GWD-I

dfdl-wg@ggf.org

Category: INFORMATIONAL

GGF Data Format Description Language Working Group
2009-04-15
GWD-I

Category: Informational

GGF Data Format Description Language Working Group
2009-04-15

Data Format Description Language (DFDL) v1.0

Unparsing and Calculated Output Values
(Internal Committee Working Document)

Status of This Document

This memo provides information to the Grid community regarding the specification of a Data Format Description Language. The specification is currently a working group internal draft. It does not define any standards or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright © Open Grid Forum, 2009. All Rights Reserved.

Abstract

This document provides draft material clarifying the behavior of DFDL processors when unparsing.
Revision History

	Latest entry at the top please

	Version
	Author/Contributor
	History
	Date(yyyy-mm-dd)

	001
	Mike Beckerle
	Created
	2009-05-23

Contents
1Data Format Description Language (DFDL) v1.0

1Unparsing and Calculated Output Values

1(Internal Committee Working Document)

1Abstract

2Revision History

31
Length and Representation-Length Functions

32
Terminology

43
Algorithm for handling calculated output values when unparsing

54
Forward Reference and Resource Limitations

55
The “As-If-Implicit” Rule for Unparsing and the dfdl:representation-length()

66
Top-level Variable Definitions

77
Required Variables, and Variable Scoping

78
Input and Output Variables

79
Unparsing, Output Variables, Output Default Values, and Forward Reference

1 Length and Representation-Length Functions
When unparsing data there can be stored lengths or other aspects of the representation of the data that are not part of the logical data model. These must be computed and become part of the representation that is written as output. This requirement implies the need for the following functions in the DFDL expression language:

· fn:string-length(path) – logical length of a string as identified by the path argument.
The value returned by this function is independent of any DFDL annotation properties. For example, it does not vary even if the DFDL properties indicate that the string is to be padded to a longer fixed length or truncated to a shorter length.
· dfdl:representation-length(path, lengthUnits) – physical length of the representation of the infoset data item as identified by the path argument.

The units of measure of this length are in terms of the lengthUnits argument, which takes the same values as the dfdl:lengthUnits property.
The representation length excludes any alignment padding as well as excluding any leading or trailing skip bytes.
If the element declaration in the DFDL schema corresponding to the infoset item is not potentially represented, then dfdl:representation-length() is defined to return 0.

When unparsing, the dfdl:representation-length() function has significant implications for DFDL implementations. However, the mechanism used by implementations (such as buffering to avoid redundant computation) is not specified.
Implementations can of course restrict the degree to which they are able to support dfdl:representation-length(). All limitations will have some length limit based on the memory size or address-space size of the computation vehicle executing the DFDL processor, so limitations on the ability to compute dfdl:representation-length() may affect the ability of a particular DFDL processor implementation to realize a particular data format, but such implementations can still be considered in compliance with the DFDL specification.

2 Terminology
· Definition: resource-limitation error: Exceeding an implementation limit such as the ability of the implementation to compute the dfdl:representation-length() of an infoset item, or the ability to evaluate a forward reference in the infoset, causes a resource-limitation error. This is a fatal processing error, which means that selection of alternative decisions at points of uncertainty (optional elements, or choice branches) is not triggered. Implementations may provide recovery mechanisms to allow processing to continue after such errors, but such recovery mechanisms are not part of the DFDL standard.

· Definition: augmented infoset. When unparsing one begins with the DFDL schema and part
or all of the logical infoset. As the values of items are filled in by defaulting, and by use of the DFDL outputValueCalc property, these new item values augment the infoset. The resulting infoset is called the augmented infoset.

· Definition: potentially represented. An element declaration in the schema describes a potentially represented item if that element declaration does not have an inputValueCalc property. Whether the element declaration describes an item that is actually represented or not depends on whether the element declaration is for a required or optional element, and whether the element has a corresponding value in the augmented infoset.
3 Algorithm for handling calculated output values when unparsing

This algorithm is expressed as if the entire infoset to be output is computed before unparsing begins, a subsequent section discusses implementation considerations for other implementation techniques.
When unparsing, an element declaration and the infoset are considered as follows:
a) If the element declaration has a dfdl:outputValueCalc property then the expression which is the dfdl:outputValueCalc property value is evaluated and the resulting value becomes the value of the element item in the augmented infoset.

Any pre-existing value for the infoset item is superseded by this new value. Note that it is not possible for any pre-existing value for the infoset item to ever be referenced. The value must come from the computation of the dfdl:outputValueCalc expression.

References to other augmented infoset items from within the outputValueCalc expression must obtain their values from the augmented infoset by recursively using these methods (a) or (b) to compute it as needed.

