This is a follow-up to my SmartLengthStringComments doc and Mike’s comments on same.

One of my questions in that doc was whether it was a requirement for DFDL that a parser be capable of reading to arbitrary bit boundaries in the input stream?

Thanks, Mike, for the detailed response on this item and the excellent comments overall. One part of his response was ‘I’m also in favor of restrictions like character encodings having to begin on 8-bit boundaries’.
I have been successful in writing a Java BitStreamReader and a BitStreamWriter class that can read/write an arbitrary number of bits providing a byte array as output. I am still doing performance testing but preliminary results indicate that Mike's hypothesis is correct that this should not be an issue.
My early results indicate that there should not be a need to have restrictions for character encoding to begin on 8-bit boundaries. My implementation returns byte arrays with the requested bits right-aligned in the array. This requires shifting the bits in each byte to the right if not reading a multiple of 8 bits or if there were left-over bits from a previous read.

However, if an alignment operation is done first (by reading any unaligned bits) no shift operation is required for subsequent whole-byte reads and hence no impact of the performance of whole reads.

So you could impose a byte alignment restriction for character encoding if you see a need for it but it does not appear that there will be any implementation or performance impact beyond what I just described.

XSL-style example of SmartLengthStrings
The below description and examples are only intended to illustrate a different way of representing the infoset and transformation rules for Mike's example.

There are some gaps and many syntax errors but hopefully they will not deter from understanding the examples.

High-level pseudo-structure - INPUT/OUTPUT layer separation
Similar to the current proposal this is the high-level view that each element would have. The ‘hiddenStructure’ item is equivalent to the annotations and appinfo elements now being used. The ‘visibleElements’ item contains the elements that are in the infoset that is visible to the user.
The 'hiddenStructure' and 'visibleElements' are considered to be peers; that is, a reference from one to the other is a peer-reference rather than a forward or backward reference.
<xs:complexType name="smartLengthString" ...other attributes...>

 <xs:sequence>

 <hiddenStructure>
-- the annotations and transforms between the physical and logical layers

 <hiddenElements>

. . . one or more elements . . .

</hiddenElements>

<inputLayer>

. . . The transforms and lower layer elements needed to produce the higher-layer
 Elements and ultimately the infoset informational values.

</inputLayer>

<outputLayer>

. . . The transforms and higher layer elements needed to produce the lower-layer
 elements and ultimately the physical layer values.

</outputLayer>

 </hiddenStructure>

 <visibleElements>
-- the infoset as experienced by the user

 </xs:sequence>

</xs:complexType>

The high-level view of only the physical and logical elements from Mike’s example might be:

<xs:complexType name="smartLengthString" ...other attributes...>

 <xs:sequence>

<hiddenStructure>

<hiddenElements>

<xs:element name="lengthFlag" . . .>0</xs:element>

<xs:element name="logicalLength" . . .>8</xs:element>

<xs:element name="strValue" . . .>myString</xs:element>

</hiddenElements>

</hiddenStructure>

<visibleElements>

<xs:element name="str" ref=../strValue/>

</visibleElements>

</xs:sequence>

</xs:complexType>
The above shows all three physical data items being accounted for in the hidden structure and just the string value being used for the publicly visible infoset. This allows the hiddenStructure to be closely mapped to the physical structure and allows any or all fields to be made available for use in the infoset.

Ultimately the hiddenStructure could truly be 'hidden' and would simply be referenced from the top layer of an XML file:

 <xs:element name="str" ref="..reference to smartLengthString.hidden.strValue">

or, if you want all three items:

 <xs:sequence>

 <xs:element name="flag" ref="..reference to smartLengthString.hidden.lengthFlag"/>

 <xs:element name="length" ref="..reference to smartLengthString.hidden.logicalLength"/>

 <xs:element name="str" ref="..reference to smartLengthString.hidden.strValue"/>

 </xs:sequence>

The inputLayer item in the hidden section
An inputLayer would contain the transforms that are used to transform the physical bits and bytes of the physical layer to create the hiddenElement values. Layers could be nested to any depth.
The transformation from one layer to the next does not need to result in instantiation of all of the intermediate objects and values.
This is the high-level view of an 'inputLayer'.

 <inputLayer>

 <layerElements>

<!--

 These are lower layer elements that the transforms use to produce the
 hiddenElements in the layer above. In many cases no elements will be needed since

 the transforms will get their input directly from the physical layer.

-->

 </layerElements>

 <transforms>

<!--

 These transforms transform the <layerElements> above (or the physical bits and
 bytes) and produce the hiddenElements. As many transforms can be used as needed
 and they can be specified as an ordered list

-->

 <transforms>

 <inputLayer>

<!-- Next nested layer if needed - can be nested to any depth needed. The nested layer

 would create the values of the layerElements in this layer. -->

 </inputLayer>

 </inputLayer>
A high-level view for Mike’s smartLengthString example that illustrates how input transforms might be used:
<xs:complexType name="smartLengthString" ...other attributes...>

