-time
	Returns the seconds from an xs:time value.

	fn:timezone-from-time
	Returns the timezone from an xs:time value.

	Function
	Meaning

	fn:adjust-dateTime-to-timezone
	Adjusts an xs:dateTime value to a specific timezone, or to no timezone at all.

	fn:adjust-date-to-timezone
	Adjusts an xs:date value to a specific timezone, or to no timezone at all.

	fn:adjust-time-to-timezone
	Adjusts an xs:time value to a specific timezone, or to no timezone at all.

Sequences functions

The following functions are defined on sequences.

	Function
	Meaning

	fn:empty
	Indicates whether or not the provided sequence is empty.

	fn:exists
	Indicates whether or not the provided sequence is not empty.

Aggregate Functions

	Function
	Meaning

	fn:count
	Returns the number of items in a sequence.

Node functions

This section discusses functions and operators on nodes.

	Function
	Meaning

	fn:name
	Returns the name of the context node or the specified node as an xs:string.

	fn:local-name
	Returns the local name of the context node or the specified node as an xs:NCName.

	fn:namespace-uri
	Returns the namespace URI as an xs:anyURI for the xs:QName of the argument node or the context node if the argument is omitted. This may be the URI corresponding to the zero-length string if the xs:QName is in no namespace.

8.5.3 DFDL Functions

	Function
	Meaning

	dfdl:length
	Returns the unparsed length of the context node or the specified node as an xs:unsignedlong.

	dfdl:property
	Returns the value of requested dfdl property of the context node or the specified node as an xs:string.

Ex dfdl:property(‘byteorder’, ‘./address ‘)

	dfdl:teston

	Indicates whether the specified bit in a xs:byte is 1.

	dfdl:testoff
	Indicates whether the specified bit in a xs:byte is 0.

	dfdl:seton
	Sets the specified bit in a xs:byte to 1.

	dfdl:setoff
	Sets the specified bit in a xs:byte to 0.

	dfdl:countwith default
	Count the number of occurances including the effect of defaulting

8.6 Variables

Variables are created using the dfdl:defineVariable annotation, assigned using the dfdl:setVariable annotation, and are referenced in expressions by preceding there QNames with '$'.

This section describes the semantics of variables. Any implementation consistent with the behavior described here is acceptable.

The memory where the information about a variable is stored during DFDL processing is called the variable memory. A variable is a name that is associated with a storage tuple in the variable memory.

Specifically, the variable memory contains:

· a counter used to generate locations for new tuples. Initial value is 1.

· an ordered list of locations. Each location contains a tuple of values:

· has-been-set flag. This Boolean is originally false. dfdl:setVariable changes this flag to true.

· has-been-referenced flag. This Boolean is originally false. Evaluation of expression which uses the variable value changes the value to true.

· has-value flag. This Boolean is originally true if the dfdl:defineVariable annotation has a default value specified. Otherwise it is false, but is set to true if a dfdl:setVariable annotation is processed.

· typeID. This string is a type identifier taken from the type specified in the dfdl:defineVariable annotation.

· value. This is a typed value, or the distinguished value "unknown". The type of the value must correspond to the typeID. The value is optionally specified in dfdl:defineVariable annotations in which case we refer to it as the default value for the variable.

Each time a dfdl:defineVariable annotation is encountered, the parser captures the current value of the counter from the variable memory. It then creates a new variable memory where the location counter's value is one greater, and where the list of locations has been augmented with a new tuple at the location given by the prior value of the location counter. The tuple is initialized based on the specifics of the dfdl:defineVariable annotation.

In addition, a new local context is created containing a new variable binding which associates the variable's name with the location counter value, thereby associating that variable name with this new tuple in the new variable memory.

Note that the above algorithm insures that each time a dfdl:defineVariable is encountered, a fresh location is initialized for it, and once the local context containing that variable binding goes out of scope, the prior tuple for the variable can no longer be reached.

The flags in the variable memory tuples are interpreted and modified as follows:

	
	before annotation processed
	after annotation processed

	
	has-been-set
	has-been-referenced
	has-value
	has-been-set
	has-been-referenced
	has-value

	defineVariable (without default value)
	tuple doesn't exist
	false
	false
	false

	defineVariable (with default value)
	tuple doesn't exist
	false
	false
	true

	setVariable
	false
	false
	false
	true
	false
	true

	
	false
	false
	true
	true
	false
	true (also value changed to new value)

	
	false
	true
	false
	impossible state. The flags cannot get into this configuration.

	
	false
	true
	true
	processing error – set after reference not allowed.

	
	true
	false
	false
	impossible state. The flags cannot get into this configuration.

	
	true
	false
	true
	processing error – double set not allowed

	
	true
	true
	false
	impossible state. The flags cannot get into this configuration.

	
	true
	true
	true
	processing error – double set not allowed

	reference variable (from XPath expression)
	false
	false
	false
	processing error – undefined variable

	
	false
	false
	true
	false
	true (value is returned)
	true

	
	false
	true
	false
	impossible state. The flags cannot get into this configuration.

	
	false
	true
	true
	false
	true (value is returned)
	true

	
	true
	false
	false
	impossible state. The flags cannot get into this configuration.

	
	true
	false
	true
	true
	true (value is returned)
	true

	
	true
	true
	false
	impossible state. The flags cannot get into this configuration.

	
	true
	true
	true
	true
	true (value is returned)
	true

The above table describes a set of rules which might be abbreviated as:

· write once, read many

· no write after the value has been read

It is a schema definition error if setVariable or a variable reference occurs and there is no variable binding in the context.

It is a schema definition error if setVariable provides a value of incorrect type which does not correspond to the type specified by the defineVariable.

It is a schema definition error if a variable reference in an expression is able to return a value of incorrect type for the evaluation of that expression. That is, DFDL including the expressions contained in it, is a statically type-checkable language.

9 DFDL Regular Expressions

The regular expression syntax that is supported is a subset of XML Schema regular expressions. For the full syntax, see Appendix F in XML Schema Part 2: Datatypes that can be found on the World Wide Web Consortium (W3C) Web site.

The following table lists the supported regular expression syntax elements:

	Metacharacter
	Meaning

	\
	escape

	.
	any single character

	*
	preceding character 0 or more times

	+
	preceding character 1 or more times

	?
	preceding character 0 or 1 time

	{...}
	occurrences of preceding 1

	[...]
	match one of the class contained

	[^...]
	match one of the class not contained 1

	(...)
	group the expressions 1

	|
	match either preceding or following

	Escape sequence
	Meaning

	\n
	new line

	\r
	carriage return

	\t
	tab

	\e

	escape

	Class code
	Meaning

	\d
	digit [0-9]

	\D
	non-digit [^0-9] 2

	\s
	white space[\t\n\r]

	\S
	non-whitespace character[^ \t\n\r] 2

	\p{L}
	all letters 3

	\p{N}
	all numbers, same as \d 4

	[\p{N}\p{L}]
	all numbers and all letters 4

	\P{L}
	not letters, equivalent to [^\p{L}]

	\P{N}
	not numbers, equivalent to [^\p{N}]

	Range
	Meaning

	{n}
	exactly n times

	{n,}
	at least n times

	{n,m}
	at least n, but no more than m, times

	{0,m)

	zero to m times

Notes:

1. The ellipsis (...) is used to indicate anything inside the { }, or [], or () characters.

2. The caret (^) means "not" when inside the [] characters.

3. Consult Appendix F of the document XML Schema Part 2: Datatypes for other characters that can be used in place of L and N.

4. Consult Appendix F of the document XML Schema Part 2: Datatypes
 for the precise differences.

The following table gives some examples of the syntax rules for regular expression syntax.

	Regular expression data pattern
	Meaning

	a
	Match character "a"

	.
	Match any one character

	a+
	Match a string of one or more "a"

	a*
	Match a string of zero or more "a"

	a?
	Match zero or one "a"

	a{3}
	Match a string of exactly three "a", that is "aaa"

	a{3,}
	Match a string of three or more "a"

	a{2,4}
	Match a string with a minimum of two and a maximum of four occurrences of "a"

	[abc]
	Match any one of the characters "a", "b", or "c"

	[a-zA-Z]
	Match any one character in the range "a" to "z", or in the range "A" to "Z". Note that the range of characters matched is based on the Unicodes of the characters specified.

	[^abc]
	Match any character except one of "a", "b", or "c"

	(ab)+
	Match one or more repetitions of the string "ab"

	(ab)|(cd)
	Match either of the strings "ab" or "cd"

10 Scoping Rules

This section describes the rules that govern the scope over which DFDL annotations apply
· The scope over which a DFDL annotation applies
depends on the location of the DFDL annotation element.

10.1 Annotation Positioning

As described in Section 5.2, DFDL annotations are positioned at specific annotation points within a DFDL schema. The table below shows the valid annotation points.

	Annotation Point
	Property Scope

	Schema declaration
	(Invalid
Only top level defining forms (e.g., dfdl:defineFormat) can appear at top level of the schema. These definitions are globally available. Nothing is put into effect about the format of data by these top-level definitions.

	Element declaration
	(Valid local

	Element reference
	(Valid local

	Complex type definition
	(Valid scoped over contents

	Simple type definition
	(Valid local

	Sequence declaration
	(Valid local

	Choice declaration
	(Valid local

	Group reference
	(Valid local

An annotation on a complexType definition applies over the scope of the contents and so is inherited by any contained constructs or construct references
. That is, the scope include not only the part of the schema lexically enclosed by the complexType declaration which puts this scope into effect, but these properties are also inherited by these specific instances of any referenced types, referenced elements, or referenced groups from within that scope. This is sometimes called scoping over the full dynamic extent of the scope, not just the lexically appearing scope.
When multiple DFDL annotation properties occur at the same annotation point then they are combined with the rule that later format annotations override earlier ones, (later meaning textually later in the schema document) and short-form annotations are interpreted as if they appeared in a long-form annotation that is first before any other long-form annotations.

10.2 Annotation Overriding

Annotation overriding takes place when multiple DFDL annotations for the same property occur at different annotation points. Overriding can only occur between annotations that apply to scope.
The general rule is that the most local annotation property takes precedence over any inherited annotation properties
. However, there is an important exception to this which is discussed in the 10.4 Scoping of Element and Group References
section.

The example below demonstrates the general case through the overriding of a format encoding annotation property. The ascii format encoding is inherited by the title element, but then it is overridden by the utf-8 format encoding, which takes precedence.

<xs:element name=”book”>
 <xs:complexType>
 <xs:annotation>
 <xs:appinfo source=”http://www.ogf.org/dfdl/”>
 <dfdl:format encoding="ascii" />
 </xs:appinfo>
 </xs:annotation>
 <xs:sequence>
 <xs:element name=”title” type=”xs:string”>
 <xs:annotation>
 <xs:appinfo source=”http://www.ogf.org/dfdl/”>
 <dfdl:format encoding="utf-8" />
 </xs:appinfo>
 </xs:annotation>
 </xs:element>
 <xs:element name=”pages” type=”xs:int”/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

10.3 Scoping of Type References

DFDL scoping rules are consistent with the principal of referential transparency, whereby a type reference can be replaced with an in-line copy of the referenced type without altering the meaning of the schema.

10.4 Scoping of Element and Group References

The exception to the general case concerns annotations positioned on element references and group references. When this occurs, the annotations on the reference will take precedence over any top-level annotations on the referenced element or group. Consider the mechanism of substituting an element reference declaration with the referenced elements. If annotations are present on both the element reference declaration and the referenced element, they will need to be combined in some way. The rules of DFDL dictate that those on the element reference take precedence over those on the referenced element.

In the example below, the annotation on the element reference specifying a format encoding of ascii takes precedence over the utf-8 format encoding of the referenced element.

<xs:element name=”title”
ref="name">

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:format encoding="ascii" />

 </xs:appinfo>

 </xs:annotation>

</xs:element>

<xs:element name=”name” type="xs:string">

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:format encoding="utf-8" />

 </xs:appinfo>

 </xs:annotation>

This mechanism provides a way to establish default properties for an element declaration but provide availability of overrides to them at the point of use.

10.5 Scoping of Type Derivations

When visiting a derived type (only simple type derivations are allowed in DFDL v1.0

) the parser will visit any annotations in the base type definition (if not a schema built-in type definition) first.

Consider Example 1
 below. The comments describe the order in which the annotations are visited. In evaluating testElement1 the property alignment will have the value 16 because this is the last thing to be added to the local context before the type is evaluated. In evaluating testElement2 the property alignment will have the value 64.

<xs:simpleType name="otherNewType">

<xs:annotation>

<!-- Visit this annotation sixth -->

<xs:appinfo>

<dfdl:format name="alignment" value="64"/>

</xs:appinfo>

</xs:annotation>

<xs:restriction base="newType">

<xs:maxInclusive value="5"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="newType">

<xs:annotation>

<xs:appinfo>

<!-- Visit this annotation third and fifth-->

<dfdl:format name="alignment" value="16"/>

</xs:appinfo>

</xs:annotation>

<xs:restriction base="xs:integer">

<xs:maxInclusive value="10"/>

</xs:restriction>

</xs:simpleType>

<xs:element name="root">

<xs:complexType>

<xs:annotation>

<xs:appinfo>

<!-- Visit this annotation first -->

<dfdl:format name="alignment" value="1"/>

</xs:appinfo>

</xs:annotation>

<xs:sequence>

<xs:element name="testElement1" type="newType">

 <xs:annotation>

 <xs:appinfo>

<!-- Visit this annotation second -->

<dfdl:format name="alignment" value="8"/>

 </xs:appinfo>

 </xs:annotation>

</xs:element>

<xs:element name="testElement2" type="otherNewType">

 <xs:annotation>

 <xs:appinfo>

<!-- Visit this annotation fourth -->

 <dfdl:format name="alignment" value="32"/>

 </xs:appinfo>

 </xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

10.6 Scoping and Expressions

When expressions are used to compute the value of properties, the scope in affect at the time the property is first encountered is used, and not the scope of the reference to the property. This provides a concrete interpretation to relative paths which are commonly used in such expressions.

In addition, when an expression is used to compute the value of a property, that expression is early bound, that is, it is evaluated, and the resulting value stored, at the time the annotation containing the property is traversed. This means errors caused by the evaluation of that expression will also be detected at that time. Specifically, the evaluation is NOT late bound, that is deferred to the point where the property’s value is needed
.

Consider the example below which takes the separators for sequences dynamically from preceeding elements of the data:

…

<xs:element name=”sep1” type=”string” />

<xs:element name=”sep2” type=”string” />

<xs:element name=”book”>
 <xs:complexType>

 <xs:annotation>
 <xs:appinfo source="http://www.ogf.org/dfdl/">
 <dfdl:format separator="{ ../sep1 }" />
 </xs:appinfo>
 </xs:annotation>
 <!-- outer sequence will be separated based on sep1 -->
 <xs:sequence>

 <xs:element name="cover” type=”xs:string”>
 <xs:complexType>

 <xs:annotation>
 <xs:appinfo source=”http://www.ogf.org/dfdl/”>
 <dfdl:format separator="{ ../../sep2 }:" />

 </xs:appinfo>
 </xs:annotation>
 <!-- first inner sequence will be separated based on sep2 -->
 <xs:sequence>
 <xs:element name=”title” type=”xs:string”>
 <xs:element name=”caption” type=”xs:string”>
 <xs:element name=”data”>

 <xs:complexType>

 <!-- second inner sequence will be separated based on sep2-->
 <xs:sequence>

 …

 <!--

Note that separator expression is “../../sep2”, which is not the right relative path to reach sep2 from this location. However, that doesn’t matter as the separator property’s expression is resolved at the point of definition, not here at the point of use.

-->
 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name=”pages” type=”xs:int”/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

10.7 Scope Resolution Rules for Format Properties

As a DFDL processor walks the DFDL schema, it maintains the current information about what representation properties are in effect and what values they have by way of the context. The global context contains named sets of property bindings created by the dfdl:defineFormat annotations. A local context contains individual property bindings created by dfdl:format.
The DFDL top level element
of the schema and its format annotation are either explicit in the schema, or implicit as described below in section 23
.

At this point we have a schema where there is conceptually a distinguished top-level element declaration, and we have a global context, and a dfdl:format annotation which is actually or conceptually on the top level element.

The DFDL processor begins at the top level element and descends over its structure.

In a complexType element, these annotation properties are scoped over the contents otherwise they apply only locally. Hence, each time the DFDL processor encounters a DFDL annotation
, it conceptually pushes the new annotations onto a stack called the context. This new context is used when recursively descending into the contents of a complexType, but is discarded when descending into the children of a model group.

A property value is determined by looking for it in the context as just described. If a binding for it is found, then that value is used. If not then we move down the stack of contexts to the predecessor and look for the binding there, repeating until a value is found.

Note that the global context does not contain individual property bindings, (rather, only named sets of bindings referenced by the 'ref' attributes of dfdl:format annotation elements) so it is not searched.

If no value is found for a property it is a Schema Definition Error

.

When the annotated schema item is an element or group reference, then the annotations at the reference and those of the declaration are combined as in section (TBD: Xref element references in scoping section), and then the element reference is treated as if it were an equivalent element declaration.

Consider this example. We'll refer to the lines by number below.

1 <xs:complexType name="ty" dfdl:separator=";"

 dfdl:terminator="$" >

2
<xs:sequence dfdl:separator="!"

 dfdl:terminator="" > <!-- empty string -->
3

<xs:element name="a" type="xs:int" />

3.5

4

<xs:element name="b" type="xs:int" />

4.5

5

<xs:element name=”xy”>

 <xs:complexType dfdl:terminator="*" >

 <xs:sequence>

6

<xs:element name="x" type="xs:string"/>

6.5

7

<xs:element name="y" type="xs:string"/>

8

 </xs:sequence>

 </xs:complexType>

 </xs:element>

8.5

9

<xs:element name="c" type="xs:int" />

9.5

10
</xs:sequence>

10.5

11 </xs:complexType>

Some data matching the above description might be:

3$!4$!line6data*;line7data**!9$

In the above, let's examine what property bindings are in the specific local context and default local context as we process each element.

	line number
	scoped context
	specific local context
	discussion
	data from above example data

	1
	((separator = ";"

terminator="$"))
	nothing
	Applies to scope so push new context
	

	2
	((separator = ";"

terminator="$"))
	separator="!"

terminator=""
	Applies locallyso we create a specific local context. When processing the sequence itself, we will use this specific local context. Then discard it.
	

	3
	((separator = ";"

terminator="$"))
	nothing
	element "a" is terminated by "$" because we find terminator in the context.
	3$

	3.5
	((separator = ";"

terminator="$"))
	separator="!"

terminator=""
	we're now between elements of the sequence. This sequence has a specific local context. In that there is a separator, so we use it. In other words, we expect to see "!"
	!

	4
	((separator = ";"

terminator="$"))
	nothing
	element "b" is terminated by "$" like element "a" was.
	4$

	4.5
	((separator = ";"

terminator="$"))
	separator="!"

terminator=""
	Like line 3.5, we expect to see "!"
	!

	5
	new default local context extended with new binding

((terminator="*")

(separator = ";"

terminator="$"))
	nothing
	notice there is no specific local context. So this sequence's separator will come from the default local context. and the default terminator for elements will now be "*"
	

	6
	same

((terminator="*")

(separator = ";"

terminator="$"))
	nothing
	after element "x" we expect its terminator which is "*". This is found in the default local context as the specific local context is empty as we process the element.
	line6data*

	6.5
	same

((terminator="*")

(separator = ";"

terminator="$"))
	nothing
	After the element we expect this sub-sequence's separator which is ";" coming from the default local context.
	;

	7
	same

((terminator="*")

(separator = ";"

terminator="$"))
	nothing
	similarly for element "y" we expect its terminator from the default local context, and then the sequence separator from the sequence's specific local context.
	line7data*

	8
	same

((terminator="*")

(separator = ";"

terminator="$"))
	nothing
	The terminator "*" is in scope for this sequence, so we'll get an additional "*" for termination of the sequence.
	*

	8.5
	pop stack back to

((separator = ";"

terminator="$"))
	separator="!"

terminator=""
	after this sub-sequence we get the separator for the enclosing sequence, which is "!" since at line 2 which is the beginning of the sequence we had a specific local context.
	!

	9
	same

((separator = ";"

terminator="$"))
	nothing
	element "c" is followed by its terminator "$"
	9$

	9.5
	same

((separator = ";"

terminator="$"))
	separator="!"

terminator=""
	no separator since we're at the end of the sequence,
	

	10
	same

((separator = ";"

terminator="$"))
	separator="!"

terminator=""
	terminators is empty string in the specific local context so we don't get another "$" here at the termination of the sequence.

Contrast this with line 8.
	

	11
	same

((separator = ";"

terminator="$"))
	nothing
	No separator; no terminator.

