The ‘choice-discriminator-example’ xml sample code and scenario raises some concerns for me given that I might be called upon to write similar XSDs and also be asked to support types that might require extensions.

1. What are the required string-related infoset elements?

2. Is it a requirement, for this example and for DFDL, that a parser be capable of reading to arbitrary bit boundaries in the input stream?

3. What key differences are there between the sample annotations and the XSLT equivalent

4. I need a hook (like an Ant task) to handle unexpected/unsupported scenarios

5. How to keep implementation issues from disrupting the spec work

Required string-related infoset elements

The external representation of a length-prefixed string has two components: the length (however encoded or represented) and the string itself.
The example appears to show only the string value as a publicly visible infoset item. This document assumes that only the string value itself will be available as an element and that if the length is desired an expression or transform will be used to obtain it.
Requirement for arbitrary bit boundary support

The example also appears to require that a parser be able to read to bit boundaries. If this is, in fact, a requirement it should be explicitly stated in the spec.

I personally have never come across a parser that reads at the bit level in my 25 years. I have written and supported several parsers but the finest level of granularity used was the byte level. Some of these parsers supported reading bits but the granular level was byte; similar to the way a 32 bit CPU flag register is always 32 bits but some of the bits are unused.

It seems that this has the potential for some serious performance issues as well as complications for parser implementers.

Assume that the first element in a file is a one bit flag and that all of the other elements are ordinary bytes. The file then consists of:
1. a one bit flag

2. 1 or more 8 bit bytes

3. a one bit pad trailer

The parser would be required to peel off the first bit only to provide the first element. For every subsequent byte the parser needs combine 7 bits of one byte with the lead bit of the next byte to reconstruct an 8-bit byte for the element.

The trailer bit is padding since physically only bytes can be read or written.
That kind of results in a push-back parser with a lot of bit shifting and manipulation simply because bytes do not begin at a byte boundary.

We better be real sure that type of bit-level parsing is really needed before making it a requirement for all conforming parsers.

6. What key differences are there between the sample annotations and the XSLT equivalent

What key differences are there between the sample annotations and the XSLT equivalent
The sample annotations seem to bear an uncanny resemblance to some XSLT samples that Martin Westhead included in his ‘XML_XSL_Proposal-1.doc’ document from a while back:

[image: image1.emf]<?xml version="1.0" encoding="UTF - 8"?> < xsl:stylesheet version =" 1.0 " xmlns:xsl =" http://www.w3.org/1999/XSL/Transform " xmlns:fo =" http://www.w3.org/1999/XSL/Format " xmlns:dfdl =" http://www.dfdl.org/ "> < xsl:import href =" bytesToString.xsl "/> < xsl:import href = " bytesToInts.xsl "/> < xsl:template match =" dfdl:byteStream "> < xsl:element name =" case3 "> < xsl:choose > < xsl:when test =" dfdl:byte[position()=1] >= 0 "> <! -- length in first byte -- > < xsl:call - template name =" stringAndLength "> < xsl:wit h - param name =" length " select =" dfdl:byte[position()=1] "/> < xsl:with - param name =" headLen " select =" 2 "/> </ xsl:call - template > </ xsl:when > < xsl:when test =" dfdl:byte[position()=1] < 0 "> <! -- length in first byte -- > < xsl:call - temp late name =" stringAndLength "> < xsl:with - param name =" length "> < xsl:for - each select =" dfdl:byte[position()=1] "> < xsl:call - template name =" intVal "> < xsl:with - param name =" byteOrder " select =" 'littleEndian' "/> </ xsl:call - templa te > </ xsl:for - each > </ xsl:with - param > < xsl:with - param name =" headLen " select =" 5 "/> </ xsl:call - template > </ xsl:when > </ xsl:choose > </ xsl:element > </ xsl:template > < xsl:template name =" stringAndLength "> < xsl:param name =" leng th "/> < xsl:param name =" headLen "/> < xsl:value - of select =" $headLen "/> < xsl:element name =" length "> < xsl:value - of select =" $length "/> </ xsl:element > < xsl:element name =" string "> < xsl:call - template name =" bytesToString "> < xsl:with - param name =" f irstByte " select =" $headLen + 1 "/> < xsl:with - param name =" lastByte " select =" count(*) "/> </ xsl:call - template > </ xsl:element > < xsl:value - of select =" count(*) "/> </ xsl:template > </ xsl:stylesheet >

Current excerpt:

 <xs:choice dfdl:choiceKind='variable' dfdl:choiceResolvable="true">

 <!-- First choice alternative: one byte -->

 <xs:sequence>

 <xs:annotation><xs:appinfo source="http://www.ogf.org/dfdl/dfdl-0.1">

 <dfdl:discriminator test="{ ../lengthFlag != '1' }" />

 </xs:appinfo></xs:annotation>

 <xs:element name="oneByte" type="xs:byte"

 dfdl:alignment="1"

 dfdl:length="7"

 dfdl:outputValueCalc="{ ../logicalLength }" />

 </xs:sequence>

 <!-- Second choice alternative: one byte -->

 <xs:element name="fourByte" type="xs:int"

 dfdl:alignment="1"

 dfdl:length="31"

 dfdl:outputValueCalc="{ ../logicalLength }" />

 </xs:choice>
Current has a ‘choice’ while past has a ‘choose’. And they both have a similar test for the first bit.