The value, length, or representation length (measured in bits, bytes, or characters) of an infoset item can be obtained and used by an outputValueCalc expression.

b) If the element declaration has no corresponding value in the augmented infoset, and the element declaration is for a required item, and it has a default value specified, then an element item having the default value is created and added to the augmented infoset. The value or length of that item is then made available as requested.

c) If any infoset item’s value, length, or representation length is requested recursively as a part of (a) above and (a) does not again apply to the requested item, then if the requested item’s corresponding value is not present, and (b) does not apply so that it cannot be defaulted, then in the absence of any resource-limitation error it is a schema definition error.

d) Circular definitions are schema definition errors. That is, if any infoset item is encountered as part of expression evaluation using rule (a) above, but that same infoset item is already being evaluated, it is a schema definition error.
This rather complicated sounding rule (c) is actually just a formal way of saying that when you recursively evaluate an expression you have to get to a value (or length) eventually in order for the schema to be well defined. Also the infoset items (or lengths thereof) being requested by the evaluation can be filled in by way of the defaulting mechanisms provided in DFDL, and finally, all this has to be possible without running out of memory.
Conceptually, a DFDL processor may handle data more than once. Due to forward reference from an expression, the processor may need to compute a representation length thereby requiring it to first compute the value of an infoset item. It may conceptually need to compute it again to actually output the data representation of that same item. DFDL semantics does not allow the order of evaluation to affect the value or representation length of any infoset item. This provides an important freedom to DFDL processor implementations. Implementations are free to cache the serialized representation of the data at the time the representation length is calculated, and reuse it such time as the data must be physically output. Implementations can also choose to discard and recompute these representations as needed if they must be discarded to free resources.

Rule (a) requires that all conforming DFDL implementations must ignore any application provided infoset value for an item with a corresponding dfdl:outputValueCalc property in the DFDL schema. Implementations are free to issue diagnostic messages or warnings if applications attempt to provide a value for such infoset items, but it is specifically not a processing error nor error of any kind for an infoset to have a value for such an infoset item when unparsing of that item is attempted. This allows for the immediate unparsing of the infoset created created by the DFDL parser when parsing a DFDL-described data stream. Such an infoset may contain items whose element declarations carry dfdl:outputValueCalc annotations.
4 Forward Reference and Resource Limitations

DFDL implementations might exist which attempt to process the infoset incrementally by providing an API for overlapping its creation with the unparsing using a DFDL schema. This concept is sometimes called output streaming, and the goal of it is efficiency in memory space usage, that is, to avoid the simultaneous holding in memory of as much of the infoset as possible while still serializing the data representation. Like any DFDL implementation, these output-streaming variants must deal with the complexity of possible forward reference. The ability to unparse an item of the infoset can depend on values in the infoset that are potentially quite far ahead, in the sense that if they could be produced incrementally, they would be produced substantially later in time, and their representation bits would be stored substantially later in the data stream. The obvious example of this is when the representation length of an infoset item is stored in header records which appear substantially before the infoset item itself in the data stream. DFDL implementations must use some technique such as buffering, or recomputation, to handle this situation.

DFDL implementations may place a limit on the amount of forward reference allowed during unparsing. This will mean that some DFDL implementations cannot successfully unparse some legal DFDL formats. If a DFDL implementation limit on forward reference is exceeded it is a resource-limitation error.

Conceptually, a DFDL processor may handle data twice: once to compute its representation length, and again to actually unparsed/serialize the data. Because DFDL semantics does not allow the order of evaluation to affect the value or representation length of any infoset item, implementations can choose to avoid multiple-passes over the data when the representation length must be calculated. Implementations are free to cache the serialization of the data at the time the representation length is calculated, and reuse it such time as the data must be physically represented. Implementations can also choose to discard and recomputed these representations when needed.
5 The “As-If-Implicit” Rule for Unparsing and the dfdl:representation-length()
The dfdl:representation-length() function is evaluated differently when parsing and unparsing.

When parsing, it returns the representation length of the parsed data item.

When unparsing, it returns the representation length of the infoset item under the special interpretation rule that it is treated as if the DFDL schema specified dfdl:lengthKind=”implicit” for the infoset item.

This rule breaks circular references from a preceding element to a subsequent element that require the representation length of the subsequent element, by ignoring any expressions defined in the DFDL schema that control the length of the subsequent element for parsing.
Consider this example:

<sequence>

 <element name="len" type="int"
 dfdl:fillByte="%#r0;"

 dfdl:outputValueCalc=

 "{

 fix:ceiling(

 dfdl:representation-length(val, 'bytes') div 4

) * 4

 }" />

 <element name="val" type="string"

 dfdl:encoding="utf-8"

 dfdl:lengthKind="explicit"

 dfdl:lengthUnits="bytes"

 dfdl:length="{ ../len }"

 dfdl:textTrimKind="padChar"

 dfdl:textStringJustification="left"

 dfdl:textPadCharacter="%#r0;"

 />

</sequence>

Here we have two mutually dependent elements. The ‘len’ element contains the length of the ‘val’ element, rounded up to the next multiple of 4, and measured in units of bytes.