	

	11.5
	nothing
	nothing
	back to whatever context this type was being used in.
	

TBD: This is pasted here from a comment bubble. It was s148 by Sandy Gao (IBM)
I had to remove that comment bubble as it was causing Microsoft word to crash.-mikeb
Having read the first 8 sections, I think more clear distinction needs to be drawn between “schema documents / elements in schema documents” vs. “schemas / schema components”. These 2 levels seem to be mixed throughout the spec. One of 2 things can be done.

· (Like many other specifications and my preference) describe things at 2 levels. The component level, like schema components, is just a bunch of conceptual objects with meanings. Parsing/unparsing behaviors are all based on these objects and values of their properties. The schema document level describes where DFDL annotations are allowed and how to map them to the component level. E.g. (1) at the component level, every DFDL element declaration has an {encoding} property. If an element matches this element declaration, the {encoding} property is used to … (2) at the schema document level, annotations can be specified under <xs:element>, and they become part of the corresponding element declarations

Pros: because it separates component mapping (from schema documents) and component semantics (application to instance documents), it’s easier to make this approach precise, and it allows “synthetic or born-binary schemas” (those without schema documents); and it makes it easier to write an API to expose the component model.

Cons: (unfortunately) schema 1.0 didn’t allow annotations on Particle components. (schema 1.1 fixed this.)

2. Only one level: schema document. Then terms should be given to all the different annotation points, and they need to be distinguished from schema component terms. E.g. annotations specified under <xs:element> should not be referred to as on “element declarations”, which are component level concepts.

Pros: eaiser to connect this with concerete examples.

Cons: texts about how to specify/understand annotations and how to use them are often mixed and hard to understand.
(It's not easy to describe this. It may help to look at a concrete example. http://dev.w3.org/cvsweb/~checkout~/2007/xml/sml/build/sml.html?content-type=text/html;%20charset=utf-8#sml_acyclic section 4.3.1 is written using option 1; 4.3.2 is similar to what DFDL currently has.

11 DFDL Properties Introduction: The DFDL Parser and Unparser
A DFDL Parser is an application or code library which can take as input:

· A DFDL Schema

· A data source
It is able to use the DFDL description to interpret the data sources and realize the DFDL Information Model. This logical data model could then be written out (for example it could be realized as an XML text string) or it could be accessed by an application through an API (for example, a DOM-like tree could be created in memory for access by applications).

Symmetrically, there is a notion of a DFDL Unparser. The unparser works from an instance of the DFDL Information Model, a DFDL annotated schema and writes out to a target stream in the appropriate representation formats.

Often both parser and unparser would be implemented in the same body of software and so we do not always distinguish them. Collectively they may be called the DFDL Processor. The parser and unparser may, of course, be different bodies of software.

11.1 Unparsing Must be Unambiguous

Usually, the behavior of the unparser is symmetric to the behavior of the parser; however, there are cases where the DFDL schema will accept several equivalent representations for the same logical data. In this case it would be ambiguous which of these equivalent representations should be produced by the unparser. The DFDL standard contains representation properties which are used to eliminate this ambiguity. It is a schema definition error if a DFDL schema is being used to unparse data and there is any ambiguity about the representation.
11.2 Parser Overview

The DFDL logical parser is a recursive-descent parser
(for a definition, see Page: 4

http://en.wikipedia.org/wiki/Recursive_descent_parser)
 having guided, but potentially unbounded look ahead that is used to resolve points of uncertainty. (see TBD: xref to section on choice/uncertainty, i.e., choice, and any wildcards). More accurately, a DFDL parser reads a specification (the DFDL schema) for a recursive-descent parser and then behaves as a recursive- descent parser having that specification in that it recursively walks down and up the schema while processing the data. This is done in a manner consistent with the scoping of properties and variables described in Section (TBD: Xref Scoping).

The unbounded look ahead means that there are situations where the parser must speculatively attempt to parse data where the occurrence of a parse error causes the parser to suppress the error, back out and make another attempt.
Implementations of DFDL may provide control mechanisms for limiting the speculative search behavior of DFDL parsers. The nature of these mechanisms is beyond the scope of the DFDL specification which defines the behavior of conforming parsers only on correct data. That is, data that can be parsed without any effective parse errors.

The logical parser recursively descends the DFDL schema beginning with the element declaration of the distinguished root node
of the schema. Depending on the kind of schema construct encountered and the DFDL annotations on it, and the pre-existing content of the context, the parser performs specific parsing operations on the data stream. These parsing operations typically recognize and consume data from the stream and construct values in the logical model. For values of complex types and for arrays, these logical model values may incorporate values created by recursive parsing.

DFDL Implementations are free to use whatever techniques for parsing they wish so long as the semantics is equivalent to that of the speculative recursive-descent logical parser described in this specification. It is encouraged that implementations distinguish the various kinds of errors (schema definition error, parse error, etc.) no matter what time they are detected. Some implementations may not detect certain schema definition errors until data is being parsed; however, they should still distinguish schema definition errors (schema itself is not meaningful), from parsing errors (input data doesn’t satisfy schema), or unparsing errors (logical data does not satisfy schema).
11.3 DFDL Data Syntax Grammar

Data in a format describable via a DFDL schema obeys the grammar given here. A given DFDL schema is read by the DFDL processor to provide specific meaning to the terminals and decisions in this grammar.

The bits of the data are divided into two broad categories:

1 Content

2 Framing

The content is the bits of data that are interpreted to compute a logical value.

Framing is the term we use to describe the padding, delimiters, length fields, and other parts of the data stream which are present, and may be necessary to determine the length or position of the content of items. Sometimes the framing is not strictly necessary for parsing, but adds useful redundancy to the data format, allowing corrupt data to be more robustly detected, and sometimes the framing adds human readability to the data format.

In our grammar tables below we will present primitive content in italic font. The primitive content is one subset of the grammar’s terminal symbols. The terminal symbols that are framing are shown in bold italic font.

First we present the simple content types.

	Production
	See Section(s)

	SimpleType SimpleContent = NumberTypeContent | StringTypeContent |

CalendarTypeContent | BooleanTypeContent | OpaqueTypeContent
	

	NumberTypeContent = TextNumber | BinaryIntegerNumber | BinaryFloatNumber
	TBD

	StringTypeContent = TextString | XMLString
	TBD

	CalendarTypeContent = TextCalendar | BinaryIntegerCalendar
	TBD

	BooleanTypeContent = TextBoolean | BinaryIntegerBoolean
	TBD

	OpaqueTypeContent = BinaryOpaque
	TBD

There are additional NumberTypeContent terminals specified in the DFDL specification supplements (for BCD, zoned and packed decimal).

These simple types are the basic data content pieces found in DFDL-described data sources.

The rest of this grammar describes how these basic pieces are composed into arrays and more complex types.

	Productions
	

	Document = Element
	

	Element = SimpleElement | ComplexElement

SimpleElement = Prefix SimpleContent Suffix

ComplexElement = Prefix ComplexContent Suffix
	

	ComplexContent = Sequence | Choice
	

	Sequence = Prefix SequenceContent Suffix

SequenceContent = [SequenceItem [Separator SequenceItem]*] FinalUnused

SequenceItem = Element | Array | ComplexContent
	

	Choice = Prefix ChoiceContent Suffix

ChoiceContent = ChoiceResolvableItem | ChoiceUnresolvableItem

ChoiceResolvableItem = Element | Array | ComplexContent

ChoiceUnresolvableItem = OpaqueTypeContent

	

	Array = [Element [Separator Element]* [Separator StopValue]]

StopValue = SimpleElement
	

	Prefix = LeadingAlignment Initiator
Suffix = Terminator TrailingAlignment
	

	LeadingAlignment = LeadingSkipBytes AlignmentPad
TrailingAlignment = TrailingSkipBytes
	

11.4 Framing and Content - Length, Start Position, and End Position

An input source or stream is a vector of bits. Each bit’s location within the vector is called the bit’s position. Similarly an output target or stream is a vector of bits each with its associated position.

We will draw pictures of data sources or targets and our conventions are that bit positions increase as the bits physically appear on the page from left to right. A contiguous group of bits identified together is called a bit region. A bit region can contain other named bit regions, or just bits.

[image: image4.emf]A Bit

Field

or

Region

…

01101001 000100011110101000101010 101010010110111

Position 4

Position 0

Figure 3 Example input stream
Every DFDL information item having a representation in the data stream, that is, not having dfdl:inputValueCalc property, has a representation which can be located within the input or output stream using these quantities:

· item start position

· content start position - always equal to or greater than the item start position.

· content length – content end position minus content start position.

· content end position - always equal to or greater than the content start position.

· item end position – always equal to or greater than the content end position

· item length – item end position minus element start position

The item start position is equal to the end position of the preceding item except when explicit offsets (offset and offsetFrom properties – see Section TBD: Xref to offset/offsetFrom) are used.

[image: image5.emf]Suffix Region Content Region Prefix Region

Item start position

Content start position

Content end position

Item end position

Content Length

Item Length

Item end position

(previous item)

Item start position

(next item)

Item

Figure 4 Expansion of Item

The item length must be at least 1 (bit). It is a processing error if a simple type scalar item is determined to have representation of length zero.

The prefix and suffix regions each have the structure shown below:

[image: image6.emf]Initiator Region Leading Alignment

Region

Prefix Region

Trailing Alignment

Region

Terminator Region

Suffix Region

Figure 5 Prefix and suffix regions
The next figure shows a Sequence. The Prefix and Suffix are the same, the content is more complex and contains framing (separators) and recursively has sequence items within it, which can themselves contain both framing and content. There is also a possibility of left over space at the end of a sequence which is not occupied by content. This is called the final unused region.

[image: image7.emf]Seq.

Item

Separator

Region

Seq.

Item

Sequence

Group

Seq.

Item

Separator

Region

…

Suffix

Region

Prefix

Region

Item start

position

Content start

position

Item

end

position

Content Length

Item Length

Item end position

(previous item)

Item start position

(next item)

Final

Unused

Region

Content end

position

Figure 6 Sequence group
For arrays, the syntax is in the next figure below. Note how the Content and Item start positions are the same, but the end positions can differ. Arrays are distinct in that they do not have the prefix and suffix regions surrounding them because they are in some sense just additional elements within their containing sequence. They do offer the possibility for a final “stop value” which looks like an additional array element in that it can be separated from the array’s real content.

[image: image8.emf]Element Separator

Region

Element

Array

Separator

Region

Element Separator

Region

…

Stop

Value

Region

Content start position

and Item start position

Content end position

Item

end position

Content Length

Item Length

Item end position

(previous item)

Item start position

(next item)

Separator

Region

Figure 7 Array

Arrays with minOccurs="0" can have item lengths of zero (bits) if their length is zero items and there is no stop value. Otherwise if the length is zero bits then it is a processing error.

11.5 Dynamic Extent

The dynamic extent of an element declaration is the set of bits in the source (or target for output) found between the element start position and the element end position.

12 Core Representation Properties and their Format Semantics

The next sections specify the core set of DFDL v1.0 properties that may be used in DFDL annotations in DFDL Schemas to describe data formats.

The core set of properties is supplemented by additional sets of properties
described in separate specification documents. For example, there is a supplement "Advanced Decimal Format Properties" which describes properties for expressing zoned, packed, and BCD formats.

It is a schema definition error when a DFDL schema does not contain a definition for a representation property that is needed to interpret the data
. For example, a DFDL schema containing any textual data must provide a definition of the character set 'encoding' property for that textual data, and if it is not part of the format properties context for that data, then it is a schema definition error.

Furthermore, no default values are provided for representation properties as built-in definitions by any DFDL processor. This requires DFDL schemas to be explicit about the representation properties of the data they describe, and avoids any possibility of DFDL schemas that are meaningful for some DFDL processors but not others.

For convenience, a standard set of named DFDL format definitions are provided with all DFDL processors. These built-in format definitions must be imported by DFDL schema authors.

The namespace URIs which identify these standard format definitions contain version identification so that future versions of this standard can provide new versions of these definitions which define more properties.

These built-in format definitions are complete in that they provide a self-consistent definition for all relevant representation properties.
 Their intended use is as a base for extension. By extending from one of these provided definitions a DFDL schema author can be assured that there is a base of suitable representation properties from which to start.

The built-in format definitions are specified in Section TBD: Built-in Specifications.

The properties are organized as follows:

· Common to both Content and Framing

(byteOrder and character set encoding)

· Common Content

· Underlying Strings

· Common Framing – Position and Length

· Length

· Alignment

· Offset

· Delimiters

· Escape Schemes

· Simple Type - Content

· General – the dfdl:representation property

· Strings

· Numbers

· Boolean

· Date and Time Related

· Opaque

· Complex Types

· Sequences - Framing

· Ordered

· Delimiters for Sequences

· Patterns for Sequences

· Scanability

· End of Data

· Unordered

· Choice

· Resolvable

· Unresolvable

· Arrays

· Delimiters for Arrays

· Patterns for Arrays

· Scanability

· End of Data

· Stop Value

· Wildcards (‘any’)

Where properties are specific to a physical representation, the property name may choose to reflect this. Where properties are related to a specific logical type grouping (defined below), the property name may choose to reflect this.

TBD: Need some words to cover use of XPATH expressions as property values, including the case where the result must evaluate to a Boolean.

13 Properties Common to Both Content and Framing
	Property Name
	Description

	byteOrder
	Enum

Valid values ‘bigEndian’, ‘littleEndian’.

This property can be computed by way of an expression which returns the string “bigEndian” or “littleEndian”.

Note that there is, intentionally, no such thing as 'native' endian
.
This also applies to character data for fixed-width multi-byte character sets when the encoding is not specific. E.g., UTF-16 and UTF-32. Note that when the character set encoding is specific about the byte order (e..g, UTF-16BE), then the byteOrder property is ignored when processing text/strings having that encoding.
Annotation: dfdl:element (all simple types)

	Encoding

	Enum.

Values are IANA charsets or CCSID

s.
This property can be computed by way of an expression which returns the appropriate string.

Note that there is, deliberately, no concept of 'native' encoding
.
Conforming DFDL v1.0 processors must accept at least 'UTF-8'', “UTF-16”, “UTF-16BE', ”UTF-16LE', ”ASCII”, and 'ISO-8859-1'
as encoding names. Encoding names are case-insensitive, so “utf-8” and “UTF-8” are equivalent. The “UTF-16” encoding requires that dfdl:byteOrder is defined.
Annotation: dfdl:format

	
	

	
	

14 Framing
Several properties are common across the various framing styles or are used to distinguish them. Generally these have to do with position and length for text, bit fields, or opaque data.

14.1 Aligned Data

Alignment properties control the leading alignment and trailing alignment regions.

[image: image9.emf]Alignment Pad Region Leading Skip Bytes Region

Leading Alignment

Region

Trailing Skip Bytes Region

Trailing Alignment

Region

The following properties are used to define alignment rules.
	Property Name
	Description

	alignment
	Positive integer or 'implicit'

Gives the alignment required for the beginning of the item.
‘implicit' specifies that the natural alignment for the representation type is used. See the table of implicit alignments for binary number types (TBD: xref to table) If alignment is 'implicit' then alignmentUnits is ignored.
Values are usually 1, 2, 4, 8, 16 to match memory word alignment boundaries, 8096 to match page alignment boundaries. However, any positive integer power of 2 is allowed.

Annotation: dfdl:element

	alignmentUnits

	Enum

Valid values are ‘bits’ or ‘bytes’

Scales the alignment so alignment can be specified in either units of bits or units of bytes.

Annotation: dfdl:element

	fillByte
	Byte.

Used on output to fill space between two aligned elements. This includes filling empty bits when fewer than a whole byte worth of bits is needed. In this case how the partial fillByte is aligned in the missing bits is unspecified.

Annotation: dfdl:element

	leadingSkipBytes
	Positive integer

Number of bytes to skip before alignment applied.

Annotation: dfdl:element

	trailingSkipBytes
	Positive integer

Number of bytes to skip after the element, but before considering the alignment of the next element.

Annotation: dfdl:element

There are two properties which control the data alignment by controlling the length of the Alignment Pad Region

· alignment - an integer 1 or greater and which is a power of 2

· alignmentUnits - bits or bytes

An element's representation is aligned to N units if the address of the first unit of the representation is divisble by N. Address 0 is considered to satisfy all alignment requirements.

For example, if alignment=4, and alignmentUnits='bytes', then the element's representation must begin at 0 or a multiple of a 4 byte address. I.e., 0, 4, 8, 12, 16 and so on.

The length of the alignment pad region is measured in bits. If alignmentUnits is ‘bytes’ then we multiply the alignment value by 8 to get the bit alignment, B. The length of the alignment pad region is the smallest non-negative integer L such that (L + N) mod B = 0.

To avoid ambiguity when parsing, optional elements and variable-occurrence arrays where the minimum number of occurrences is zero cannot have alignment properties different from the items that follow them. It is a schema definition error otherwise. This avoids the possibility that the following item is incorrectly parsed as if it were a valid optional element or variable-occurrence array element.
The leading skip bytes and trailing skip bytes regions length are controlled by two properties of corresponding names. The length of these regions in bits is 8 times the value of the corresponding property.

14.2 Delimiters – Text Markup
The following properties apply to all elements (and sequence and choice groups as we’ll see later) that use text markup to delimit that is to initiate and/or terminate data. Delimiters can apply to binary data, however it is often called 'text' markup because it is much more commonly used for textual data formats.

	Property Name
	Description

	escapeScheme
	Indicates that this item is quoted/escaped by a named, previously defined escape scheme.

An anonymous escape scheme can be specified as a child element of the annotation element.

See Section 14.2.1 Escape Scheme Properties.

Annotation: dfdl:element, dfdl:sequence, dfdl:choice

	initiator
	String.

Specifies a text string that marks the beginning of an element or group of elements.

Can be XPATH expression or literal as specified by decorated syntax.

The initiator region contains the initiator string defined by dfdl:initiator. When an initiator is specified, it is a processing error if it is not found. If dfdl:initiator is "" (the empty string), then the initiator region is of length zero, and no initiator is expected.

It is a Schema Definition Error if both initiator and initiatorSeparator are specified locally on the same construct of the DFDL schema.

When both initiatorSeparator
and initiator are specified, one of the two must be specified in an enclosing scope. In this situation, initiator is used; and initiatorSeparator is ignored.

Annotation: dfdl:element, dfdl:sequence, dfdl:choice

	initiatorIgnoreCase
	Boolean

Whether mixed case data
is accepted when matching initiator on input.

On output always use the initiator as specified.

Annotation: dfdl:element, dfdl:sequence, dfdl:choice

	terminator
	String.

Specifies a text string that marks the end of an element or group of elements.

Can be XPATH expression or literal as specified by decorated syntax.
The terminator region contains the terminator string. When a terminator is expected it is a processing error if it is not found. However, if dfdl:finalTerminatorCanBeMissing is specified then it is not an error if the terminator is not found.
On unparsing the terminator is automatically inserted after the item.
Annotation: dfdl:element, dfdl:sequence, dfdl:choice

	terminatorIgnoreCase

	Boolean

Whether mixed case data is accepted when matching terminator on input.

On output always use the terminator as specified.

Annotation: dfdl:element, dfdl:sequence, dfdl:choice

	finalTerminatorCanBeMissing
	Boolean

When the finalTerminatorCanBeMissing property is true, then when an element is the last element in a sequence or array, then on input, it is not a parse error if the terminator is not found but end-of-data or an enclosing delimiter is encountered instead.

For example, if the data is in a file, and the format specifies lines terminated by the newline character (typically LF or CRLF), then if the last line is missing its newline, then this would normally be an error, but if finalTerminatorCanBeMissing is true, then this is not a parse error.

On output the terminator is always written out regardless of the state of this property.

Annotation: dfdl:element, dfdl:sequence, dfdl:choice

	outputNewLine
	String.

Specifies the character or characters that will be used to replace the %#NL; entity during unparse

14.2.1 Escape Scheme Properties (dfdl:DefineEscapeScheme Annotation Element
)

An escape scheme defines the properties that together describe the text escaping rules in force when text markup is present in the data. There are two variants on such schemes, the use of escape character(s) to switch off interpretation of a subsequent character, or the use of opening and closing quote character(s) to switch off interpretation of a contiguous group of characters. The variants can be used together, for example, MS Excel CSV use double quotes to surround data that includes a comma, and uses another double quote to escape a double quote in the data.

TBD: Nested quotes support needs to be added sufficient to handle single quotes nesting double quotes or double quotes nesting single quotes (as in XML - a popular scheme these days even for non-XML data formats).
	Property Name
	Description

	openQuote
	String

Specifies the characters that open the quoting.

If empty, quoting is not used.

If not empty, closeQuote must also be not empty.

Can be a path expression or literal as specified by decorated syntax.

Annotation: dfdl:DefineEscapeScheme

	closeQuote
	String

Specifies the characters that close the quoting.