What if there was a way to include an XSL snippet in the annotation section? Perhaps a parser could create an XSLT transform from the snippet and make essentially a function call (or a template call) to transform the value from the byte stream.

If you hide the annotations you see the structure and in the annotations you could use any available syntax from XSLT.

This might eliminate the need to invent a unique language to do the things that XSLT can already do. It shouldn’t be a burden to require an XSLT processor.

Don’t know if this is possible but if it is it may be a way to leverage the power of XSLT, which also supports extensions such as Java function calls that could be used to handle the complex stuff without cluttering up things with more properties.

I’ve got to think about this some more but it sure is intriguing.

Need a Hook to handle unexpected/unsupported Scenarios
In the example file the main purpose of the annotation and one page ‘hidden’ element are to provide instructions to the parser as to how to parse the next element. The content is more analogous to an XSLT fragment than XML.
Of course this is because for binary data there are no tag prefixes and suffixes to delimit the components. In order for a parser to break a binary file into its constituent components it must know how to determine the component boundaries.
It appears that it is pretty straight forward to define properties and values in XML that the parser needs to process the next element. After all, these are just data.
What I would likely need is a way to specify an external function to call to actually perform the processing. Something equivalent to the way Ant allows custom Tasks to be defined and used:

<xs:complexType name=”smartLengthString” dfdl:impl=”external” dfdl:function=”parseSmartLengthString” dfdl:functionParms=”..annotationValues…”
The DFDL parser could construct an annotation property list (even a flattened list of name=value pairs), pass the properties to the external function and accept the result as the element value. In the example case this would be the “str” value.

This would a “parseSmartLengthString” (and an unparse) function to be written with any desired implementation without having to figure out how to do it (or if it can be done) with the syntax being proposed.

A rather simple function interface might be all that is needed:

1. One parameter – a flattened annotation property list

This allows for any number/type of parameters in any order

2. One result - a flattened annotation property list of values that the function creates
The external function could also be a standard XSLT fragment if desired.

How hard would it be to provide a basic ‘hook’ such as this even if it was labeled as experimental? This would expedite getting an implementation up and running since the parser doesn’t need to deal with the language expressions such as embodied in the example.

Keeping Implementation issues from Disrupting Spec Work
Another concern I have is to what extent, if any, I can contribute without being a disruption to the spec work being done.

I have much more of an ‘applied’ bent than a theoretical one. I will be writing XSDs for binary files and even refactoring code that a processor like Defuddle might produce if additional performance is needed.

So to write a function to parse a SmartLengthString is a piece of cake. But I don’t have the aptitude to try to spec out the general case. I can write it, test it and tell what works and doesn’t work but I don’t have a clue as to how often it might be used in practice.
On-the-fly parsing of binary files into DOM models might be appropriate for small volume or low performance use. But for high volume or high performance the Defuddle approach of turning DFDL schemas into Java classes that are then compiled and used might be needed. This is similar to using XML files and XSLT to parameterize the creation of Java Beans.

Once you get into multiple implementations you begin to wonder just how many delimited record parsers or smart-string parsers are really needed and do you want to make every implementer have to do their own.

Any ideas you have in terms of how I can bring possible implementation/performance issues to your attention without getting in the way would be appreciated.

_1132055503.doc
<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:fo="http://www.w3.org/1999/XSL/Format" xmlns:dfdl="http://www.dfdl.org/">

<xsl:import href="bytesToString.xsl"/>

<xsl:import href="bytesToInts.xsl"/>

<xsl:template match="dfdl:byteStream">

<xsl:element name="case3">

<xsl:choose>

<xsl:when test="dfdl:byte[position()=1] >= 0">

<!-- length in first byte -->

<xsl:call-template name="stringAndLength">

<xsl:with-param name="length" select="dfdl:byte[position()=1]"/>

<xsl:with-param name="headLen" select="2"/>

</xsl:call-template>

</xsl:when>

<xsl:when test="dfdl:byte[position()=1] < 0">

<!-- length in first byte -->

<xsl:call-template name="stringAndLength">

<xsl:with-param name="length">

<xsl:for-each select="dfdl:byte[position()=1]">

<xsl:call-template name="intVal">

<xsl:with-param name="byteOrder" select="'littleEndian'"/>

</xsl:call-template>

</xsl:for-each>

</xsl:with-param>

<xsl:with-param name="headLen" select="5"/>

</xsl:call-template>

</xsl:when>

</xsl:choose>

</xsl:element>

</xsl:template>

<xsl:template name="stringAndLength">

<xsl:param name="length"/>

<xsl:param name="headLen"/>

<xsl:value-of select="$headLen"/>

<xsl:element name="length">

<xsl:value-of select="$length"/>

</xsl:element>

<xsl:element name="string">

<xsl:call-template name="bytesToString">

<xsl:with-param name="firstByte" select="$headLen + 1"/>

<xsl:with-param name="lastByte" select="count(*)"/>

</xsl:call-template>

</xsl:element>

<xsl:value-of select="count(*)"/>

</xsl:template>

</xsl:stylesheet>