There is an apparent circularity here between the calculation of the length of the representation of the element named ‘val’, and the dfdl:outputValueCalc expression for the element named ‘len’ which refers to the representation length of ‘val’.
This circularity is broken by the rule that the value of the dfdl:representation-length() function, called during unparsing on an item with dfdl:lengthKind=”explicit”, is computed from the logical value of the infoset item, and the dfdl:properties are interpreted as if dfdl:lengthKind was instead bound to “implicit”.
In the example, because the dfdl:encoding of the ‘val’ string is ‘utf-8’, which is a variable-width character set, the representation-length in bytes is not directly calculable from the number of logical characters in the string. Rather, the string must be processed to calculate the representation length of each character, and the total of these is the value returned by the dfdl:representation-length() for the infoset item.

This rule allows the representation length stored in the output stream to be longer than the number of units needed to store the ‘implicit’ representation of the infoset item.
In the example above, the length of the representation in the data stream is rounded up to the next multiple of 4 bytes beyond the implicit length in bytes of the ‘val’ item. Note that when unparsing these extra bytes would be filled by the dfdl:fillByte value. On parsing, since the dfdl:textPadCharacter is the character code zero (matching the fillByte), these extra character codes/bytes will be removed from the right end of the ‘val’ string.
6 Top-level Variable Definitions

A variable which is defined in the lexical scope (element declarations and type or group definitions) surrounding an expression is called a local variable.
A variable which is not defined in the lexical scope surrounding the expression is called a parameter variable, or simply a parameter.

Parameters must be declared as annotations on the top level xs:schema element. Undeclared parameters are a schema definition error.

Parameter variables can be used to explicitly leave schemas incomplete with respect to format information, and have that information provided contextually. Such schemas are called parametric schemas or parameterized schemas.
A top-level variable can be given a value externally to the schema by the DFDL processor. The mechanism for carrying this out is implementation specific. It is a schema definition error if such a variable is subsequently assigned a value by dfdl:setVariable forms in the schema.
7 Required Variables, and Variable Scoping

When a variable declaration does not specify a default value then that variable is said to be a required variable.

A variable reference always refers to the inner-most lexically enclosing variable definition with the same name. The names of variables are standard namespace-managed names. The reference to a variable is a QName to make the namespace clear.
8 Input and Output Variables

Variable definitions have a required attribute named ‘use’ which takes as values either ‘input’ or ‘output’. This establishes the use of the variable as either during input (parsing) or output (unparsing), and variables are correspondingly called either input variables or output variables.

Reference to an output variable during parsing is a schema definition error.

Reference to an input variable during unparsing is a schema definition error.

During input (parsing), the dfdl:setVariable forms are only evaluated if they are for input variables, and similarly, during output (unparsing), the dfdl:setVariable forms are only evaluated if they are for output variables.

A consequence of this is that dfdl:inputValueCalc expressions can only refer to input variables, and dfdl:outputValueCalc expressions can only refer to output variables.

9 Unparsing, Output Variables, Output Default Values, and Forward Reference
Input variables can be set by way of dfdl:setVariable forms; however, all such forms can involve expressions using only backward reference (to existing infoset items), and other input variables.

When parsing, a dfdl:setVariable form for an input variable is evaluated when the infoset item referring to the schema construct carrying the dfdl:setVariable form is computed by the DFDL processor.

Output variables can be set by way of dfdl:setVariable forms which require forward reference. That is, the dfdl:setVariable construct appears on the schema associated with a later infoset item. The expressions defining such output variable setting can involve reference to other output variables, and these can similarly involve forward reference.

When unparsing, a dfdl:setVariable form for an output variable is evaluated when the infoset item referring to the schema construct carrying the dfdl:setVariable form is encountered by the DFDL processor for serialization, or when its value is needed for computing the value of an expression.
The optional default value of an output variable is only supplied as its value once the DFDL processor has established that there is no possible way for a dfdl:setVariable form in the scope of the variable definition to assign the value. This eliminates any ambiguity about whether a dfdl:setVariable form supplies the value or the default value is used.

�Explicitly allowing here for some sort of event-based unparsing where the infoset items are being produced incrementally.

File: ggf-dfdl-simplified-escape-scheme-v2v1 0 1 (2).doc

Page 1 of 7
dfdl-wg@ggf.org

Page 2 of 7