If not empty, openQuote must also be not empty.

Can be a path expression or literal as specified by decorated syntax.

Annotation: dfdl:DefineEscapeScheme

	escape
	String

Specifies the characters that escape the subsequent character.

If empty, escape is not used.

If quoting is in use, escape is only active within quotes.

Can be a path expression or literal as specified by decorated syntax.

Annotation: dfdl:DefineEscapeScheme

	generateQuotes
	Enum

Valid values ‘always’, ‘whenNeeded’

When to quote on output.

If ‘whenNeeded’ the characters that cause quotes to be generated are any in-scope separator or terminator.

Annotation: dfdl:DefineEscapeScheme

	generateEscape
	Boolean

Whether to escape on output.

If quoting is in use, only the first character of openQuote and closeQuote are escaped.

If quoting is not in use, the first character of any in-scope separator or terminator character is escaped.

Annotation: dfdl:DefineEscapeScheme

14.3 Length Properties

These properties apply to elements of all types and to sequence and choice groups.
	lengthKind
	Enum

Controls how the associated dfdl:length, dfdl:lengthUnits, dfdl:justification and dfdl:paddingCharacter properties are interpreted.

Valid values are: explicit, implicit
, prefixed, delimited, nullTerminated, pattern, endOfParent,

'explicit' means the length of the item is given by the dfdl:length property, and is measured in units given by dfdl:lengthUnits. Used on parsing and unparsing.
'nullTerminated' means the item is terminated by a null character (character with codepoint zero) (valid only for representation='text') dfdl:terminator is ignored. On unparsing a null character is inserted after the item
'delimited' means the item is delimited by the item’s terminator (if specified), an enclosing construct’s separator or terminator.
(valid only for representation='text')

‘prefixed’ means the length of the item is given by a prefix field specified using prefixLengthType. The property prefixIncludesPrefixLength also can be used to adjust the length appropriately. On unparsing the length is inserted into the prefix

‘implicit means the length is to be determined in terms of the type of the element and its schema-specified properties if any.

For binary representations of fixed-length numeric types (byte, short, int, long and their unsigned variants, float, double and any simple restrictions of these), dfdl:lengthKind='implicit' means the length (in bits) will match the maximum precision for the base type of the element. For example 32 bits for ‘int’ type (or anything derived from it), 64 bits for ‘long’ type, 8 bits for ‘byte’ etc.

For simple type elements with text representations (including xs:string type elements) the XSD length information (length or maxLength facets) are used.
For complex type elements that are sequences, 'implicit' means the length is determined by adding up the lengths of the contained children, plus that of any separators or other framing introduced by the sequence itself.
‘pattern’ means the length of the item is given by a regular expression specified using the lengthPattern property. The pattern is only used on parsing, on unparsing lengthkind=implicit is used.
‘endOfParent’ means that the item is terminated by the termination of the containing sequence, ‘endOfParent’ can only be specified on the last item in a sequence or a sequence whose last item has a lengthKind of ‘endOfParent’. When specified on the outermost sequence in a dfdl schema, ‘endOfParent means the item is terminated by the end of the input stream.
On unparsing if the containing sequence is fixed length then the item will be padded if text or filled if binary up to the length of the sequence. If the sequence is variable length then no padding or filling occurs. endOfParent cannot be specified on an item that is contained in a sequence that has lengthKind=’implicit’
Annotation: dfdl:element (all simple types)

	length
	String.

Only used when lengthKind is ’explicit’.

Specifies the length of this element using either a fixed number or an expression to refer to an element earlier in the data,.

Annotation: dfdl:element (all simple types)

	lengthPattern
	String.

Only used when lengthKind is ‘pattern’ and representation is ‘text’

Specifies the regular expression used to determine the length of the element. The syntax of the regular expression is defined in (TBD) DFDL Regular Expressions. The expression is converted to the code page of the element matched against the physical data stream.

LengthPattern is only used on parsing.

Annotation: dfdl:element (all simple types)

	lengthUnits
	Enum

Valid values ‘bytes’, ‘characters’, ‘‘bits
’.

Specifies the units to be used whenever an actual length is being used to extract or write data. Applicable when lengthKind is ‘explicit’, ‘implicit', ‘prefixed’.
See also Section 33 Appendix: About UTF-16 and Unicode Character Codes above 0xFFFF.
Not all enum values are applicable to all physical types.

[Subsumes OMG/CAM property attributeInBit]

Annotation: dfdl:element (all simple types)

	prefixIncludesPrefixLength
	Boolean

Whether the length given by a prefix includes the length of the prefix as well as the length of the text string.

Used only when lengthKind=’prefix’.

Annotation: dfdl:element (all simple types)

	prefixLengthType
	Qname
Name of a simple type derived from xs:integer or any subtype of it.
This type, with its DFDL annotations specifies the representation of the length prefix, which immediately precedes the string content.

 [replaces OMG/CAM property prefixLength]

Annotation: dfdl:element (all simple types)

Several DFDL representation properties are used to determine the length of an element of simple type:

· representation

· lengthKind

· length

· lengthUnits

· encoding

·
· prefixIncludesPrefixLength

· lengthOfPrefix

· initiator (and TBD: initiator tag separator)

· terminator

Depending on the values of these properties, one of a number of means of determining the length of an element's representation can be determined.

There are several fundamentally different methods by which the length of an element of simple type is determined:

· specified: This category includes known, fixed, stored, and computed length - the length is specified using the logical value of other data in the representation, or is found directly in the Schema as an integer, or is implied by the type.

· delimited - the length is determined by scanning the representation) for a non-data pattern.

· pattern - The length is determined by scanning the data and using all data that matches a pattern.

In specified-length methods, we are able to determine an integer value which gives the number of units in the length of the element. The property lengthUnits tells us whether the integer gives the number of bits, bytes, or characters when needed.
In delimited methods we must look at the data for indications of the end of the element. A simple comma separating the elements of a sequence is an example of a delimiter for a simple type element that is within that sequence.

For ‘pattern’ we consume data matching a regular expression to determine the length. The usual longest-possible match rule applies.

14.3.1 Length of Text: Strings or Underlying String Representation of Simple Types
Textual data is defined to mean either data of type string (independent of representation), or data where the representation property is 'text' or 'xml'.

When the type of the data item is a simple type, but is not of type string, but the representation is 'text' or 'xml', then we refer to the bits of the representation of the data item when viewed as textual characters as the underlying string representation. When the type of the data item is string, then we can think of the contents of the string and the underlying string representation as the same and we do not distinguish the two. When we refer to the length of a string, we can by context be referring to either an element of type string, or a non-string element's underlying string representation.

14.3.1.1 Character Width

The width of a character
 is the length of its representation in bytes. The calculation of the width of a character uses these properties:

· encoding

·
Character encodings are themselves either intrinsically fixed or variable width, but this is modified by additional properties.

This table gives the means to calculate the width of a character in an encoding:

	fixed, 1 byte (e.g., ASCII)
	fixed, 2 byte (e.g., UTF-16)
	fixed, 4 byte (e.g., UTF-32)
	variable (e.g., Shift_JIS, UTF-8)

	
	
	
	

	
	
	
	
	

	1
	
	2
	4
	Variable width.
 Min = 1,

Max = encoding dependent

2

We define the term fixed width encoding to mean an encoding and associated other representation properties where the value in the bottom row of the above table is a fixed integer.

The term variable width encoding is the opposite. In a variable width encoding, the characters have a minimum and a maximum length. The maximum depends on the encoding, but is typically either 3 (Shift-JIS), or 4 (UTF-8

14.3.1.2 Length (in Bytes) of a Text String

The payload of a string is the characters making up the value of the string. This excludes any other information needed to determine the length such as delimiters. If a byte-order mark codepoint appears at the start of a UTF-16 or UTF-32 encoded string then the byte-order mark will be included as part of the string payload
. That is, for the UTF-16 and UTF-32 character encodings, a byte-order-mark codepoint is treated as a character of the string in DFDL.
There are 4 length algorithms, or protocols:

· Fixed Width – use a formula - the length in bytes can be computed from the number of characters by a fixed formula.

· Variable Width – use a formula for max and min number of bytes. Scan parsing characters, and counting bytes, but keep track of the max/min number of bytes to detect errors.
· Pattern Scan - scan, converting characters, while counting bytes and while searching for regular expression match.
· Delimited Scan - scan, converting characters, while counting bytes and while searching for delimiters.

14.3.1.3 Text Length in Characters when Specified in Bytes

When the lengthUnits property is 'bytes', then the specified length of the representation in bytes is obvious, but the number of characters in the string or underlying string, and the values of those characters must be determined differently. In this case when the above table specifies a formula, there is a formula, given the number of bytes, for determining the number of characters. When the table above indicates a variable-width encoding, then the number of characters can only be determined by parsing the actual data into characters, and counting them. Moreover, this must be done only up until the number of bytes indicated as the length.

The above discussion can be summarized into these length protocols:

· Fixed Bytes - formula - the number of characters can be computed from the number of bytes by a fixed formula.

· Scan Bytes - scan, converting and counting characters while limiting to the number of bytes.

When the length in bytes is not a multiple of the fixed character width, then the extra bytes at the end are ignored on input and filled with the byte given by the fillByte property on output.

When the length in bytes includes one or more bytes making up a final fragment of a character in a variable-width character set. Then these additional bytes are ignored on input, and are filled with the character given by the padChar property on output.

It is a schema definition error if the lengthUnits='bits' for a string, or for any element type when representation="text".

14.3.1.4 Prefix-Length Strings

Prefix lengths are commonly used, but unfortunately there are many prefix length formats.

DFDL allows description of the prefix fields by way of the dfdl:prefixLengthType property. The type referenced must describe an integer type element the value of which is used to compute the length. Consider this example:
<element name="myString" type="string"

 dfdl:lengthKind="prefixed"

 dfdl:lengthPrefixType="packed4"/>

<simpleType name="packed4">
 <restriction base="integer"

 dfdl:representation="decimal"

 dfdl:decimalType="packed"

 dfdl:numberFormat="9999"

 dfdl:decimalSigned="false"

 dfdl:prefixIncludesPrefixLength="false"/>
</simpleType>

In the above, the string has a hidden prefix element of type 'packed4' containing 4 packed decimal digits.

The DFDL standard includes schemas that define types for several very common prefix formats.
The property prefixIncludesPrefixLength is a Boolean which allows the length computation to be varied to include or exclude the length of the prefix element itself.

The prefix element's value contains the length measured in units given by dfdl:lengthUnits.

When writing out data, the value of the prefix is computed automatically.

14.3.1.5 Pattern-based Lengths

When length is determined by pattern the DFDL processor scans the source stream to determine a string value that is the longest match to a regular expression.

Escape schemes are not considered when scanning for this match.

It is a processing error if there is no match for the regular expression unless the corresponding element is not required.

It is a processing error if conversion of data into a string based on the character set encoding causes an error due to illegal bit patterns that are not legal for the encoding.

14.3.2 Length of Simple Number Types with Binary Representations

The binary number types are all fixed length objects. Given the type and the representation, the length (in bits) is directly known. For the integers this can be overridden by way of the length properties.
Rationale Note: these seem like default values for the lengths of these representations, and DFDL generally doesn’t have default values. However, these lengths are the ones that match the maximum precision universally specified by XSDL for these types. There is nothing to be gained by making these types not have these lengths. (Making the C types short, int, long have implementation-dependent precision is roundly viewed as an error for portable software these days which is why XSDL and Java did not replicate this mistake and specify the precisions of the numeric types exactly.)
	Type
	Representation
	Other representation properties
	Implicit Length in Bits
	Implicit Alignment in Bits

	byte, unsignedByte
	binary
	
	8
	8

	short, unsignedShort
	
	
	16
	16

	int, unsignedInt
	
	
	32
	32

	long, unsignedLong
	
	
	64
	64

	Type
	Representation
	Other Representation Properties
	Values for Other Representation Properties
	Implicit Length in Bits
	Implicit Alignment in Bits

	float
	binary
	floatType
	

ieee

	

32
	32

	
	
	
	ibm390Hex

	32

	32

	double
	binary
	floatType
	

ieee
	

64
	64

	
	
	
	ibm390Hex

	64

	64

	Type
	Representation
	Other Representation Properties
	Values for Other Representation Properties
	Implicit Length in Bits
	Implicit Alignment in Bits

	decimal, integer, long, int, short, byte, unsignedLong, unsignedInt, unsignedShort, unsignedByte
	decimal

See Supplement for BCD, packed, and zoned decimal formats

TBD: new iee754 decimal is coming
	decimalType

	zoned
	TBD: these will be in terms of totalDigits + fractionDigits.??
	

	
	
	
	packed
	
	

	
	
	
	BCD
	
	

14.3.3 Length of Bit Fields

A bit field is an element of integer type where the lengthUnits=’bits’.

It is a schema definition error if the length of a bit field is too large for the corresponding integer type, and the length can be statically determined (from the schema only).

It is a runtime schema definition error if the length of a bit field can only be determined dynamically (for example because it is stored in the data), and the resulting length is too large for the integer type.
15 Simple Types
The ‘representation’ property identifies the physical representation of the element. The DFDL logical types are grouped to illustrate which physical representations apply to each logical type. The allowable physical representations for each logical type grouping are also shown, where the logical type groupings are defined as:

Number: xs:double, xs:float, xs:decimal (and the integer restrictions: xs:int, etc)

String: xs:string

Calendar: xs:dateTime, xs:date, xs:time, xs:duration

Opaque: xs:hexBinary

Boolean: xs:Boolean

	Property Name
	Description

	representation
	String

Valid values are dependent on logical type
.
Number: ‘text, ‘binary’

String: ‘text'(implied), ‘xml’

Calendar: ‘text, ‘binary’

Boolean: ‘text, ‘binary’

Opaque: ‘binary’

Note that for type String, the representation is always assumed to be 'text' so only the value 'xml' for representation has any effect on how String type elements are processed.

Annotation: dfdl:element (all simple types)

15.1 Properties Common to All Simple Types with Text representation

	Property Name
	Description

	textPadCharacter
	String.

The padding character used as the default for justification of text elements.

In fixed width character sets this must contain a full single character representation. So if hex entities are used, enough hex bytes must be supplied to provided the full width of a character.

In variable width character sets, this character must be a minimum-width character unless it is specified as an entity (see section TBD Entities)

Annotation: dfdl:element (simple type ‘string’)

	textTrimKind
	Enum

Valid values ‘none’, ‘padChar’
Indicates whether to trim data on input.

If lengthKind results in a fixed length then the padding character can be trimmed instead, as controlled by textStringJustification.

Annotation: dfdl:element (simple type ‘string’)

15.2 Properties Specific to Strings with Text representation
	Property Name
	Description

	textStringJustification

	Enum

Valid values ‘left’, ‘right’, ‘none’, ‘center’
Controls how an item is justified on output when the actual length of a text string is different from the specified length.
Controls how an item is trimmed on input if textTrimKind is padChar
If ‘none’ the string is expected to match the length.

Otherwise:

- If lengthKind results in a fixed length: If shorter than the specified length it is padded with the pad character. If longer than the specified length it is truncated.

- If lengthKind is ‘prefixed’: If the string is longer than any specified maximum length it is truncated.

‘center’ adds equal padChars before and after the string contents if the string is too short. It adds one extra padChar before if needed.

‘center’ truncates equal numbers of characters before and after if the string is too long. It removes one extra character at the front of the string if needed.

 [OMG/CAM property justification]

Annotation: dfdl:element (simple type ‘string’)

15.2.1 TextString with dfdl:representation=‘xml’

XML is considered to be a special variety of text representation for the XSDL string simple type. It is a shorthand for a quite complex collection of related escape schemes and delimiter specifications associated with well-formed XML syntax.

The dfdl:representation=”xml” property specifies that the value is a well-formed fragment of XML. Specifically, it does not require the value to be a well-formed XML document. But rather it must be a well-formed XML fragment. A well-formed XML fragment has matching start and end tags, and matching quotations, and proper use of escape sequences, but it need not specify namespace meanings.

15.3 Properties Specific to Number with Text representation

	Property Name
	Description

	textNumberRepresentation
	String

Valid values are ‘text’, ‘zoned’,

 ‘text’ means respresented as characters in the ‘encoding’ code page

‘zoned’ means respresented as a zoned decimal in the ‘encoding’ code page

	textNumberJustification

	Enum

Valid values ‘left’, ‘right”, ‘none’, ‘center’

Controls what happens on output when the actual length of a text number is different from the specified length.

Behaviour as for textStringJustification.

Annotation: dfdl:element (simple type ‘number’)

	textNumberFormatRef
	QName

Provides the name of the defineTextNumberFormat annotation that provides the additional properties used to format the text number

See Sections 7.7 The dfdl:DefineTextNumberFormat Annotation Element and
 15.3.1 The dfdl:TextNumberFormat Properties.

Annotation: dfdl:element (simple type ‘number’)

15.3.1 The dfdl:TextNumberFormat Properties

A number format defines the properties that together describe how a number is to be interpreted. It contains a formatting pattern property plus properties that qualify the pattern.

It can be used when a number has a representation of ‘text’ .

The scheme described below is derived from the ICU DecimalFormat class described here: http://icu.sourceforge.net/apiref/icu4c/classDecimalFormat.html#_details

We omit the padding, percentage and currency options. Padding is a function of length and percentage/currency symbols are typically modeled separately, that is, as a separate field of the data.
Extensions are number base, allowing blank to be treated as zero, strict versus lenient checking, and allowing a virtual decimal point.

If the pattern uses digits/fractions then these must match any XML Schema facets. If not it is a schema definition error.

	Property Name
	Description

	numberPattern

	String.

Defines the ICU-like pattern that describes the format of the text number. The pattern defines where grouping separators, decimal separators, implied decimal points, exponents, positive signs and negative signs appear. It permits definition by either digits/fractions or significant digits. Allows rounding.

The pattern comes in two parts separated by a semi-colon. The first is mandatory and applies to positive numbers, the second is optional and applies to negative numbers.

Examples. The first shows digits/fractions and positive/negative signs, the second shows exponent, the third shows significant digits.

+###,##0.00;(###,##0.00)

##0.##E0

#,#@#

+###V##

Note that 'V' is used to indicate the location of an implied decimal point for fixed point numbers. (This is an extension to the ICU pattern language.)
The actual grouping separator, decimal separator and exponent characters are defined independently of the pattern.

The actual positive sign and negative sign are defined within the pattern itself.

Can be XPATH expression or literal as specified by decorated syntax.

Annotation: dfdl:TextNumberFormat

	numberGroupingSeparator
	String.

Defines the actual character that will appear in the data as the grouping separator.

Can be empty string indicating no grouping separator.

Can be XPATH expression or literal as specified by decorated syntax.

Annotation: dfdl:TextNumberFormat

	numberDecimalSeparator
	String.

Defines the actual character that will appear in the data as the decimal separator.

Can
 be XPATH expression or literal as specified by decorated syntax.

Annotation: dfdl:TextNumberFormat

	numberExponentCharacter
	String.

Defines the actual character
that will appear in the data as the exponent indicator.

Can be XPATH expression or literal as specified by decorated syntax.

Annotation: dfdl:TextNumberFormat

	numberCheckPolicy
	Enum

Values are “strict” and “lax”.

Indicates how lenient to be when parsing against the pattern.

If ‘lax” then grouping separators can be omitted, decimal separator can be either ‘.’ or ‘,’ (as long as this is unambiguous), exponent can be mixed case, leading positive sign can be omitted, all whitespace is treated as zero, and leading and trailing whitespace is ignored.

On output the pattern is always followed.

Annotation: dfdl:TextNumberFormat

	numberInfinityRep
	Character

The value used to represent infinity.

Infinity is represented as a single character, typically \u221E, with the positive or negative prefixes and suffixes applied
Annotation: dfdl:TextNumberFormat

	numberNaNRep
	Character

The value used to represent NaN.

NaN is represented as a single character, typically \uFFFD. This is the only value for which the prefixes and suffixes are not used
Annotation: dfdl:TextNumberFormat

	numberBase
	Enum
Vaild Values ‘2’, ‘8’, ‘10’, ‘16’
Indicates the number base.

Annotation: dfdl:TextNumberFormat

	numberRoundingMode
	Enum

Valid values ‘roundCeiling’, ‘roundFloor’, ‘roundDown’, ‘roundUp’, ‘roundHalfEven’, ‘roundFloor’, ‘roundHalfDown’, ‘roundHalfUp

The rounding increment is specified as part of the pattern.

Annotation: dfdl:TextNumberFormat

	zonedDecimalSignStyle
	Enum
Used only when numberFormat is ‘zoned’
Used only when encoding specifies an ascii-derived character set. This includes all the Unicode character sets, and all variations of ascii and ISO-8859.