 <xs:sequence>

 <hiddenStructure>

<hiddenElements>

 <xs:element name="lengthFlag" . . ./>

 <xs:element name="logicalLength" . . ./>

 <xs:element name="strValue" . . ./>

</hiddenElements>

<inputLayer>

 <layerElements>

 <xs:element name="oneByte" . . ./>

 <xs:element name="fourByte" . . ./>

 </layerElements>

 <transforms>

 <transform>

<xsl:variable name="../lengthFlag">

 <xsl:choose>

 <xsl:when test=". > 127"><xsl:value-of select="1"/></xsl:when>

 <xsl:otherwise><xsl:value-of select="0"/></xsl:otherwise>

 </xsl:choose>

</xsl:variable>

 </transform>

 <transform>

<xsl:variable name="../logicalLength">

 <xsl:choose>

 <xsl:when test="../lengthFlag=1"/>
 <xsl:value-of select="./fourByte"/>

 </xsl:when>

 <xsl:otherwise><xsl:value-of select="./oneByte"/></xsl:otherwise>

 </xsl:choose>

</xsl:variable>

 </transform>

 <transform>

<xsl:variable name="../strValue">

 <xsl:value-of select="$nextChars(../logicalLength)"</>

</xsl:variable>

 </transform>

 <transforms>

 <inputLayer>

 <!-- Next nested layer if needed - can be nested to any depth needed -->

 </inputLayer>

</inputLayer>

 </hiddenStructure>

 <visibleElements>

<xs:element name="str" ref=../strValue/>

 </visibleElements>

 </xs:sequence>

</xs:complexType>

The transforms are similar to what Mike used in his example. The ordered list structure is certainly more verbose but might be less cluttered and easier to write, understand and maintain. It also more readily lends itself to nesting and support of external functions.

The above also illustrates what I meant by my comment in my ‘SmartLengthStringcomments1’ doc about eliminating the need to invent a unique language.

Here is an excerpt from Mike’s sample:

 dfdl:inputValueCalc="{ if (../lengthFlag = '1') then ../fourByte else ../oneByte }"
And an excerpt from above using XSL-style syntax:

 <transform>

 <xsl:variable name="../logicalLength">

 <xsl:choose>

 <xsl:when test="../lengthFlag=1"/><xsl:value-of select="./fourByte"</xsl:when>

 <xsl:otherwise><xsl:value-of select="./oneByte"/></xsl:otherwise>

</xsl:choose>

 </xsl:variable>

 </transform>
I was suggesting that the 'newPropertyName ="{ if ... then .. }" syntax was being invented whereas the XSL syntax already exists. Anyone that has used XSLT would understand the XSL-style at first reading.
I think implementers would find it easier to learn and use a restricted subset of XSL that try to learn and understand a new syntax. It would also make it easier to entice XSLT developers to join DFDL efforts since they could more easily leverage their existing code base. I think it really opens up the potential for the future.
We could certainly use 'dfdl:choose', 'dfdl:when' and 'dfdl:otherwise', that is use the dfdl namespace to avoid any confusion about being XSL equivalent.

The outputLayer item in the hidden section
An outputLayer contains the transforms that are used to transform the infoset and/or hiddenElement values to the bits and bytes of the physical layer. Layers can be nested to any depth. The transformation from one layer to the next does not necessarily result in instantiation of all of intermediate objects and values.

When creating output (i.e. unparsing) values for all of the hidden elements must be computed from the visible elements. The user would create a value for the visible 'str’infoset item.

This is the high-level view of an 'outputLayer'.

 <outputLayer>

 <layerElements>

<!--

 These layerElements are produced by the transforms for consumption/transformation
 by lower layers. At the lowest level the elements are physically written.

 -->

 </layerElements>

 <transforms>

<!--

 These transforms transform the hiddenElement values and produce the layerElement
 Values which can then be used by the next lower layer if any.

-->

 <transforms>

 <outputLayer>

<!-- Next nested layer if needed -->

 </outputLayer

 </outputLayer>
A high-level view for Mike's smartLengthString example that illustrates how output transforms might be used:

 <xs:complexType name="smartLengthString" ...other attributes...>

 <xs:sequence>

<hiddenStructure>

 <hiddenElements>

 <xs:element name="lengthFlag" . . ./>

 <xs:element name="logicalLength" . . ./>

 <xs:element name="strValue" . . ./>

 </hiddenElements>

 <outputLayer>

 <layerElements>

<xs:element name="oneByte" . . ./>

<xs:element name="fourByte" . . ./>

 </layerElements>

 <transforms>

<transform>

 <xsl:variable name="../lengthFlag">

 <xsl:choose>

<xsl:when test="../str.length > 127">
 <xsl:value-of select="1"/>
 </xsl:when>

 <xsl:otherwise><xsl:value-of select="0"/></xsl:otherwise>

 </xsl:choose>

 </xsl:variable>

</transform>

<transform>

 <xsl:variable name="../logicalLength">

 <xsl:value-of select="../str.length/>

 </xsl:variable>

</transform>

<transform><!-- write the lengthFlag -->>

<transform><!-- write the logicalLength -->>

<transform>

 <xsl:variable name="../strValue">

 <xsl:value-of select="../str"</>

 </xsl:variable>

</transform>

 <transforms>

 <outputLayer>

 <!-- Next nested layer if needed - can be nested to any depth needed -->

 </outputLayer>

 </outputLayer>

 </hiddenStructure>

 <visibleElements>

 <xs:element name="str" ref=../strValue/>

</visibleElements>

 </xs:sequence>

 </xs:complexType>

Again, the transforms are similar to what Mike used in his example.
Summary
I am still trying to think about and work through some more examples to see if there are any ‘gotchas’ lurking around but so far it looks like this could be a viable approach.

The XSL approach does seem to bear looking into:

1. seems to provide a cleaner separation between input and output specifications.

2. might allow hidden infoset to map more closely to the physical layer

4. could be easier to express multiple transforms for either input or output

5. syntax that is more similar to XSL could have advantages in ease of learning and use
6. might allow for easier support of layers and external functions even for an initial implementation