Valid values 'asciiStandard', ‘asciiTranslatedEBCDIC', ‘asciiCARealiaModified'

Which characters are used to represent ‘overpunched’ (included) positive and negative signs, varies by encoding, Cobol compiler and system. It is fixed for EBCDIC systems but not for ASCII.
In EBCDIC-based encodings, characters ‘{ABCDEFGHI’ represent a positive sign and digits 0 to 9. (character codes 0xC0 to 0xC9). The characters ‘}JKLMNOPQR’ represent a negative sign and digits 0 to 9. (character codes 0xD0 to 0xD9) This is how overpunched signs are interpreted for all EBCDIC-based character encodings.
asciiStandard: ASCII characters ‘0123456789’ represent a positive sign and the corresponding digit. (Sign nibble for ‘+’ is 0x3, which is the high nibble of these character codes unmodified.) ASCII characters ‘pqrstuvwxy’ represent negative sign and digits 0 to 9. (Character codes 0x70 to 0x79)
translatedEBCDIC: The overpunched character is the ASCII equivalent of the EBCDIC above. So the characters ‘{ABCDEFGHI’ still represent a positive sign and digits 0 to 9. (These are character codes 0x7B, 0x41 through 0x49). The characters ‘}JKLMNOPQR’ still represent negative sign and digits 0 to 9. (These are character codes 0x7D, 0x4A through 0x52). This case comes up if ebcdic zoned decimal data is translated to ascii as if it were textual data.

asciiCARealiaModified

: In this style, the ASCII characters ‘0123456789’ represent positive sign and digits 0 to 9 as in standard. However, ASCII characters from code 0x20 to 0x29 are used for negative sign and the corresponding decimal digit. This doesn't translate well into printing characters. These characters include the space (‘ ‘) for zero, characters ‘!”#$%&’ for 1 through 6, the single quote character “’” for 7, and the parenthesis ‘()’ for 8 and 9.
Annotation: dfdl:TextNumberFormat

	zeroNumberRep
	String
Valid values: empty string, any character string
The character string that is equivalent to zero, for example the charatcters ‘zero’.

The empty string means that there is no special character string for zero

15.4 Properties Specific to Number with Binary representation
	Property Name
	Description

	binaryNumberRepresentation
	String

Valid values are ‘packed’, ‘BCD’, 'binary'

Allowable values for each number type are

type
Permitted value
Decimal/Integer

packed, BCD
Long, Int, Short, Byte,

packed, binary
UnsignedLong, Unsignedint, Unsignedshort, Unsignedbyte

packed, BCD, binary
 ‘packed’ means respresented as a packed decimal.

‘BCD’ means respresented as a binary coded decimal.

‘binary’ means respresented as twos complement for signed types and unsigned binary for unsigned types..

	decimalVirtualPoint
	Integer.
Used when numberFormat is ‘BCD’ or ‘packed’
Non-negative integer indicating the virtual position in the data of the decimal point

	packedDecimalSignCodes
	Character

Used only when numberformat is ‘packed’
A space separated string giving the hex sign nibbles to use for a positive value, a negative value, an unsigned value, and zero.

Valid values for positive nibble: A, C, E, F

Valid values for negative nibble: B, D

Valid values for unsigned nibble: F

Valid values for zero sign: A C E F 0

Example: ‘C D F C’ – typical S/390 usage

Example: ‘C D F 0’ – handle special case for zero

On parsing, whether to accept all valid values for a positive, negative or unsigned number, and for zero, is governed by the numberCheckPolicy property. On unparsing, the specified values are always used.

15.5 Properties Specific to Boolean with Text representation
	Property Name
	Description

	textBooleanTrueRep
	String

Representation value to be used for ‘true’

Annotation: dfdl:element (simple type ‘boolean’)

	textBooleanFalseRep

	String

Representation value to be used for ‘false’

Annotation: dfdl:element (simple type ‘boolean’)

15.6 Properties Specific to Boolean with Binary representation
.

	Property Name
	Description

	
	

	integerBooleanTrueRep
	Integer

Representation value to be used for ‘true’

Annotation: dfdl:element (simple type ‘boolean’)

	integerBooleanFalseRep

	Integer

Representation value to be used for ‘false’

Annotation: dfdl:element (simple type ‘boolean’)

15.7 Properties Specific to Float with Binary representation
.

	Property Name
	Description

	floatFormat
	Enum

This specifies the encoding method for the float.

Valid values are

‘ieee’, ‘ibm390Hex
’,
[OMG/CAM property floatType]
Annotation: dfdl:element (simple type ‘number’)

15.8 Properties Specific to Opaque Types (hexBinary)
	Property Name
	Description

	lengthKind
	Enum

Valid values
are 'implicit', 'explicit', 'endOfData'

The ‘implicit’ value means the xs:length facet is used to determine the length.

Annotation: dfdl:element

	length
	Integer
When lengthKind='explicit' gives the number of bytes in the representation. Note that the units of length for the hexBinary type is always bytes.

The length can be computed by an expression.

Annotation: dfdl:element

	type
	representation
	lengthKind
	resulting length (in bytes)
	other

	xs:hexBinary
	binary
	implicit
	xs:length facet
	

	
	
	explicit
	dfdl:length
	Validation: xs:length facet must be equal to resulting length in bytes or it is a processing error.
(TBD: similar range checks on xs:minLength, xs:maxLength)

	
	
	endOfParent
	variable
	

15.9 Properties for Nillable Elements

These properties are used when the XSDL ‘nillable’ attribute is true, and they control when and how the representation data are interpreted as having the logical meaning ‘nil’.

	Property Name
	Description

	nilKind
	Enum

Valid values ‘literalValue’, ‘logicalValue’, ‘literalCharacter’, ‘nilIndicator’
Specifies the nature of nil processing.
If ‘literalCharacter’ then nilValues must be any single character. On input the element value is nil if all characters in the data match the nilValues character. On output if the element value is nil the nilValues character is output to the required length. Only applicable to fixed length elements. Only applicable for fixed-width character sets.

If ‘literalValue’ then nilValues must be any string value that can fit in the element. The value does not have to match the type of the element. On input the element value is nil if the data matches nilValues literally without any conversion. On output if the element value is nil nilValues is output.

If ‘logicalValue’ then nilValues must be any value that matches the simple type. On input the element value is nil if the data, converted to its logical type, matches nilValues. On output if the element value is nil, nilValues is converted to its physical representation and output.

If ' nilIndicator ' then the nilIndicatorPath is used to find a flag/indicator which is tested to determine whether the element is nil.

It is a schema definition error if a nillable element has both dfdl:nilKind='nilIndicator' and dfdl:initiator not equal to "" (empty string).

Annotation: dfdl:element (all simple types)

	nilValues
	String

A list of nil values of the element.
For ‘literalValue’ and ‘logicalValue’ a white space separated list of string literals or XPath expressions may be specified in
this property. On input the element is considered to be nil if its value matches any of the values specified in the list. On output the first value in the list is used.

An element with minLength of zero and nillable with the empty string as one of the dfdl:nilValues is incompatible. It is a schema definition error if a variable length string where zero length is valid also is nillable and has a nil value of the empty string specified.

Annotation: dfdl:element (all simple types)

	nilIndicatorPath

	Path Expression

Path to a logical Boolean field which indicates if this element is nil.
For nilKind='nilIndicator'., a path expression referencing another element
that must be of type Boolean which indicates if this element is nil. On input, the element value is nil if the provided value is true.

When nil, on input the element is parsed as normal. If the element length is known then the value is skipped otherwise the value must be scannable.

When nil, on output the value is set based on fillByte or padCharacter properties and the referenced value set to true.

If non-nil then the element is parsed or output normally and the referenced value set to false.
Annotation: dfdl:element (all simple types)

	nilIndicatorIndex
	Integer

The nilIndicatorIndex property is optionally used in conjunction with the nilIndicatorPath property to reference an array element that determines whether this element is nil. This is done by taking the element referenced by the nilIndicatorPath as the base and using the value of the nilIndicator as a (one based) index from the base. The units of the index will be that of the element referenced by the nilIndicatorPath property. The nilIndicatorIndex property is only applicable when the nilKind property is 'nilIndicator'.

This property requires that nilIndicatorPath is defined. It is a schema definition error if this is defined and nilIndicatorPath is not defined.

Annotation: dfdl:element (all simple types)

	nilValueInitiatorPolicy
	Enumeration
Valid values are 'required' or 'prohibited'.

Indicates that when a value is nil, one will either still find the initiator, or one will not.

Ignored when dfdl:nilKind='nilIndicator'
Ignored unless dfdl:initiator is specified and is not "" (empty string).

'required' indicates that the dfdl:initiator followed by one of the dfdl:nilValues is the required syntax to indicate that a nil value will be used. It also indicates that on output when the logical value is nil that the initiator will be output followed by the first of the dfdl:nilValues.

'prohibited' indicates that one of the dfdl:nilValues without any initiator triggers creation of a nilvalue, and the presence of an initiator implies that a non-nilValue representation must follow. On output when the logical value is nil the first of the dfdl:nilValues is output without any initiator.
See Section TBD: on Sequence Groups for more information about initiators.

15.10 Properties for Default Value Control

To explain how parsing works in the presence of default values we need to depend on some definitions.

Definition ‘has default value specified’

An element has a default value specified if any of these are true:

· The default attribute is specified.

· The fixed attribute is specified.

· useNilForDefault is specified (implies nillable)
· The element has the xs:nillable=”true”, and the dfdl:nilKind="literal" and dfdl:nilValues list contains the empty string. (In this case the default value is nil)
Otherwise the element has no default value specified.

Definition: 'required'

We define the term 'required' as follows:

· A scalar element is required.

· An element of a fixed-occurrence array is required.

· An element of a variable-occurrence array is required if its index is less than or equal to the value of minOccurs.
All other elements are not required.

Definition 'success'

A parse of an element is successful if no parse error occurs during the parsing of that element.

When parsing an element, the element is either required or not. If an element is required, but parsing does not find it, then if the element has a default value specified it is used as the logical value. If there is no default value then it is a processing error.

(Suggest: Warning appropriate for DFDL schemas with non-zero minOccurs and no default value.)

If the element is not required, and parsing does not find it successfully then it is not present, in which case no defaulting occurs.

On unparsingoutput, if an element is required, and is not part of the logical data and the element has a default value specified then it is used, otherwise it is a processing error.

On unparsingoutput if an element is not required and not in the logical data then no defaulting occurs.

Type string with minLength of zero and default value are incompatible. It is a schema definition error if a variable length string where zero length is valid also has a default value specified.
	Property Name
	Description

	useNilForDefault
	Boolean

Use nil as the default value

This property has precedence over the default attribute.

Defaulting occurs as described above with nil as the default value. NilValues must specify at least one nil value otherwise a schema definition error occurs.

Annotation: dfdl:element (all simple types)

	defaultValueInitiatorPolicy
	Enum

Valid values are 'required' or 'prohibited'

Ignored unless dfdl:initiator is specified and is not "" (empty string).

Ignored unless the element declaration has a default attribute specified.

'required' indicates that the dfdl:initiator followed by empty content is the required syntax to indicate that a default value will be used.

'prohibited' indicates that empty content triggers the use of a default value, and the presence of an initiator implies that a non-default value representation must follow.

‘prohibited’ implies an ordered sequence. Use of defaultValueInitiatorPolicy=’prohibited’ in an initiated element of an unordered group is a schema definition error.

This property applies only on input. (On output, for a required output an initiator is always output regardless of the default value.)

15.11 Nils, Defaults, and Initiators

Here we describe the interaction of nil values and default values when elements have initiators.

15.11.1.1 Initiators and Input

Given the content of the initiator region and the content region, this table shows how the logical value is determined for a required element.

	initiator region
	content region
	content matches nilValues?
	nilValueInitiatorPolicy
	has default value specified
	defaultValueInitiatorPolicy
	Logical Value

	matching
	content
	yes(implies nillable)
	required
	don't care
	nil

	
	
	no or not nillable
	don't care
	
	parse content to get value

	matching
	empty
	yes (empty string is a nil value) Implies nillable
	required
	
	nil

	
	
	no or not nillable
	don't care
	yes
	require
	default value

	
	
	
	
	no
	
	empty string (implies type=string)

	empty
	content
	yes (implies nillable)
	prohibited
	don't care
	nil

	
	
	no or not nillable
	don't care
	
	parse content to get value

	empty
	empty
	yes (empty string is a nil value) Implies nillable
	prohibited
	
	nil

	
	
	no or not nillable

	don't care
	yes
	prohibited
	default value

	
	
	
	
	no
	
	empty string (implies type is xs:string)

15.11.1.2 Initiators and Output

This table describes the output direction logic for an initiated element that is a required element. We assume here that dfdl:initiator is specified and not equal to the empty string.

	Logical Value
	nilValueInitiatorPolicy
	useNilForDefaultinitiator region contains
	initiator region contains
useNilForDefault
	content region contains

	nil
	prohibited

	don't care

	nothing
	representation of nil based on nilKind, nilValues, etc.

	
	required
	
	initiator string
	

	"" (empty string)

Note that this implies that the element type is xs:string
	don't care
	
	initiator string
	empty string

	a non-nil non-empty-string value
	don't care
	
	initiator string

	The representation of the logical value

	nil
	prohibited

	nothing
	don't care

	representation of nil based on nilKind, nilValues, etc.

	
	required
	initiator string
	
	

	"" (empty string)

Note that this implies that the element type is xs:string
	don't care
	initiator string
	
	empty string

	a non-nil non-empty-string value
	don't care
	initiator string

	
	The representation of the logical value

	Not supplied

(element is not nillable)
	Don’t care
	Don’t care Initiator string
	Initiator string Don’t care
	The representation of the default value.

(No default value implies processing schema definition error.)

	Not supplied

(nillable)
	Prohibited
	True
	Nothing
	Representation of nil basd on nilKind, nilValues, etc.

	
	Required
	
	Initiator string
	

	Not supplied

(nillable)
	Prohibited
	Nothing
	True
	Representation of nil basd on nilKind, nilValues, etc.

	
	Required
	Initiator string
	
	

	
	Don’t care
	False Initiator String
	Initiator String False
	The representation of the default value.

(No default value implies processing schema definition error.)

16 Sequence Groups

	Property Name
	Description

	sequenceKind
	Enum
Valid values are "ordered", "unordered" “unorderedInitiated”
This property cannot have an expression used to compute its value.

When "ordered", this property means that the contained items of the sequence will be encountered in the same order that they appear in the schema, which is called schema-definition-order.

When "unordered", this property means that the items of the sequence will be encountered in any order.
When "unorderedInitiated", this property means that the items of the sequence will be encountered in any order but item will have an initiator which can be used for indentification.
Annotation: dfdl:sequence

	length
	Integer

The length property of a sequence bounds the content length.

It is a processing error if the length of the content is determined to be greater than the length specified on the containing sequence.

It is a schema definition error if the length of the content is determined to be greater than the sequence length and this can be determined without reference to data. (I.e., from the schema alone.)

	lengthKind
	Enum
Valid values are implicit, explicit, delimited, nullTerminated, endOfParent pattern, prefixed
'implicit' means the length of the sequence is the sum of the lengths of its constituent children plus any delimiters specified as part of the data syntax of the sequence itself.

'explicit' same simple types.

'delimited' means the sequence is delimited by the sequence’s terminator, an enclosing construct separator or terminator,
(valid only for representation='text')
'nullTerminated' means the sequence is terminated by a null character (character with codepoint zero) (valid only for representation='text') dfdl:terminator is ignored.
'endOfParent' means the sequence is delimited by a limit placed by an enclosing construct's length limit. (valid only for representation='text')
‘pattern’ means the length of the sequence is given by a regular expression specified using the lengthPattern property.

‘prefixed’ means the length of the sequence is given by a prefix field specified using prefixLengthType. The property prefixIncludesPrefixLength also can be used to adjust the length appropriately.

	lengthUnits
	Enum
Valid values are bits, bytes,.

16.1 Empty Sequences

A sequence having no children is syntactically legal in DFDL; however, a sequence having no children must have content length zero. It can still have non-zero length Prefix and Suffix regions, but the SequenceContent region in between must be of length zero. It is a schema definition error if the SequenceContent region of an empty sequence is not length zero.

16.2 Pattern-Based Lengths for Complex Types - Scanability

For pattern-based length methods, the DFDL schema must describe data which exhibits a property known as scanability.

In this situation, if an element has complex type, then all sub-elements contained in the dynamic extent of that complex type must be properly specified so that the regular expression scanning of their enclosing elements will parse properly.

Scanability places a restriction on all contained structures inside the contiguous representation or dynamic extent of an element of complex type. Specifically:

· encoding doesn't vary - this includes not only the encoding property itself, but also the other properties which modify the encoding (byteOrder for UTF-16 and UTF-32,),
When representation properties for an element declaration or group specify a regular expression length method, the DFDL processor must check for the scanability property restrictions in the entire dynamic scope of the element's declaration. It is a schema-definition error if the scanability property doesn't hold.

Implementor Note: In attribute grammar terms, Scanability is a synthetic attribute.

A choice is considered scanable when all the alternatives/branches are scanable.

A sequence group is scanable when all constructs within it are scanable.

16.3 Sequence Groups with Delimiters
The following additional properties apply to sequence groups that use text markup to initiate, terminate and/or separate elements.

	Property Name
	Description

	escapeScheme,

initiator,

initiatorIgnoreCase,

terminator,

terminatorIgnoreCase

finalTerminatorCanBeMissing
	These properties are have the same meaning on a sequence group as on an element. See Section (TBD: Xref above).

The escapeScheme also applies to the separator.

	separator
	String.

The separator region contains the string specified by the dfdl:separator property. When this property has "" (empty string) as its value then the separator region is of length zero.

Can be XPATH expression or literal as specified by decorated syntax.

Annotation: dfdl:sequence

	separatorIgnoreCase
	Boolean

Whether mixed case data is accepted when matching separator on input.

On output always use the separator as specified.

Annotation: dfdl:sequence, dfdl:choice

	separatorPosition
	Enum

Valid values ‘infix’, ‘prefix’, ‘postfix’
‘infix’ means the separator occurs between the elements

‘prefix’ means the separator occurs before each element

‘postfix’ means the separator occurs after each element. On parsing the separator after the last item is optional. On unparsing the final separator will always be written.
Annotation: dfdl:sequence.

	separatorPolicy
	Enum

Valid values ‘require', ‘suppress', ‘suppressAtEnd’

Specifies whether to expect a separator when an element is missing. Ignored unless dfdl:separator is specified and is not "" (empty string).

See the discussion below for details.

'suppress' implies the children of the sequence must have dfdl:initiator specified.

Annotation: dfdl:sequence

16.3.1 Sequence Groups and Separators

A number of issues arise in explaining sequence groups having separators.

There are 4 distinct kinds of sequence groups

	sequenceKind
	separatorPolicy
	Implications

	ordered
	required
	All separators must be found in the data..

	ordered
	suppressAtEnd
	All separators must be found in the data except that when the sequence has trailing optional items, the separators are suppressed for any final missing items.
 Note suppressAtEnd can only be used when there is no clash with delimeters from the containing structure.

	ordered
	suppress
	It must be possible for speculative parsing to identify which elements are present.

	unordered
	ignored (suppress behavior implied)
	

	unorderedInitiated
	ignored (suppress behavior implied)
	Initiators are used to identify which elements are present and which are missing.

All children must have dfdl:initiator strings that are distinct and not the empty string. (Schema definition error otherwise.)

nilValueInitiatorPolicy and defaultValueInitiatorPolicy must both be 'required'
 (Schema definition error otherwise)

In an unordered group or an ordered group with dfdl:separatorPolicy="suppress", the initiator must provide the critical syntax distinction so that ambiguity among the sub-elements can be resolved.

 (TBD: do we allow sequences with initiators to be children of an unordered sequence, or do we require the children of an unordered sequence to be elements? Conservative would be to require elements.)

16.3.2 Nests of Specified Length within Delimited Constructs

When something has specified length (fixed, or calculated/stored length), we need to count as we parse and in the case where there are also delimiters specified we must also search for the delimiters. The count and the position of the delimiters must be consistent or it is a processing error.

When an element has only a specified length and there are no delimiters specified, but the element is enclosed within delimited constructs, then delimiter scanning is suspended for the duration of the processing of the specified-length element.

This allows formats to be parsed which are not scanable in that they contain non-character data. However, this also implies that formats which require scanability cannot nest elements with both specified length and no delimiters. This is a limitation on DFDL schema composition. Elements having formats incompatible with scanability cannot be nested inside constructs where scanability is required.

Scanability is required unless the entire dynamic extent of an element can be determined without reference to any delimiter of the enclosing group or array. It is a schema definition error otherwise.

Scanability is required for the entire dynamic extent of any construct where the length is determined by a regular expression match.

16.3.3 Pattern-based Length and End-of-Data Delimiter

When the lengthKind of an element is ‘pattern’, then a scan is performed to find the match of the regular expression. The usual longest-possible match rule applies. Once this matching data has been determined, then the dynamic extent corresponding to the match is made into a sub-source containing exactly those bits, and then the parsing of the element is done with respect to this sub-source.

This enables the contents of such an element to contain delimited arrays or groups which have optional terminators. That is, they are terminated by end-of-data.

16.3.4 End-of-Data Termination

When there is no terminator, or it is optional, then delimited data can also be terminated by end-of-data.

If parsing finishes and there is data left-over before end-of-data on the source, it is not an error. This excess wasted data is generally due to alignment (binary) or padding (text) considerations. This excess data is ignored when parsing. Note that when unparsing, the contents of any excess representation bit is set based on fillByte or padCharacter properties.

The difference between the bounded-length case and the recursive parsing case is important for sequence groups since the last element of a group can be delimited by end-of-data when there is a bounded length. When parsing must occur recursively then there is no understood end-of-data hence, the final delimiting must be explicit. (The exception here is when the entire input source is finite. In this situation there is an ultimate end-of-data at the final end of the source.)

16.4 Unordered Sequence Groups

In DFDL, ordered and unordered are characteristics of the representation only. Logically, sequence groups are always in schema order.

The semantics of unordered groups (sequence with dfdl:sequnceKind="unordered" or “unorderedInitiated” property) are expressed by way of a source-to-source transformation of the declaration, and by a data transformation on the resulting value.

The source to source transformation turns the declaration of an unordered group into an array element
which contains a choice. Each element declaration of the unordered group becomes an alternative element within the choice. The unordered group's separator and terminator become the Separator and Terminator of the array. The dfdl:sequenceKind property is dropped, but other DFDL annotation properties are preserved. The maxOccurs and minOccurs on any element of the unordered sequence are dropped when the element is placed into the choice.

For example:

<sequence dfdl:seuqenceKind="unordered">

 <element name=”a” type=”string” dfdl:initiator="A:" />

 <element name=”b” type=”int” minOccurs="0" dfdl:initiator="B:" />

 <element name=”c” type=”string” minOccurs=”0” maxOccurs="10"

 dfdl:initiator="C:" />

</sequence>

The above is conceptually rewritten into an element declaration and reference like so:

<element name="dummy">

 <complexType>

 <choice>

 <element name=”a” type=”string” dfdl:initiator="A:" />

 <element name=”b” type=”int” dfdl:initiator="B:" />

 <element name=”c” type=”string” dfdl:initiator="C:" />

 </choice>

 </complexType>

</element>

<sequence dfdl:seuqenceKind="unordered">

 <element ref="dummy" minOccurs="1" maxOccurs="12"/>

</sequence>

Schema definition errors are then detected as for choice group types. Notice how the minOccurs and maxOccurs for the rewritten element reference are computed based on the possible occurrences from the original source.

Processing then constructs this array element by parsing the data.

The post processing then transforms this array back into the original sequence of non-choice elements. That is, the array is then used to populate the logical data corresponding to:

<sequence>

 <element name=”a” type=”string” />

 <element name=”b” type=”int” minOccurs="0" />

 <element name=”c” type=”string” minOccurs=”0” maxOccurs="10" />

</sequence>

This is a logical-value to logical value transformation. Ordered and unordered are characteristics of the representation only. The transformation here is the obvious one where all array elements having the first choice alternative as their value are accumulated into the first child element of the logical sequence. If there is either no such value or more than one such value, then the first child element must be an array or optional declaration (appropriate minOccurs and maxOccurs) so that it can accommodate the number of values found. The dimensionality of the first element must accommodate the number of values actually found. It is a processing error if it cannot. This algorithm repeats for the array elements having the 2nd choice alternative as their value, and so on until all the choice alternative values have been moved into their corresponding elements/arrays in the logical sequence group, and all logical sequence elements have been populated in a manner conforming to their maxOccurs and minOccurs constraints.

An unordered sequence is of fixed length if the same sequence is fixed length when the unordered property is removed.

On output, the behavior is exactly as if dfdl:sequenceKind="ordered". That is, the elements are output in schema declaration order.

17 Assertion and Discriminator Evaluation

Assertion annotation elements contain test expressions. These are evaluated at specific times depending on the behavior of the DFDL parser.

Both discriminators and ordinary assertions explicitly cause processing errors if the test evaluates to false, or if a processing error occurs during the evaluation of the test expression.

A discriminator also has an effect on resolution of choice constructs. See the section on choice (TBD: xref) for details.

18 Choices

	Property Name
	Description

	dfdl:choiceKind
	Enumeration
Valid values are

'fixedLength' means that the choice will be resolved by use of discriminators or speculative parsing.
When lengthKind='implicit' all alternative branches of the choice are padded to the fixed length of the largest one so that overall the entire choice construct is fixed length.
'variableLength' means that the choice will be resolved by use of discriminators or speculative parsing
. However, when dfdl:lengthKind='implicit' the various alternative branches of the choice are not padded, so the length of the data varies depending on which branch appears.

'unresolvable' means that the choice will not be resolved by the DFDL schema. The data is skipped over. All alternative branches of the choice must be fixed length.

This property cannot have an expression used to compute its value.

Annotation: dfdl:choice

	length, lengthKind, lengthUnits, initiator, terminator, initiatorIgnoreCase, terminatorIgnoreCase, finalTerminatorCanBeMissing
	choices can be annotated with these properties. For all cases except lengthKind="implicit", these behave exactly as if the choice construct were inside a sequence carrying these same properties.
Note that lengthKind='implcit' means to use choiceKind and the lengths of the alternative branches to determine the length of the choice.

It is for syntactic convenience for human authors of DFDL schemas that these properties are allowed directly on choice constructs.

Choices are either resolvable or unresolvable when parsing. We will also use this terminology:

	Branch
	A branch is one of the available alternatives within a choice. A branch can be an element
of simple type or complex type, or It can be an embedded sequence or choice.

	Root of the Branch
	Each branch conceptually has a single element or model group object at its root. This element is known as the Root of the Branch.

	Nearest point of Uncertainty
	If the root of the branch is of complex type it is possible for there to be another inner choice within the branch. During the parse of a branch of the inner choice the inner choice is said to be the nearest point of uncertainty.

When processing a choice group the parser validates any contained path expressions. If a path expression contained inside a choice alternative refers to any other alternative of the choice, then it is a schema definition error. Note that this rule handles nested choices also. A path that navigates outward from an inner choice to another alternative of an outer choice is violating this rule with respect to the outer choice.

18.1 Resolvable Choices

A resolvable choice is one where the dfdl:choiceKind property is 'fixedLength' or 'variableLength'.
Resolvable choices correspond to concepts called variant records, multi-format records, discriminated unions, or tagged unions in various programming languages. In some contexts choices are referred to generally as 'unions'. However, this should not be confused with XML Schema unions which are not part of the DFDL Schema model.

When processing a resolvable choice, speculative parsing is used. Processing works as follows:

1. Attempt to parse the first branch of the choice.

2. If this fails with a processing error

a. If we have evaluated a dfdl:discriminator to true, then it is a parse error, and parsing of the entire choice construct fails with a parse error.

b. If we have not evaluated a dfdl:discriminator to true then we repeat from step 1 for the next branch of the choice.

3. It is a parse error if we exhaust the branches of the choice

4. If we succeed to parse a branch without error, then that branch’s value becomes the logical value for the parse of the choice construct.

It is not possible for variable settings to be communicated from the speculative attempt to parse a branch to any other parsing situation. The speculative effort is completely isolated. Whether it succeeds or fails, neither the parse position in the source data, nor anything in the variable memory, nor the logical data is affected.

Nested choices recursively can require unbounded look ahead into the data.

18.2 Unresolvable Choice

The dfdl:choiceKind='unresolvable' property indicates to the parser that a choice cannot be resolved using the model and data. This can occur when a DFDL Schema is created to represent COBOL structures that use REDEFINES clauses or equivalently C unions where there is no tag or other discriminating means described in the schema. In this case the choice cannot be resolved using speculative parsing. The dfdl:choiceKind='unresolvable' property only has meaning on parse and not during unparse.

In this case, the length of all the branches of the choice must be fixed. The length of the unresolvable choice’s data is the maximum length of the length of any of its branches or is specified by DFDL length properties on the choice construct itself.

It is a schema definition error if a path expression outside the unresolvable choice construct refers to any element inside the unresolvable choice construct.

Any dfdl:assert or dfdl:discriminator annotation elements found inside the unresolvable choice are not evaluated, nor is any kind of validation performed on the content of the unresolvable choice even if a DFDL processor is performing validation on the other parts of the schema.

Applications using DFDL processors may provide alternative means to resolve unresolved choices which defer their resolution and therefore defer the parsing of the contents of the unresolvable choice until additional information is available. Any such capability is beyond the scope of the DFDL v1.0 specification.

18.2.1 Fixed Length

An element is of fixed length if any of the following hold:

· representation="binary" and type is a simple type other than string or hexBinary

· lengthKind="implicit" and

· there is no use of variable-width character set encodings.
· the type is a sequence and

· all the contained elements are of fixed length
· if delimiters are specified, the character encoding is fixed width.

· dynamic delimiters come from fixed width elements

· the element is an array, occursCountKind='implicit', and

· the contained items are of fixed length
· if delimiters are specified, the character encoding is fixed width.

· dynamic delimiters come from fixed width elements

· the element is a choice and

· all the alternatives inside the choice are fixed length.

When an element is fixed length, we are able to compute the length of the dynamic extent of the element from information found only in the DFDL schema.

19 Arrays and Optional Elements: Properties for Repeating and Variable-Occurrence Data Items
These properties are for arrays or optional elements.
For a scalar element the dfdl:occursXXX properties may be present or in scope; however, they are ignored.

	Property Name
	Description

	occursCountKind
	Enum

Specifies how the actual number of occurrences is to be established.

Valid values ‘stopValue’, ‘explicit’, 'implicit'’ or ‘fillAvailableSpace’

‘explicit’ means use the value of the dfdl:occursCount property.

‘implicit’ means use the value of the maxOccurs on the declaration. It is a schema definition error if the value for minOccurs is not equal to maxOccurs.
‘useAvailableSpace’
 means the occurrences fill the available space which is limited by a containing construct.

‘stopValue’ means look for a logical stop value which signifies the end of the occurrences.

Annotation: dfdl:element

	occursCount
	Integer

Literal or expression that gives the value that provides the number of occurrences.

Annotation: dfdl:element,

	occursStopValue
	String

Literal or expression that gives the logical value of an element that is used during parsing to determine the end of the array when occursCountKind=”stopValue”.
On unparsing this value will be inserted as the last value in the array

The above properties handle input and output for a logical one dimensional array of any type.

In some situations arrays of elements and sequence groups of elements seem to be similar; however, there is no notion of the array itself independent of its contained elements. Arrays are distinctly different from sequence groups in this way.
A sequence can have its own initiator, and an element having that sequence as its type can also have its own element initiator, so you could express two different initiators.
Unlike a sequence group, an array does not have its own initiator, terminator, or alignment. Those properties apply to each of the child elements of the array. To give an alignment, initiator, separator or terminator for an entire array you must enclose the element declaration for the array in a sequence group and specify the alignment, separator, initiator and terminator on the sequence group.
19.1.1.1 Repeating and Variable-Occurrence Items and Default Values
Variable-occurrence items include both variable-occurrence arrays and optional elements.

The number of occurrences of a variable-occurrence item may be specified in the data. This can be combined with delimiters for determining the number of occurrences, in which case the number of occurrences obtained by parsing using delimiters and from any stored information must be consistent. It is a processing error if they are not.
To determine the logical contents and number of occurrences for an array, we examine the input stream trying to parse elements one by one with separtors between them. Parsing for an optional element is similar, except there is only the possibility of one occurrence, so separators don't matter.
If the element is not found then defaulting occurs as described in (TBD) Properties for Default Value Control
It is a processing error if an separator is parsed successfully, but parsing does not find the subsequent element successfully.
On output if the number of occurrences of an element is less than minOccurs and the element has a default value specified then it is used, otherwise it is a processing error.

On output if an element is not required and not in the logical data then by definition we’re at the end of the variable occurrences. No defaulting happens.

19.1.1.2 Stop Value Delimited Array Number of occurrences
When an array has a stopValue specified, this means that a distinguished logical value must be found to determine the end of the array. As each element is parsed, it's value is compared to the stop value, and if it matches, then that ends the array. The stop value itself is not considered to be an element of the array.
This technique can only be used on arrays of simple type elements.

20 Calculated Value Properties.

This section describes properties which allow the creation of calculated elements. These are used when the logical value of an element must be constructed from one or more other elements and an expression in the XPath language.

Calculated elements allow a technique that is commonly called layering. In this technique, some elements are said to be in the physical layer, and some in the logical layer. When parsing, the logical layer values are computed from physical layer values. When unparsing the opposite occurs, that is the physical layer values are computed from the logical layer values.

Calculated elements are commonly used with hidden elements so as to hide the physical layer elements so that they do not become part of the logical data model.

When a DFDL Schema is used to both parse and unparse data, then a calculated element on parsing will normally have one or more calculated elements on unparsing.

	Property Name
	Description

	inputValueCalc
	XPATH expression

An expression that performs some operation to derive the value of the current element when parsing.The element having the inputValueCalc property is called a derived element, and the elements referenced from the inputValueCalc expression are called representation elements.

An empty string is a valid expression for a string-typed element if minLength allows length 0.

An element that specifies an inputValueCalc expression has no representation of its own in the underlying data. All DFDL representation properties are ignored

This property is incompatible with xs:default and xs:fixed.

Annotation: dfdl:element (all simple types)

	outputValueCalc
	XPATH expression

An expression that performs some operation to derive the value of the current element when unparsing.

An empty string is a valid expression for a string-typed element if minLength allows length 0.

If the element is hidden then there will be not be any corresponding item in the infoset and this element's value is specified using outputValueCalc

.

If the element is not hidden then the value for the element in the infoset must match the value of the outputValueCalc expression otherwise a runtime error occurs.

This property is incompatible with xs:default and xs:fixed.

Annotation: dfdl:element (all simple types)

	

	

Example: 2d Nested Array

Consider this simple example. The data stream contains two elements giving the number of rows and number of columns of an array of numbers. The contents of the array are stored after these two elements.

<xs:complexType name="array">

 <xs:sequence dfdl:initiator="" dfdl:appliesTo="scope">

 <xs:annotation><xs:appinfo source="http://www.ogf.org/dfdl/" />

 <dfdl:hidden>

 <xs:element name="nrows" type="xs:unsignedInt"

 dfdl:representation="binary"

 dfdl:lengthKind="implicit"

 dfdl:outputValueCalc="{ count(../rows) }"/>

 <xs:element name="ncols" type="xs:unsignedInt"

 dfdl:representation="binary"

 dfdl:lengthKind="implicit"

 dfdl:outputValueCalc=

 "{

 if (count(../rows) >= 1)

 then

 count(../rows[1]/cols)

 else

 0

 }"/>

 </dfdl:hidden>

 </xs:appinfo></xs:annotation>

 <xs:element name="rows" maxOccurs=”unbounded”

 dfdl:occursCountKind="explicit"

 dfdl:occursCount="{ ../nrows }">

 <xs:complexType>

 <xs:sequence>

 <xs:element name=”cols” type=”xs:float” maxOccurs=”unbounded”

 dfdl:occursCountKind=”explicit”

 dfdl:occursCount=” { ../../ncols } “ />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

</xs:complexType>

In the example above we see that there are two hidden elements named ‘nrows’ and ‘ncols’. These hidden elements’ values are computed when unparsing from the number of occurrences in the ‘rows’ and ‘cols’ repeating elements. The ‘rows’ and ‘cols’ repeating elements number of occurrences are computed when parsing from the hidden elements ‘nrows’ and ‘ncols’.

Example: Packed Decimal Date

Logically, the data is a date.

<element name=“d” type=“date”/>

Physically, it is stored as 3 single byte integers.

The format of this data is expressed as this schema:

<sequence dfdl:representation="binary”>

 <element name="mm" type="byte" />

 <element name="dd" type="byte” />

 <element name="yy" type="byte"/>

</sequence>

This physical representation can be hidden so that it does not become part of the logical data model:

<sequence>

 <annotation><appinfo ...>

 <dfdl:hidden>

 <element name="pdate">

 <complexType>

 <sequence dfdl:representation="binary”>

 <element name="mm" type="byte" />

 <element name="dd" type="byte” />

 <element name="yy" type="byte"/>

 </sequence>

 </complexType>

 </element>

 </dfdl:hidden>

 </appinfo></annotation>

 <element name="d" type="date">

 …

 </element>

 …

</sequence>

A calculation can be used to compute the logical date element ‘d’ from the physical ‘pdate’ when parsing:

<sequence>

 … hidden pdate here …

 <element name="d" type="date">

 <annotation><appinfo>

 <dfdl:format>

 <dfdl:property name="inputValueCalc">

 {

 fn:date(fn:concat(if (../pdate/yy > 50) then "19" else "20",

 if (../pdate/yy > 9)

 then fn:string(../pdate/yy)

 else fn:concat("0", fn:string(../pdate/yy)),

 "-",

 fn:string(../pdate/mm),

 "-",

 fn:string(../pdate/dd)))

 }

 </dfdl:property>

 </dfdl:format>

 </appinfo></annotation>

</element>

 …

</sequence>

Notice above the use of the long form dfdl:property annotation element. This avoids difficulties with quotation mark nesting when complex expressions involving strings are needed. The expression above assembles a string resembling, for example, “2005-12-17” or “1957-3-9” which is the string representation of a date that is acceptable to the fn:date constructor function. The hidden element ‘pdate’ is referenced by relative paths. The expression ‘../pdate/yy’ accesses an element of type ‘int’, and the fn:string constructor function turns it into an integer.

Finally, we must handle the unparse case where the physical layer is computed from the logical layer:

<sequence dfdl:representation="binary"

 <element name="mm" type="byte"

 dfdl:outputValueCalc="{ fn:month-from-date(../d) }" />

 <element name="dd" type="byte"

 dfdl:outputValueCalc="{ fn:day-from-date(../d) }" />

 <element name="yy" type="byte"

 dfdl:outputValueCalc="{ fn:year-from-date(../d) idivmod 100 }"

 />

</sequence>

In the above the expressions are simple enough and do not involve string literals; hence we use the short-form syntax for the outputValueCalc expressions.

The entire example in one place:

<sequence>

 <annotation><appinfo ...>

 <dfdl:hidden>

 <element name="pdate">

 <complexType>

 <sequence dfdl:representation="binary"

 <element name="mm" type="byte"

 dfdl:outputValueCalc="{ fn:month-from-date(../d) }" />

 <element name="dd" type="byte"

 dfdl:outputValueCalc="{ fn:day-from-date(../d) }" />

 <element name="yy" type="byte"

 dfdl:outputValueCalc="{ fn:year-from-date(../d) idivmod 100 }"

 />

 </sequence>

 </complexType>

 </element>

 </dfdl:hidden>

 </appinfo></annotation>

 <element name="d" type="date">

 <annotation><appinfo>

 <dfdl:format>

 <dfdl:property name="inputValueCalc">

 {

 fn:date(fn:concat(if (../pdate/yy > 50) then "19" else "20",

 if (../pdate/yy > 9)

 then fn:string(../pdate/yy)

 else fn:concat("0", fn:string(../pdate/yy)),

 "-",

 fn:string(../pdate/mm),

 "-",

 fn:string(../pdate/dd)))

 }

 </dfdl:property>

 </dfdl:format>

 </appinfo></annotation>

 </element>

 …

</sequence>

The above sequence contains logically only a single date element.

21 Any Element Wildcard

The "any" element wildcard provides support for initiator-tagged data formats.

The dfdl:initiatorSeparator property must be defined or it is a schema definition error.
The 'processContents' attribute is not allowed in DFDL 1.0 and it's use is a schema definition error.

This kind of wildcard is used to absorb content which while syntactically compatible is not logically modeled as elements of the sequence group.

These declarations match a triplet of strings. The first is a variable-length string that matches any initiator tag. The second is a fixed value string which must match the initiator-separator property value. The third is a variable-length string that matches any content up until the end of the "element" being matched.

The length of data matching an any-element wildcard is specified by the usual length properties: dfdl:lengthKind, dfdl:lengthUnits, dfdl:length, dfdl:terminator. dfdl:initiator is not used by Any Element wildcards and is ignored if specified in scope.
22 Non-Primitive DFDL Schema Constructs

The semantics of the remaining DFDL schema constructs is given in terms of rewriting them into other equivalent DFDL schema constructs.

Group references, element references, type references, and type derivations are given semantics in terms of rewriting them to semantically equivalent DFDL syntax.

These constructs are what is sometimes called syntax sugar. They provide no semantics that cannot be expressed in another less-convenient syntax.

The details are given in the sections below.

22.1 Element Reference

An element reference is rewritten into a copy of the referenced element declaration while combining any DFDL format annotation elements associated with it as given in Section 10.4. (TBD: xref to scoping ?) Processing then proceeds as for a local element declaration.

22.2 Group Reference

A copy of the definition referenced by a group reference is substituted inline for its declaration while combining any DFDL format annotation elements associated with it as given in Section 10.4. (TBD: xref to scoping?) Processing then proceeds as for an anonymous group declaration.

22.3 Type Reference
TBD: describe referential transparency. I.e., these behave as if substituted directly at their points of reference. Modulo recursive types however, where such substitution would never terminate. (Note: recursive types are disallowed in DFDL v1.0).
22.4 Type Derivations
TBD: Perhaps this belongs in the scoping section. Describe rules by which chains of type derivations have their representation properties accumulated. Precedence for what, and what it means to find other kinds of annotations in them such as assertions or discriminators (or ??).
23 External Control of the DFDL Processor

A DFDL Schema can contain more than one format definition. For example, both a binary and a text format definition can be provided so that the same logical data can be described both ways within the same DFDL schema.

To allow one to associate a format definition with a top-level element declaration at run time DFDL allows the top-level element declarations to omit a dfdl:format annotation. DFDL processors can provide means to specify:

1. the data to be processed

2. the DFDL schema to be used

3. the top-level global element declaration to be used (specifying both name of element and namespace of that name)

4. When that top-level element (in 3 above) does not have a dfdl:format annotation, the format name (and namespace) of a format definition to be used.

The behavior of the DFDL processor must then be as if the top-level element declaration were surrounded by a complexType having a dfdl:format annotation on it containing:

<dfdl:format ref="formatName"/>

where the 'formatName' is the specified format from point 4 above.

Notice also that like any XML Schema a DFDL schema can have multiple top-level element declarations, so point 3 above is necessary to indicate which of these top-level element declarations is to be the starting point for processing data. The information in point 3 above may be omitted if the DFDL schema contains only one top-level element declaration.

The mechanism by which a DFDL processor is controlled to specify points 1 through 4 above is not specified by this standard. For example, command line DFDL processors may use command line options, but DFDL processors embedded in other kinds of software systems may need other mechanisms.

24 Built-in Specifications

TBD: this section gives the names, import URLs for, rep-property definition sets, property definitions, etc. for the built-in named format definitions.
Note that the URLs for importing these must contain the version number of the standard so that future revisions of the standard can define new built-in format definitions without breaking older schemas.
25 Properties Supported by Specialized Annotation Elements

The table below indicates the subset of representation properties allowed on each of the specialized annotation elements.

	Schema Construct
	Matching Annotation Element
	Allowed properties

	xs:sequence
	<dfdl:sequence ... />
	initiator, terminator, separator

 (others TBD)

	xs:choice
	<dfdl:choice ... />
	TBD

	xs:element declaration or reference without occurrences or with minOccurs=0, maxOccurs=1 (aka optional)
	<dfdl:element ... />
	initiator, terminator

(TBD: everything meaningful for elements, and optional elements)

	xs:element declaration or reference with 2 or more possible occurrences
	<dfdl:element .../>
	initiator, Terminator

(TBD: everything meaningful for elements, including occurrence properties)

	xs:any
	<dfdl:any ... />
	(TBD: suitable for any wildcards)

	all other locations
	<dfdl:format .../> That is, there is no helper annotation element
	All properties

26 Property Precedence

26.1 Parsing

The order that properties are examined when an item of data is being parsed is given by the following list.
 DFDL Properties

· Parsing: Core

· dfdl:inputValueCalc

· dfdl:byteOrder

· dfdl:encoding

·
·
· Parsing: identification & extraction

· dfdl:occursCountKind

· "explicit"

· dfdl:occursCount

· "implicit"

· xsd:maxOccurs

· dfdl:sequenceKind

· dfdl:choiceKind

· dfdl:leadingSkipBytes

· dfdl:alignment

· dfdl:alignmentUnits

· dfdl:initiator

· dfdl:initiatorIgnoreCase

· dfdl:discriminatingInitiator

· dfdl:initiatorSeparator

· dfdl:lengthKind

· "explicit"

· dfdl:length

· dfdl:lengthUnits

· "implicit"

· xsd:length

· xsd:maxLength

· dfdl:lengthUnits

· "prefixed"

· dfdl:prefixLengthType

· dfdl:prefixIncludesPrefixLength

· dfdl:lengthUnits

· "delimited", "nullTerminated","endOfParent"

· dfdl:escapeScheme

· Escape scheme properties

· dfdl:terminator

· dfdl:terminatorIgnoreCase

· dfdl:finalTerminatorCanBeMissing

· dfdl:trailingSkipBytes

·
· dfdl:separator

· dfdl:separatorPolicy

· Parsing: conversion

· dfdl:occursCountKind

· "stopValue"

· dfdl:occursStopValue

· xsd:nillable

· dfdl:nullKind

· "literalValue", "logicalValue", "literalCharacter"

· dfdl:nullValues

· dfdl:nullValueInitiatorPolicy

· "xpath"

· dfdl:nullIndicatorPath

· dfdl:nullIndicatorIndex

· xsd:simpleType

· "Number"

· dfdl:representation

· "text"

· dfdl:textPadCharacter

· dfdl:textTrimKind

· dfdl:textNumberJustification

· dfdl:textNumberFormat

· Number format properties

· "binary"
·
· dfdl:floatFormat

·
·
· "String"

· dfdl:representation

· "text"

· dfdl:textPadCharacter

· dfdl:textTrimKind

· dfdl:textStringJustification

· Text BiDi properties - see supplement

· "xml"

· "Calendar"

· dfdl:representation

· "text"

· dfdl:textPadCharacter

· dfdl:textTrimKind

· Text calendar properties - see supplement

· "binary"

· Integer calendar properties - see supplement

·
·
· "Opaque"

· dfdl:representation

· "binary"

· "Boolean"

· dfdl:representation

· "text"

· dfdl:textPadCharacter

· dfdl:textTrimKind

· dfdl:textBooleanTrueRep

· dfdl:textBooleanFalseRep

· "binary"

· dfdl:integerBooleanTrueRep

· dfdl:integerBooleanFalseRep

· xsd:default

· dfdl:defaultValueInitiatorPolicy

26.2 Unparsing

The order that properties are examined when an item of data is being unparsed is given by the following list

DFDL Properties

· Unparsing: core

· dfdl:outputValueCalc

· dfdl:outputLengthCalc

· dfdl:byteOrder

· dfdl:encoding

·
·

· Unparsing: conversion

· dfdl:occursCountKind

· "explicit"

· dfdl:occursCount

· "implicit"

· xsd:maxOccurs

· "stopValue"

·
· dfdl:occursStopValue

· dfdl:useNullValueForDefault

· xsd:default

· xsd:nillable

· dfdl:nullKind

· "literalValue", "logicalValue", "literalCharacter"

· dfdl:nullValues

· dfdl:nullValueInitiatorPolicy

· "xpath"

· dfdl:nullIndicatorPath

· dfdl:nullIndicatorIndex

· xsd:simpleType

· "Number"

· dfdl:representation

· "text"

· dfdl:textPadCharacter

· dfdl:textTrimKind

· dfdl:textNumberJustification

· dfdl:textNumberFormat

· Number format properties

· "binary"
·

· dfdl:floatFormat

·
·
· "String"

· dfdl:representation

· "text"

· dfdl:textPadCharacter

· dfdl:textTrimKind

· dfdl:textStringJustification

· Text BiDi properties - see supplement

· "xml"

· "Calendar"

· dfdl:representation

· "text"

· dfdl:textPadCharacter

· Text calendar properties - see supplement

· "binary"

· Integer calendar properties - see supplement

·
·
· "Opaque"

· dfdl:representation

· "binary"

· "Boolean"

· dfdl:representation

· "text"

· dfdl:textPadCharacter

· dfdl:textTrimKind

· dfdl:textBooleanTrueRep

· dfdl:textBooleanFalseRep

· "binary"

· dfdl:integerBooleanTrueRep

· dfdl:integerBooleanFalseRep

· Unparsing: insertion

· dfdl:sequenceKind

· dfdl:choiceKind

· dfdl:leadingSkipBytes

· dfdl:alignment

· dfdl:alignmentUnits

· dfdl:initiator

· dfdl:initiatorSeparator

· dfdl:lengthKind

· "explicit"

· dfdl:length

· dfdl:lengthUnits

· "implicit"

· xsd:length

· xsd:maxLength

· dfdl:lengthUnits

· "prefixed"

· dfdl:prefixLengthType

· dfdl:prefixIncludesPrefixLength

· dfdl:lengthUnits

· "delimited", "nullTerminated","endOfParent"

· dfdl:escapeScheme

· Escape scheme properties

· dfdl:terminator

· dfdl:trailingSkipBytes

·
· dfdl:separator

· dfdl:separatorPolicy

27 Security Considerations

When writing data. All locations must be properly initialized before writing so as to prevent accidental (or purposeful) transmission of data in the unused parts of data formats. Even when a DFDL description does not specify that data should be written to a particular part of the output representation, a defined pattern should always be written.

All DFDL processors must check when writing data, that the representation properties that control filling and padding are defined by the DFDL schema. It is an error if they are not defined, and the DFDL processor must fail if they are not defined so that it is certain no region of the output data has unspecified contents.

If regions within a DFDL-described data object are encrypted, then when decrypting them proper means must be used to assure secure passage of passwords to the decrypting software. Such means are beyond the scope of the DFDL language specification.

In addition, if encryption passwords/keys are stored in DFDL schema-described data, then proper means must be used to assure that the decrypted form of these passwords is not revealed. Such means are beyond the scope of the DFDL language specification.

28 Contributors

Michael J. Beckerle, Oco, Inc., Waltham, MA, USA

Martin Westhead, Avaya, Milpitas, CA, USA

James Myers, NCSA, Urbana-Champaign, IL, USA

Suman Kalia, IBM Software Group, Markham, Ontario, Canada

Stephen M. Hanson, IBM Software Group, Hursley, UK

Tom Sugden, EPCC

Tara Talbot, PNNL, Richland, WA, USA

Robert McGrath, NCSA, Urbana-Champaign, IL, USA

Geoff Judd, IBM Software Group, Hursley, UK

Dewey M. Sasser, TBD - affiliation, MA, USA

David A. Loose, IBM Software Group, Westborough, MA, USA

Eric S. Smith, IBM Software Group, Westborough, MA, USA

Kristoffer H. Rose, IBM Research, Hawthorne, NY, USA

Alan W Powell, IBM Software Group, Hursley, UK

29 Intellectual Property Statement

The OGF
 takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this recommendation. Please address the information to the OGF Executive Director.

30 Disclaimer

This document and the information contained herein is provided on an “As Is” basis and the OGF disclaims all warranties, express or implied, including but not limited to any warranty that the use of the information herein will not infringe any rights or any implied warranties of merchantability or fitness for a particular purpose.

31 Full Copyright Notice

Copyright (C) Open Grid Forum 2005, 2006,2007. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors or assignees.
32 References

TBD: OGF requires that only permanent documents should be cited as references. Other materials, such as Web pages or working groups, should be cited inline (i.e., see the Global Grid Forum, http://www.ogf.org). References should conform to a standard such as used by IEEE/ACM, MLA, Chicago or similar. Include an author, year, title, publisher, place of publication. For online materials, also add a URL

XML 1.0 http://www.w3.org/TR/REC-xml
XML 1.1 http://www.w3.org/TR/xml11/
Unicode (now at version 4.0) http://www.unicode.org/
IANA character set encoding names: (http://www.iana.org/assignments/character-sets)

XML Schema: http://www.w3.org/XML/Schema
[RFC 2119] IETF (Internet Engineering Task Force). RFC 2119: Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. 1997.

OMG "CAM" TD Model: Object Management Group (OMG) "UML Profile and Interchange Models for Enterprise Application Integration (EAI) Specification" formal/04-03-26, March 2004. Sectioin 7.3.2. Available at http://www.omg.org/cgi-bin/doc?formal/2004-03-26
XSIL homepage, http://www.cacr.caltech.edu/SDA/xsil/
Binary Format Description (BFD) Language, http://collaboratory.emsl.pnl.gov/sam/bfd/

33 Appendix: About UTF-16 and Unicode Character Codes above 0xFFFF

When we define UTF-16 to be a fixed-width double-byte wide character set we say that each UTF-16 codepoint is represented by 2 bytes. Notice the careful use of the term 'codepoint' here. Unicode characters can have character codes as large as 0x10FFFF which requires 3 bytes to store (21 bits actually); however in UTF-16 characters with more than 2 bytes of code are encoded as two codepoints, called a surrogate pair; hence, UTF-16 is fixed-width, 2 bytes per codepoint. It is not 2 bytes per Unicode character. UTF-16 is really a variable-width encoding, but the characters that require the surrogate-pair treatment are so infrequently used that UTF-16 is most often treated like a 16-bit fixed-width character set. It is the acknowledgement of the existence of surrogate pairs that leads to the “codepoint” vs. “character code” distinction.

UTF-32 is a fixed width encoding with a full 4-bytes per character code. It represents all of Unicode with the same width per character.

Hence, when we refer to lengths in character strings we will often refer to length in characters, but we qualify that it means 2-byte codepoints when the character set encoding is UTF-16. Hence, when the property lengthUnitKind is 'characters' and the charset is 'UTF-16', then the units are actually 16-bit codepoints, not Unicode characters
.

� Some schema definition errors can’t be detected until execution. E.g., consider two delimiters, but the characters are both stored in header records. The syntax might be ambiguous if both are the same. In this case we can’t detect this schema definition error until we have data.

So the real goal here is that schema definition errors that can be detected without reference to data are preferably detected without reference to data.

� When dfdl:occursKindoccursCountKind='explicit' and dfdl:occursdfdl:occursCount has a literal constant as its value, or an expression that statically evaluates to a constant, then the DFDL properties are specifying exactly the number of occurrences for all instances and so are said to preclude a variable number of occurrences. If dfdl:occursdfdl:occursCount has a formula as its expressed value, then the DFDL properties do not preclude a variable number of occurrences.

� The semantics of fixed=’$$$’ is as if it were translated into an assertion and a dfdl:outputValueCalc property:

 <element name=”x” type=”string” dfdl:outputValueCalc=’$$$’ >

 <annotation><appinfo>

 <dfdl:assert>$. = ‘$$$’</dfdl:assert>

 </appinfo></annotation>

 </element>

Assertion failure causes a processing error. The outputValueCalc fills in the value when writing out data.

� The concept of native-endian is avoided in DFDL since a DFDL schema containing such a property binding does not contain a complete description of data, but rather an incomplete one which is parameterized by characteristics of the machine and implementation where the DFDL processor is executed. In DFDL this same behavior is achieved through use of true parameterization, for example by use of Selectors to choose among two different format annotations.

� CCSID stands for Coded Character Set ID, a 3 digit representation for a codepage specifier. TBD: cite relevant standard for CCSIDs here.

� The concept of native character encoding is avoided in DFDL since a DFDL schema containing such a property binding does not contain a complete description of data, but rather an incomplete one which is parameterized by characteristics of the operating environment where the DFDL processor executes. In DFDL this same behavior is achieved through use of true parameterization, for example by use of Selectors to choose among annotations specifying different character set encoding property bindings.

� Codepoint for UTF-16

� Byte-order marks are explicitly stated to be “not characters” in the Unicode standard (TBD: Citation needed).

�Done. (I think).

�Resolved. We require syntax like separators, and terminators to resolve this. We don't allow just plain forward speculation i.e., an item is terminated by finding the following item. That's the so-called "squeeze" strategy, and it doesn't work.

�Done. Modulo the issue raised here about what preceding means when you can reference a variable. I.e., backward-only reference means that inductively, any variables you reference also must obtain their values from expressions that refer only to preceding parts of the data.

�Done.

�Resolved. Ok for v1.0.

�In XML schema, properties are noted as {property name}.

�“Binary XML” already exists. That W3C WG is only trying to standardize it.

�(After reading a bit further…) I think some clear connection needs to be drawn from these concepts to XML concepts. E.g. whether this logical model corresponds to infoset, psvi, query xdm, or something else? Seems this logical model is used in places where different concepts are expected.

�Are these 2 goals in conflict with the “random access” requirement mentioned earlier?

Answer (mikeb) Yes random access is easiest when everything is fixed length and there is no looking back. However, if there are references, those can still be resolved and random movements performed, just with less ease.

Note also that choice might not imply variable length. In many cases things are padded out.

�Should this and the section on errors be split into two top-level sections (“Terms” which would include the glossary – see comment below on Glossary heading - and “Failure Types” for example)?

Wondering whether this may cause any potential confusion down the road. W3C specs I work with all seem to use upper case for 2119 keywords�.

�Agree – most examples of standards I could find that refer to RFC 2119 place some kind of emphasis when the terms are being used in the 2119 sense.

�Should this section include the error sections as subsections?

�Must issue messages even when there is no inconsistency?

�Now that the definitions from RFC 2119 have been brought in-scope, an attempt should probably be made to use them wherever possible to avoid ambiguity. For example, this statement could read “When a Schema definition error can be detected given only the Schema, diagnostic messages MAY be issued by the parser before any data is processed.” I suggest that the text be scanned for all cases where the RFC 2119 terms could be used and replacements be made.

�Suggest this section just be called “Processing Errors” – not sure the parse/unparsed distinction is necessary since the parser will only be in one processing mode at a time anyway.

�Conservative decision. Could loosen later. Defaulting, and everything about occurs is the source of much DFDL complexity, so this decision was taken to simplify the rules somewhat and to preserve as much future freedom as possible.

�Please notice this implementation constraint. Even a super-smart compiler-oriented DFDL implantation is not allowed to fail the parse on an ambiguity of this kind because a stupider DFDL implementation might not be able to classify it as such.

�Schema validation applies to xml infoset. Does this mean logical model = infoset?

�So it’s not full schema validation. Wondering how much effort it would be to isolate just the listed tests from the other things schema processors are doing.

�Might be full validation given the small subset of XML Schema we're using here.

Remember, min/max occurs are checked as well. They're not mentioned here because they are always checked. So you can't turn those off by shutting off validation.

�Not very clear what needs to be checked and what not. E.g. if “element locally valid (type)” is not required, then nothing triggers the check for simple values, then none of these facets will ever be used. I think we need a clearer description of what’s required.

�Alphabetize. Consider removing terms we don't use. (Though we may still need them in sections still to be written.)

�Should this go under or simply be integrated with the previous section? Also suggest removing some terms and only defining those that have a specific meaning with broad usage that may require clarification within the standard. An glossary in the traditional sense (to define terms that the reader may not be familiar with) could go at the end as an appendix.

�If logical model = infoset, then it may help to say here that elements are equivalent to element information items in infoset.

Also are all elements described by element declarations? Possible to be wildcards?

�Logical model is NOT equivalent to infoset. Rather, the logical model contains things like choice model groups which have no representation in the infoset, but which are important to maintain.

�Particles have occurrence information, not element declarations.

Response (mikeb), XSDL contains no syntactic particle construct. Particles are a device used in the expression of the semantics of XSDL to capture the commonality of all things that can have max/minOccurs, but we don't need this concept particularly since we only allow max/minOccurs on element declarations and element references.

�Feels like we need to refer to the DFDL Infoset here and say that the elements of an array are information items that share all the information item members except the value member.

�This idea that you can have minOccurs < maxOccurs, but dfdl:occurs is equal to a constant and dfdl:occursKind="explicit" is causing us a bunch of grief in these definitions.

Can we be conservative and just say it is a schema definition error if minOccurs < maxOccurs but the length is static, i.e., an explicit constant-valued expression?

�Seems “full schema” = “schema” in XSDL. Then what does “XML Schema” used earlier mean? Schema documents?

Duplicates?

�I wonder if it would be possible to base the DFDL Information Set on XDM… This would have many advantages.

�Huh? Unclear.

�The use of two different types of element information items is confusing and appears to go against convention established in the XML Information Set standard where simple element content is represented by character information items or groupings thereof. It’s especially confusing given the same terms such as “element information item” are used.

�Must update array in the glossary to match (and check usage of array throughout the doc. Esp. check the grammar.)

�Should this read: “This member is empty…”?

�should this be 'occurs' or 'occurrances'?

�Should this be occursCount to match the rest of the spec.?

Note that this should also match the expression language function name which accesses this information.

�But aren’t the members of the document information item given in the previous section? Is a document information item derived from a element information item?

�Omit? This is about some API realization of DFDL. Out of scope for this spec. We don't discuss "presentation" herein elsewhere.

(AP) No agreed needed on unparsing to detect missing elements.

�I would suggest that this section be moved to a non-normative primer/introduction document – or at least indicate that it’s non-normative.

�Not sure what value having the diagram here provides. If anything it would seem to add confusion given that many of the concepts/objects aren’t discussed elsewhere (such as Term).

�I don't have an editor for this picture!!! Can we replace this with something editable?

Issues. Some of the 0..1 are overwritten so can't be read. I believe the relationship of ElementDeclaration to ElementType has incorrect cardinality in that an Element always has a type.

�How do particles fit in?

Answer (mikeb): they don't. We don't have that concept. I don't think we need it.

The entire book I have on XML Schema doesn't mention the term 'particle' though I understand it was introduced later.

�What attributes should we show here: maxOccurs/minOccurs ? stringLength, stringMinLength, stringMaxLength ? totalDigits, fractionDigits?

also nullable -> nillable

dimensionality -> maxOccurs minOccurs

�Hum… no support for ID/IDREF

Answer: (mikeb) correct. No support. Trees of data are our infoset, not graphs.

�Should the difference between atomic and non-atomic types be shown here? For example, xs:ENTITIES, xs:IDREFS, etc. actually derive directly from xs:anySimpleType and most of the other types in the chart derive directly from xs:anyAtomicType.

�TBD: integer and the other integer types are just range restrictions that can be done using ordinary facets and simple type derivation, so why not have them. On the other hand, we can leave these out because they add nothing from the format-description perspective, and in fact generate some complexity due to these logical types having or not sign when representations also can have or not have sign.

Sub-comment - Suggest restricting representations. E.g., an integer type can't have a float representation, a float type can't have a decimal representation; hence, restrict so a unsigned integer can't have a signed representation, and vice versa.

�This is not entirely true. Derivation from decimal to integer involves some amount of magic. In particular, they have different canonical representations (trailing ‘.’).

�This issue about canonical XML form seems to have no impact on DFDL. There is no default "canonical" format in DFDL.

�It is important that an integer type can't have a float representation - that's transformation we don't want to do. It also means one can put a floatType in scope knowing it affects only the interpretation of the floating point numbers.

�Would it be fair to say that as long as the required DFDL constructs are present, that any conformant XML Schema is also a DFDL Schema - in other words, non-DFDL XML Schema constructs can be accepted and ignored by the DFDL Parser? If so, may want to make the DFDL Schema to XML Schema relationship a little more explicit. If not, what kind of error is it (assuming schema definition error) if the DFDL Schema contains unsupported XML Schema content?

�Can a DFDL schema contain XML comments?

�Should a few more restrictions on int be allowed (such as “positiveInteger”) due to their relevance in some of the representation properties? For example, the ideal atomic type for leadingSkipBytes would appear to be positiveInteger.

�Wonder how to support it. If nillable=true and type=xs:string, then how to tell whether the value is empty string or nil?

Answer: (mikeb) if the nullValue is empty string, then the minLength of such strings must be 1 or greater. Similarly, if a string has a default value, then the minLength must be 1 or greater. Described below with discussion of length facet.

�User defined complex types?

�Yes, these are allowed, but cannot be derived. That is we allow 1 level user-defined complex types. In the syntax for a complexType declaration there is no need to say the "base" type, so we don't call those derivations, but just definitions.

�User defined complex types?

�Xsd:all is like unordered set and is supported?

Answer: (mikeb) No we ruled out 'all' groups a long time ago. See comment below.

�All groups are not supported because they are a syntactic construct in XML Schema, they aren't a logical construct. Logically, an ordered sequence carries the same information content.

�Does this restriction still apply – What is the key issue here.

�Just being conservative. Never seen nullable complex types.

�This is because min/max occurs conformance is a required check, not an optional validatin-only check.

�Could be even more conservative and say that 'implicit' requires the xs:length facet only, and disallow xs:minLength and xs:maxLength.

�This is just being conservative.

�We had discussed using these facets to derive the DFDL length of numbers. We do that in MRM today. Has that been dropped from consideration?

Response (mikeb): yes I believe that has been dropped in favor of numberFormat patterns.

�We considered to disallow pattern facet because it is confusing.

However, removing this eliminates some valuable validation features that experience has shown valuable in the IBM MRM parser; so we should keep this for validation only.

However, we're restricting pattern to strings only.

�This should probably just be “Syntax” - the standard is normative and therefore there should be no “basics” sections because everything should be fully defined.

�Don't promise this in the spec. Spec has to be "normative" this thing would be a convenience,

�And attributes?

�We speak here specifically of the defining forms, which are all elements.

�We speak here specifically of the defining forms, which are all elements.

�I thought only <dfdl:defineFormat> does this. This sentence feels like all annotation elements do this.

�There are other defining forms also for number formats, and escape schemes.

�To be more precise, it’s the schema *document* that has the targetNamespace *attribute*. Schemas don’t have target namespaces; only schema components do.

�See earlier comments on glossary. Not using schema terms properly.

�Is this true? What does a DFDL annotation mean on, say, an enumeration or pattern facet?

�Schema component? See end of section 8.

�Element declaration? See end of section 8.

�May want to provide pointers to relevant sections for all items.

�Earlier/later parts of the schema? In what sense?

�How do variables work on output?

�What is the difference between scheme and format? We should be careful of consistency in element naming.

� Go with numberFormat, but escapeScheme.

Its hard to say why this is preferable, but probably by analogy to the printf “format strings” we all know and love from C programming. The escape stuff is really very unlike this unless we invent some sort of pattern language for expressing them.

E.g., a pattern like “X\”Y” would mean open quote is the double quote character, escaped by backslash, close quote is also double quote character. Difficulty is that these things need to reference eachother.

In the case of numbers a pattern language like this works. In the case of quoting and escaping, I think it is a flop. We need many well-named attributes to make these quoting and escaping “schemes” intelligible.

�It would seem like it was up to the parser to determine if appropriate representation properties were used for the containing XSL element. The introduction of specialized annotation elements would just seem to make things confusing to me. Now users attempting to read a DFDL schema needs to know that these annotation elements are really just instances of dfdl:format. Not sure what value they add…

Would� be helpful if a list of these constraints is provided somewhere.

�TBD: I was looking for “TAB” as an entity name. Is TAB standard or non-standard?

�Why don’t we describe the syntax of the expression language here?

�Why don’t we describe the syntax of the regular expression language here?

�How about <xs:include> and <xs:import>?

�<xs:group> or model groups (sequence/choice)?

�both xs:group and sequence/choice are intended here. Groups have top-level definitions, but also local definitions.

�Is this a different way to say “element declaration” schema component, or does it refer to a different concept (e.g. the <xs:element> element)?

�From where? Implementation specific?

�How/when are the validity of the representation properties as defined in a contained dfdl:format element checked with respect to their applicability on the schema element that puts the defined format into use?

�What if the implementation doesn’t define the stated selector? Is it a schema definition error? Should it be ignored?

�And what happens when there is no default – would it be a schema definition error?

�TBD: is this stil true?

Escape Schemes that are named are introduced using a escapeScheme property, but escape schem definitions aren’t “properties” per se, so this statement doesn’t apply. Ditto for numberFormats.

�See note below – this is contradicted.

More specific? Or define a term for it�?

�Definitiion needed in Glossary.

�This directly contradicts the assertion above that “The dfdl:format 'ref' and selector attributes must be expressed as an attribute ...”

�So no DFDL annotation can ever appear under <xs:include> and <xs:import>?

�Correct. Such an annotation would potentially apply at global scope of the included/imported constructs and we don't allow that.

Revisit for selectors though.

�Some different font may be useful to highlight DFDL element/attribute names.

�Probably should have asked this earlier. Is “chameleon include” supported? (i.e. A includes B; A has targetNS but B doesn’t.) If it’s supported, then which namespace is used for named data format definitions?

�Should work exactly the same as chameleon namespaces in regular XSDL. DFDL adds nothing new here and it is our intent to surf on this set of XSDL mechanisms for namespaces of everything including DFDL's defining forms.

�How are the other annotation elements contained within a defineFormat (such as dfdl:assert or dfdl:hidden) applied when a named format definition is referenced by a dfdl:format ref attribute? Can named format definitions be referenced anywhere else?

�If “mapping” and “semantics” are separated, then such assumption is not necessary, because after mapping all the syntax stuff (baseFormat) is removed. You now only have a set of properties with values.

Talking about semantics using the syntax always has the potential of causing confusions.

More on this at the end of section 8.

� Response: it’s not that easy due to scoping, and expressions as values of properties. You can’t copy an expression containing a relative path down to any other place in the schema because the meaning of the relative path would be changed.

Any copy-oriented algorithm which suggests the mapping is a one time thing where you can always just eliminate the use of scoping has a problem with recursive types.

Now, we don’t allow recursive types in v1.0 of DFDL, but I don’t want to preclude them in the future either.

�If “mapping” and “semantics” are separated, then such assumption is not necessary, because after mapping all the syntax stuff (baseFormat) is removed. You now only have a set of properties with values.

Talking about semantics using the syntax always has the potential of causing confusions.

More on this at the end of section 8.

�Using what expression language? Assume the native DFDL expression language, but might want to make it explicit and add a reference.

�Need at least a pointer to later section(s) where this is discussed in details. E.g. what does before/after mean, “test” attribute vs. inlined test conditions, co-existence of “test” attribute and test-condition, syntax of test conditions, how they are evaluated, possible to produce errors (neither true nor false) …

�Agreed – the expression syntax is not explained here at all, and the test attribute only shows up in the example. The assert annotation element needs much more description.

�Might need a little more with regard to how discriminators are different from assertions. In reading the two descriptions, it sounds like they do basically the same thing.

�Where is it valid? Only under xs:schema?

�Share the same symbol space as data format definitions?

�?? Short form syntax? Aka why require an annotation element wrapper around these when a non-native attribute dfdl:hidden=”true” would seem to be sufficient?

Answer: preserve property that one can erase all DFDL annotations and get the logical model. A non-native attribute for signaling hidden wouldn’t preserve this property. You’d have to transform the schema by dropping all the elements having a dfdl:hidden=”true” attribute as well.

Nevertheless, short form is important for this verbose XML Schema-based stuff since it makes examples denser, so we might want to put this feature in anyway and sacrifice the above property.

�What about the positioning of hidden elements relative to siblings? Can they appear anywhere within the parent - in which case, is relative position important? May want to address this one way or the other.

�This contradicts earlier statements that any DFDL annotation element can appear inside dfdl:defineFormat. In general, I think the specification of which annotation elements can appear where is a little weak across the board - it should be made clear in every case exactly where an annotation element can appear and exactly what it's contents can be.

�If the name gets added to the global context, wouldn’t it also be a parsing error if a DefineEscapeScheme, DefineFormat, etc. also had the same name. The text here isn’t really incorrect, just could be misleading.

�Why treat these properties separately and describe them elsewhere unlike the other annotation elements? If they’re only use is within textNumberFormat elements, should they really be considered representation properties – at least for the sake of structuring the document in a logical manner?

�How’s scope defined?

�Which? The component on which the defineVariable annotation is specified?

�Just a clarification – if default value is not defined, then does it return null or a natural default value for the attribute such as false for boolean or 0 for integer..

My assumption is it would return null although boolean simple type is a border line case.

�There is no description of the type or defaultValue attributes that show up in the example.

�Not sure what scope is implied by the position of a variable definition. Does it apply to all children of the element to which the definition belong (regardless of position relative to the definition), to all siblings following the definition (but not preceeding), or to all elements following the definition (regardless or hierarchy). I assume the first, but more clarification would be helpful.

�Should probably add an explicit reference to the scoping section.

�Then this format definition can’t be used more than once?

Answer(mikeb): putting it inside a defineFormat is the way you give it a name so that it can be used more than once.

�For simple path expression should we state that DFDL validator should be able to detect such errors based on static analysis of path expressions or should we defer detection of such error at runtime (For complex path expressions, detection has to be done at runtime).

e.g. A->-B->C. Variable is defined at A and it’s value has path to element C but it is referenced at element B. Such errors could easily be detected during DFDL schema validation.

�How to tell it is a delimiter?

�I think variables are siffuciently complex that we should skip short-form for variables.

�Should state explicitly that the path has to be relative from current statement. E.g. it can’t be an absolute path starting from root construct.

�Wh ynot allow a notation like this:

Dfdl:setVariable=”ibmEDI:EDIFACT_DS=’{ $(.) }’”

Other than quoting hell, this lets you get it into one line, and you can set multiple values this way.

�That was also my first thought upon reading the short form.

�Not sure what this means. The above example sets 2 variables.

�I believe we do not need this construct.

With proper use of namespaces one can write

<xs:element name=”x” type=”string”/>

And have “string” refer to a DFDL-specialized string type, not the xml string type.

I think this is the level of convenience that was desired when the type substitution was conceived.

Also type substitution is very complicated when you consider multiple schema documents being assembled, etc.

I think we should drop this from v1.0

�Are we implying the redefinition of logical type here?? If so it would be like dynamic type substitution and would be somewhat dangerous? May be we should not support this in DFDL 1.0.

�Some unfortunate names.

�Only in DFDL specific annotations or also in normal schema constructs?

�Attributes? Elements I think. ..agree

�Always use element, not field. OK

�Is there an inclusive list of the properties that accept expressions, or do all of them?

�Should phrase as “error will occur”, or switch the order “A processing error occurs when…” Done

�Do we mean it must be statically provable that the expression returns only a single node?

This would rule out array-valued expressions. I suspect we may want this to be allowed someday.

This requirement for static single node is conservative however, so it's ok.

�Feels out of place unless we explain just a bit about variables here.

E.g., example of define variable, then a “…” and an expression that references that variable.

�Agreed - the $ is used in examples within this specification and unless the reader has knowledge of XPath syntax, they wouldn’t know that a preceeding $ actually indicates DFDL variables in this context. A little more explanation, though possibly redundant with the XPath specification and section below, would probably go a long way in this regard.

Just read the section further down that describes the variable syntax. Might want to move this language to that section or vice-versa.

�Shouldn’t this be named AbbrevSelf consistent with the name of “..” which is AbbrevReverseStep

�Strong typing guarantees that we can detect these in advance.

TBD: do we have to detect these in advance? No. But they are schema def errors in that they don’t cause backtracking of speculations. They cause failures.

�Explain or change to something DFDL meaningful.

Tis is the first appearance of this concept in the spec.

�Does this have to be dfdl: as the prefix?

That is the prefix for standard xpath functions

�Need functions that construct these objects from their obvious constituents, and take them apart.

Probably this is a subset.

�Perhaps should be xs:unsignedLong or xs:long ?

Agreed

�PAGE \# "'Page: '#'�'" �� Surprised to see these at all, but particularly here. Should there be a family of bit manipulation functions? Should they accept other integer types?

�Don't have this concept of context at this point. We're not describing a semantic traversal yet.

TBD. fix this.

�Shouldn’t we use our entitiy names e.g., “\nl” and “\ht”.

Or at least explain what they mean in terms of the entities, i.e., \n means what the NL entity means.

�Yuck! Mismatched? Ouch.

�Move all reference to references section and make a symbolic reference from here to that definition.

�Seem pretty trivial to me. Should we omit this?

�Would scope=local/descendants or something along that line be a better choice?

�Does it really mean “referenced” constructs, or construct “references”? For example, if a global element G is referenced twice, does G (the element declaration) inherit these annotations or do references to G (particles) inherit them?

This seems to contradict t�he above table (which shows that “hereOnly” is valid for element declarations) and the example below. Maybe it’s not “invalid”, but “has a different meaning from point C”?

�hereOnly?

�Can a “hereOnly” annotation override something “toScope”? Either way, it should be made more explicit, something like “note in particular that hereOnly annotations can/cannot override toScope annotations”.

If yes, the following question also needs to be answered “what happens to descendants of the hereOnly annotation point?”

�What if the same annotation property is specified twice at the same level? Assume that would be a schema definition error, but might want to make that explicit somewhere...

�Change to a section reference?

“name” n�ot allowed when “ref” is specified.

�Complex type derivation has to be supported to define *any* complex type, because they are all ultimately derived from xs:anyType. I think the rule should be “derivation of complex types is only allowed when they are derived from xs:anyType (by restriction?)”.

�Responding to s131 – this is not relevant to DFDL. We don’t allow use of the type derivation construct (the xs:extension element) inside complexType definitions. So, while you may call these all derivations from xs:anyType, the concept of xs:anyType doesn’t exist in DFDL conceptually. This concept may be useful for implementors, but has nothing to do with the language per se.

�Complex type derivation has to be supported to define *any* complex type, because they are all ultimately derived from xs:anyType. I think the rule should be “derivation of complex types is only allowed when they are derived from xs:anyType (by restriction?)”.

�TBD?

�The net outcome of this rule is that the annotations defined at the simple type cannot be overridden from element.

Consider a scenario where I have 2 elements of same type, Depending on their position within the structure one may have different alignment requirements from the other. If the alignment annotation is specified at the type I have no means of overriding it from element. In such case either I have to assign a similar type but with different alignment annotation to the element or remove annotation completely from type and specify it on element only.

However the derivation rules specified here are unambiguous and I like it. However we should put an advisory note in the document that the users should be very careful while choosing to put annotations on simple types keeping in view that they cannot be overridden from the element declaration.

�Response to L130: yes this is the intention. No override on type refs. Override on element and group refs.

�This is seems to be the same as the above element/group reference case

1. They are both exceptions to the “inner annotations take precedence” rule.

2. They are both using new values to replace values specified in referenced schema concepts.

Why are they not treated in the same way? To me, saying “annotations specified on derived types take precedence over those on the base type” is much easier to understand than talking about “the last thing added to the context”.

�TBD: reindent and apply color scheme.

�TBD: reindent and apply color scheme.

�Syntax: these should be surrounded by <dfdl:format> ...</dfdl:format>

�This is just conservative. Early binding causes us to detect more errors.

�The first half of this section is more like an (incomplete) implementation strategy; the second half is like a complex example.

Is it possible to give a complete description about how property values are determined, without dictating how it’s actually implemented?

�May want to make clear this is the DFDL top level element. There may be many top-level/global element declarations in a schema.

�Ctrl-click on this took me to section 20.

�These 2 paragraphs seem to be saying the same thing?

�This suggests that there is a linear aspect to the processing which is counter to the rule earlier that the annotations can appear in any order within an element. I.e., if an annotation appears as the last child of an element, it should be treated the same as if it were the first child.

�Not sure what this means. This is not the usual manner in schema assessment, because information about particles and model groups doesn’t need to be pushed onto any stack.

“o�f the same property name”? Otherwise this sentence could be read as saying all preceding local contexts are *completely* superseded.

�Can this always be determined at compile time?

�I believe the answer to s140 is yes. However implementation need not determine it at compile time. But if found at run time it is still a schema def error - i.e., no backtracking occurs.

�Can this always be determined at compile time?

�Does this mean for elements with complex types, all formats are treated as “hereOnly”, when if “toScope” is specified?

�Are all possibilities exhausted? Did it cover “when the annotated schema item is an complex/simple type definition” case?

�Answer to s143 – didn’t explicitly. However, referential transparency insures that we don’t have to do both references to types and immediate types as they are equivalent entirely.

�Good job Mike. Comprehensive example and very nicely documented.

I�s this correct? Are terminators not applied to types? Is this specified in previous sections?

�Answer s144: good catch.

This is something implied but not stated. When we are looking at what has say, delimiters, an element has delimiters, and if it has a model-group for its type, those can also have delimiters, but that’s it.

There’s no notion that a complexType definition can introduce a “contour” where a delimiter might be created/consumed, nor a simpleType contour.

For an element of simple type, there’s only one initiator and one terminator, so the only issue is where does the definition come from. The answer is, from the type if it is specified on the type, otherwise on the element declaration if specified there, otherwise from the scope.

The assumption is that a complexType contour i.e., passing into our out of one, does NOT have its own terminator/initiator, nor any other rep. This is because complexType is the way one puts properties into scope. However, the item having the type has terminator/initiator, then we’ll encounter it when we encounter the item.

�Having read the first 8 sections, I think more clear distinction needs to be drawn between “schema documents / elements in schema documents” vs. “schemas / schema components”. These 2 levels seem to be mixed throughout the spec. One of 2 things can be done.

(Like many other specifications and my preference) describe things at 2 levels. The component level, like schema components, is just a bunch of conceptual objects with meanings. Parsing/unparsing behaviors are all based on these objects and values of their properties. The schema document level describes where DFDL annotations are allowed and how to map them to the component level. E.g. (1) at the component level, every DFDL element declaration has an {encoding} property. If an element matches this element declaration, the {encoding} property is used to … (2) at the schema document level, annotations can be specified under <xs:element>, and they become part of the corresponding element declarations

Pros: because it separates component mapping (from schema documents) and component semantics (application to instance documents), it’s easier to make this approach precise, and it allows “synthetic or born-binary schemas” (those without schema documents); and it makes it easier to write an API to expose the component model.

Cons: (unfortunately) schema 1.0 didn’t allow annotations on Particle components. (schema 1.1 fixed this.)

2. Only one level: schema document. Then terms should be given to all the different annotation points, and they need to be distinguished from schema component terms. E.g. annotations specified under <xs:element> should not be referred to as on “element declarations”, which are component level concepts.

Pros: eaiser to connect this with concerete examples.

Cons: texts about how to specify/understand annotations and how to use them are often mixed and hard to understand.

(It's not easy to describe this. It may help to look at a concrete example. http://dev.w3.org/cvsweb/~checkout~/2007/xml/sml/build/sml.html?content-type=text/html;%20charset=utf-8#sml_acyclic section 4.3.1 is written using option 1; 4.3.2 is similar to what DFDL currently has.

�Responding to s148:

While separating the mapping from document to component objects seems reasonable, I'm not sure it helps as much for DFDL as it does for XML Schema.

We can't just flatten scoping, for example, pushing properties down onto all contained components – why? because of expressions which contain relative paths. While it seems we could just fix up the relative paths first, converting them to absolute paths. But that's actually no good because it requires us to unshare all referenced types, elements, and groups so that the components corresponding to them can have different absolute paths pushed down into them from references in different scope contexts. Even creating these unshared instances doesn't work if we want to be able to allow recursive types someday.

The semantics has to be given in terms of a lookup algorithm which ascends through frames of a context stack in my opinion.

�This seems very implementation dependant – does a parser HAVE to use a recursive-descent parser (I.e., are there things in the standard that would prohibit parsing any other way)? If so, may want to point out why – if not, may want to loosen the language or put this section on parsing in a non-normative appendix or separate document.

�Use symbolic reference to the references section.

�definition needed in glossary.

�Shouldn’t prefix and suffix productions be optional

�They're required, but their contents might be empty. E.g., consider alignment padding. There is always alignment padding, just so happens to be length zero if the item is at the right alignment boundary already.

�The final unused is needed for when a sequence has a length specified (box idiom, ie., box of length N, content fits in the box)

�Question, does this belong as part of the SequenceContent production, or the Sequence production?

Figure below must also be consistent

Note: There is no right or wrong answer here. We can make it work either way. Unless there is a compelling reason to change it we should leave it as written.

�Must be consistent with infoset handling

�Is this consistent with infoset handling of this?

�I thought we punted on explicit offsets to simplify. If so delete this caveat.

�Picture needs to conform to final grammar.

�In our MRM model, for repeating element we state that a leading skipCount applies only to first occurrence of array element and trailing skipCount applies to all elements of the array. The model in that sense is not symmetrical. I thinking if we should model this properly for array where we state that an array construct as such has a prefix Region and suffix Region which carry these alignment attributes.

I will try to find the COBOL test case which demonstrates this issue.

�Should this be the "Representation extent"? Why "dynamic"

Answer: this use of the word dynamic is with reference to the concept of dynamic scoping, as opposed to lexical scoping. DFDL has dynamic scoping, not lexical scoping.

This concept is also not well defined as explained here. A given element declration may have appearances all over the place in the input, this description reads as if it’s extent occurs in only one place.

�Move this definition elsewhere.

�Are implementations required to recognize and support the supplemental properties? If so, might want to make that explicit.

�A table of the representation properties and the cases in which they’re required, optional, or not applicable might be helpful.

�TBD: should they define properties that are irrelevant to the format being expressed?

I think not. Self-consistent, yes, but they don’t need to define properties not needed.

�General comment.

We have numerous properties defined at different constructs and some of the properties provide alternative form for processing by the parser. It would be helpful to describe the precedence order in which the properties will be examined.

E.g. The primary processing for simple content would be driven from the dfdl:representation property (text, binaryInteger, binaryfloat etc) but within that set there might be different way to process e.g. processing based on offset, length based etc. The precedence order in which the properties are examined is important both from tooling and runtime perspective.

�Agreed. An explicit order of application would also help implementors determine how best to evaluate properties. It would also seem that as properties are applied, certain other properties may become superfoulus or at worst contradictory (I haven’t digested enough to know whether or not this is an issue). Would these be errors? For example, an escape scheme would be meaningless for a binary representation. Some kind of table showing valid/invalid property combinations might be helpful.

�While this is an Enum, that doesn’t mean it can’t be computed as an expression. An enum is just a kind of string in an XSD.

�This brings up a comment I have – the value type for properties is listed in conceptual terms, but shouldn’t all properties actually accept one or more specific XPath (or the DFDL subset of) types (usually atomic)? Making this explicit would remove confusion on the part of implementors. This is a good case – though the value is logically an enumerated type, the actual atomic type is xs:string – with additional validation to ensure it’s one of the enumerated values.

�Should this be “encoding” (lower case)?

�Cite a standard for CCSID values in the footnote.

�We want this to be as small as possible a set. Can we get away with just UTF-8,

Also TBD: what aliases of the IANA names are required? All of them? So, e.g., "Latin1" is accepted?

�TBD: should this property be compatible with UTF-16 ? i.e., fixed width 2 bytes? What about with ordinary 8-bit character sets like US-ASCII?

Conservative decision: make it work only with character sets having either 1 or 2 byte variable length.

�Another comment on the typing of properties – it looks like there are several like this one that accept multiple atomic types for various purposes. Does that not become burdensome on the Schema for DFDL (because it has to define the property attribute or element as more than one type – even more complicated to define in cases like this where one of the valid options is a specific string but no other strings)? It may also cause complications for an implementor (because they have to accept more than one type).

In these cases I would suggest trying to fit all possible values into one atomic type. For example, in this case, a 0 or negative number could mean implicit rather than using a string.

�I wonder what the purpose of this property is, specifically with regard to specifying alignment at the bit level considering the “positive integer power of 2” requirement on the alignment property. Is there ever a case where an alignment specified in bits couldn’t be specified more conscisely in bytes? Suggest that either all alignments are specified as bytes or the power of 2 requirement be removed if such alignments would be valid.

�So does this mean that a dfdl:defineEscapeScheme element can appear as a child of a dfdl:format element (since a dfdl:format is where representation properties are set)? Does it also mean that a dfdl:defineEscapeScheme element doesn’t require a “name” attribute (I.e., it’s anonymous)? If so, suggest making explicit the cases when a name attribute is required and when it’s not.

�There doesn’t appear to be a description of the initiatorSeperator property anywhere.

�How is the case equivalency defined for different character sets? Is this (or should it be) related to XPath collations? Perhaps instead of an ignore case switch the user should be allowed to specify a collation for initiator/terminator comparison and the DFDL standard would require implementations include a case-insensitive collation for common character sets. This could be important in certain settings – for example, the XPath standard has an example that ‘v’ and ‘w’ are equivalent in Swedish. This may have some other advantages – if collations are needed for this kind of thing, then we could probably support fn:compare and fn:codepoint-equal in the DFDL XPath subset.

�I understand case insensitivity for initiators as they are often identifier tags. But for terminators?

Is there a use case here?

I suppose initiator="\nStartData\n" and terminator="\nEndData\n" where both are case insensitive.....???

�So are these properties only used on dfdl:defineEscapeScheme and not dfdl:format? If so, do they really belong here or should they be attributes of the dfdl:defineEscapeScheme annotation element?

�replaces both useXSDlength, and useType.

�Revisit. Do we need given that there is typeSubstitution

�Added to avoid the issue of default values. I.e., we don’t want to have to say lengthUnits=”bits” and length=32” on every int, nor do we want to scope these specific values. However, if we scope lengthKind=”useType”, then unless you override it for a bit field, then it will do what you expect for binary data.

�Note: dropped ‘digits’ – being conservative. Can add back in v2.0.

�There is a UTF-8 variant where the max is 6 bytes. Unicode characters above 0xFFFF are encoded as two surrogate codepoints, and each surrogate codepoint is encoded as 3 bytes.

This is non-standard for UTF-8, but is commonly used.

We need an encoding name for this encoding. We could make all UTF-8 readers accept this, and not write it out, but that would break software that needs this 6 byte encoding.

Suggest UTF-8-ESP where “ESP” stands for “Encoded Surrogate Pairs”.

�We could simplify and say that the character set must be fixed width if the length is specified in bytes.

At least for v1.0 we could get away with this.

�I think we need an alignmentKind=’implicit’ or ‘explicit’. The value ‘implicit’ would mean use these values for alignment of binary types. Multi-byte fixed-width characters would be aligned (2-byte or 4 byte boundaries) also.

�We have no data type in DFDL which can handle the precision of these extended formats. Many programming languages also have no corresponding types. (quadFloats?)

�Shouldn’t this just be “ieee”

�Why is “hex” in the name of these?

�TBD: Get all these float lengths

�Note: the Schema for DFDL annotation syntax will use an xs:token for this.

�All dfdl symbols are reserved. Others would be allowed as a way to allow new parse strategies to be defined and added to DFDL.

�A predefined format set should define this as left and number justification to right. (What about the others? also left like string?)

�TBD: sufficient?

�I believe these apply to decimal also. There is a decimal justification property, and we're trying to use a pattern/pic like thing for implied decimal points now. We should avoid redundant properties and have decimals refer to these same properties? (and generalize "text" in the names?)

The alternative is to keep text and decimal in the names, and have a disjoint pattern language for decimals, which might look more like cobol pic, or might be very similar to the one here for text.

�A pre-defined format set should have this as "right"

�Can these properties be used on dfdl:format or only on dfdl:textNumberFormat?

�Note: fixed point binary is not allowed because of the problems it creates with base 10 rounding vs. base 2 rounding. It is not well defined, nor widely used. (I think PL1 allows it though. need to check.)

�Use a symbolic reference to the section on references at the end of the spec.

�TBD: What about XSD totalDigits and fractionDigits.

Do we allow those, and if so, how do they play with these patterns?

�Why not say can be empty string indicating no decimal separator.Then we can eliminate numberimpliedPlaces?

Or was this done for implementation reasons? I.e., to avoid having to tweek the ICU libraries?

Note: numberImpliedPlaces removed in favor of "V" in pattern, so comment no longer applies?

�I believe we will need a list of characters. Typically “D E F G” can be used.

�I’ve seen “+inf” used in 1-byte charsets. So shouldn’t this (and related props) all be of type String?

�It is not known if this scheme is always used by CA Realia compilers, or only specific versions and only on specific platforms.

�Maybe need a Boolean format object? (analogous to numberFormat?

�Alternately, how about textBooleanTrueType and textBooleanFalseType, and give a simpleType name.

�For these boolean reps, we need to be able to use a list of values. (Similarly, null flags allow lists of values) however there is an issue of how you can put the empty string into a list since the empty string might be one of the reps that is accepted as false for example.

We can use a list of quoted strings. E.g., " 'false' 'FALSE' 'False' '0' '' "

(the last entry is empty string – hard to tell in default font here.)

Alternatively, do REGEXPs fix this, or is that too powerful? Yes they let you specify alternatives, but they also let you do much much more.

�For these boolean reps, we need to be able to use a list of values. (Similarly, null flags allow lists of values) however there is an issue of how you can put the empty string into a list since the empty string might be one of the reps that is accepted as false for example.

We can use a list of quoted strings. E.g., " 'false' 'FALSE' 'False' '0' '' "

(the last entry is empty string – hard to tell in default font here.)

�Again the issue of how to provide lists of true values (or false values) for these booleans, and what to do about empty string as one of those values?

�Maybe need a Boolean format object analogous to numberFormat ?

�Again suggest integerBooleanFalseType and integerBooleanTrueType and give a simpleType definition for each of them.

�Dropped ‘unspecified’ since it implies a floatLength property, which we don’t have. Not sure what we’d do with an unspecified float anyway. If you don’t know the float format model as hexBinary.

�What does this mean?

Seems to imply a float-size property so that you know how big it is and can at least skip over it.

I would prefer to simply drop this. We have ways of doing opaque types so that you can skip over things like this.

�Why does this have “hex” in the name?

�TBD: Assuming here that delimited/nullTerminated are not meaningful. If so we would get into the issue of how to specify delimiters, i.e., in hex?

�We could disallow xs:minLength and xs:maxLength for hexbinary.

�Interactions between this and say, initiators and an unordered group with nullValueInitiatorPolicy="prohibited" and a potentially zero-length rep....

Suggest we punt flag/indicator nulls for V1.0 of DFDL, or alternatively we just prohibit initiators (which thereby prohibits unordered groups and also prohibits initiator-based optionality of all kinds).

�How is list specified such that an empty string can be expressed as a null value for a nullable string field?

�Example is needed to illustrate usage here. This example is the one where there is a trailing bit vector of null flags. I have seen prior and after byte flags, and prior and after bit vectors. The example has to also show how the null indicator is set on output..

�There seems to be some confusion around null indicators and whether or not the element itself will appear in the data. Generally, if the element is fixed length, having a null indicator doesn't change the amount of space taken up in the stream. Rather, both the flag and the element storage would be in the data. If the element Is variable length then things are trickier.

�Note: in DFDL v1.0 because of the way the root-value approximation works this path must be to an element that has already been parsed in schema order. I.e., you can't have a trailing bit vector of null flags at the end of each data record.

�TBD: double check this. Is this right?

�Move these sections on initiators up to the first place initiators are introduced.

�TBD: rewrite these property descriptions in terms of the grammar for sequences

Specifically, this is where the FinalUnused Region must be described.

�We cannot detect such errors in case sequence contains any variable content – e.g. occur depending on.

Also what is the user case for specifying length on sequence group. Is it just for validation or filling the extra space with padCharacter ?

Answer(mikeb): it is for filling the extra space with fillbyte. (not characters since the empty space isn't necessarily textual)

The use case is structures that have either a final element of variable length where that length is bounded by end of data, or for arrays where the number of repetitions is bounded by end-of-data.

�This semantics was chosen just to be conservative. We want people to skip over data using hexBinary elements or base64Binary elements, or arrays of type xs:byte.

It is believed that empty sequences will be needed by some processing tools that generate DFDL. It will require special case code to prevent them from being generated. (Like a 2nd pass to clean them up.)

�This semantics was chosen just to be conservative. We want people to skip over data using hexBinary elements or base64Binary elements, or arrays of type xs:byte. A hidden element of one of the above forms is equivalent to an empty sequence with length.

It is believed that empty sequences will be needed by some processing tools that generate DFDL. It will require special case code to prevent them from being generated. (Like a 2nd pass to clean them up.)

�Only true for infix

�As long as no clash with separators in containing structure

�or these could be ignored and assumed to be 'required'

�Would it be beneficial to separate initiators from "tags" ie., inot overload the same term for these regardless of whether or not they are used to distinguish elements from each other? What if an initiator was just "there", but a gag had to be unique in the context?

�or these could be ignored and assumed to be 'required'

�Would it be beneficial to separate initiators from "tags" ie., inot overload the same term for these regardless of whether or not they are used to distinguish elements from each other? What if an initiator was just "there", but a gag had to be unique in the context?

�Suggest sequences where children have initiators cannot be directly nested. You must use an element in this case.

I would prefer that children of an unordered sequence are required to be elements in general for v1.0.

�Is this rule required? For regexp I see it, but for delimited things we can just suspend scanning and pick up again on the other side.

�Amazing how all the material on discriminating initiators and the complexities of initiator tagged formats goes away because we decreed unordered sequence groups to be source-to-source transformed away.

That combined with the speculative execution for choice and array and optional and you end up without any specialized treadment of initiator-based discrimination.

�Concern that implementing our own interpretation of unordered as described may be seen by wider community as clashing with xsd:all (which has been relaxed in XSD 1.1), does not allow a user to preserve his bitstream order (which although random could still have a semantic), and does not allow us to output exactly what we parsed.

�

From review comments by steve, geoff, alan:

Doesn't this array need to be inside an ordered sequence?

 i.e., To be capable of use on a complex type's sequence or on an embedded sequence, your source to source transform actually replaces an unordered sequence with an ordered sequence, which contains an array element of local complex type, whose content is a choice...

�This description is the same as for fixedLength – should probably some text differentiating the two.

�What is the infoset contents in this case?

�TBD: can make the model more restrictive so that the branches of a choice must be elements. (This is the more conservative decision.)

�Let’s illustrate resolvable and un-resolvable choices with good examples.

�This section belongs elsewhere.

�This definition is terribly broken. E.g., if lengthKind="explicit", but length is a formula, then there is no telling.

We need a way to say LengthKind="implicit" or LengthKind="explicit" and length is a formula which evaluates statically to a constant.

�Note: this keyword replaces both “delimited” and “endOfData”.

�Should this be delimited or endofdata

�You achieve the equivalent of length in bytes by enclosing the array in a sequence where the sequence has length=”….” and lengthUnits=”bytes” which constraints the length the array must live within. This eliminates the need for occursUnits property entirely at the expense of making people introduce this sequence. Note that if their array already has a initiator/terminator then they already need to wrap in a sequence since specifying initiator/terminator on an array element is specifying each element inside the array’s initiator and terminator.

Similarly, to have an array take up all the space matched by a regexp, you bound an enclosing sequence by regexp length, then use fillAvailable on the array inside.

�What is the use case for these? Dates?

�What about arrays?

�(MikeB) – I have decided that we should omit outputLengthCalc, as I cannot think up examples that could not be done using other mechanisms such as a byte vector whose “occurrences” are computed as shown in the word-units length prefix example here.

If we can omit this outputLengthCalc property it is good to do so as it is a major complexity.

�TBD: add selector control (once we have the selectors material added back)

Also variable setting from external control.

�Not needed. Schema author can just provide alternate top level elements.

�See note above – what do these really add? It seems more difficult on the implementor because they have to recognize alternate syntax, and it seems more difficult on the user/developer because they have to know more syntax (such as knowing dfdl:sequence really equals dfdl:format when they see it). If the goal is to restrict the use of properties depending on the context of the dfdl:format annotation, then the DFDL parser should be doing that anyway since these alternate elements are optional and user can still use dfdl:format. Not to mention, won’t short form be used most frequently anyway (and thus there won’t even be an annotation element)?

�TBD: As with length expressions and where the representation box can be different from the infoset's string, for an array, one could have N items in the infoset, but have a calculated number of occurrences which is either greater than or less than N. This discussion of defaulting or truncating the number of items needs to go somewhere.

�Are these normative requirements of the standard or just some language on good practice? If the former, I would be sure to use the RFC 2119 terms – if the latter, should it be an appendix and marked as non-normative?

�TBD: Alan Powell, Simon Parker, …. Who else?

�TBD: update for new "OGF". Also the template may change, new IP statement language may have to be used, etc. etc.

�Need CCSID code pages reference.

�Everyplace we describe lengthUnitKind in this document and mention characters ideally we should footnote and say "lengthUnitKind='characters' means 16-bit for UTF-16 character set encodings. See the Appendix..."

� Reference for this CA Realia 0x20 overpunch for negative sign is the article: "EBCDIC to ASCII Conversion of Signed Fields" at http://www.discinterchange.com/TechTalk_signed_fields_.html, where it says:

COBOL compilers that run on ASCII platforms have a "signed" data type that operates in a similar manner to the EBCDIC Signed field -- that is, they over punch the sign on the LSD. However, this is not standardized in ASCII, and different compilers use different overpunch codes. For example, Computer Associates' Realia compiler uses a 30 hex for positive values and a 20 hex for negative values, but Micro Focus and Microsoft use 30 hex for positive values and 70 hex for negative values.

File: ogf-dfdl-v1.0-Core-033.final-dgcommented.doc

Page 1 of 146
dfdl-wg@ogf.org

Page 16 of 146

_1248335319.ppt

Item start position

Content start position

Content end position

Item end position

Content Length

Item Length

Item end position (previous item)

Item start position (next item)

Item

		Prefix Region		Content Region		Suffix Region

_1256130833.ppt

Seq. Item

Separator Region

Seq. Item

Sequence Group

Seq. Item

Separator Region

…

Suffix Region

Prefix Region

Item start

position

Content start position

Item end

position

Content Length

Item Length

Item end position (previous item)

Item start position (next item)

Final Unused Region

Content end position

_1273233968.ppt

Element

Separator Region

Element

Array

Separator Region

Element

Separator Region

…

Stop

Value Region

Content start position

and Item start position

Content end position

Item

 end position

Content Length

Item Length

Item end position (previous item)

Item start position (next item)

Separator Region

_1251121495.ppt

Prefix Region

Suffix Region

		Leading Alignment Region		Initiator Region

		Terminator Region		Trailing Alignment Region

_1251121993.ppt

Alignment Pad Region

Leading Skip Bytes Region

Leading Alignment Region

Trailing Skip Bytes Region

Trailing Alignment Region

_1248314255.ppt

A Bit Field or Region

…

01101001 000100011110101000101010 101010010110111

Position 4

Position 0

