GWD-I

dfdl-wg@gridforum.org

Category: INFORMATIONAL

GGF Data Format Description Language Working Group
2006-01-10

Data Format Description Language (DFDL)

Context
Working Draft

Status of This Memo

This memo provides information to the Grid community regarding the specification of a Data Format Description Language. The specification is currently a draft. It does not define any standards or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright © Global Grid Forum (2006). All Rights Reserved.

Abstract

This document provides a description of the underlying semantics of DFDL in terms of the logical operations of a hypothetical DFDL parser.
Revision History

	Latest entry at the top please

	Version
	Author/Contributor
	History
	Date(yyyy-mm-dd)

	006
	Martin Westhead
	Following feedback from WG
	2006-1-11

	005
	Martin Westhead/ Mike Bekerle
	Several presentation clarifications
	2006-1-10

	004
	Martin Westhead/ Rob McGrath/ Jim Myers
	More refinements – removed context assertions
	2006-1-5

	003
	Martin Westhead/ Rob McGrath
	Refinements
	2006-1-4

	002
	Martin Westhead/ Rob McGrath
	Modifications following initial discussions
	2006-1-4

	001
	Martin Westhead
	Initial draft
	2005-12-21

Contents

1Data Format Description Language (DFDL)

1Context

1Working Draft

1Abstract

1Revision History

3Contents

41.
Overview

42.
Concepts

42.1
DFDL parser

52.2
Context

62.3
Conditional

72.4
Rules

72.5
Parser traversal of DFDL schema

93.
Variable examples

104.
Inclusions in the context

1. Overview
Note 1: This document describes the semantics of DFDL in terms of a logic description of how a parser might proceed to operate on the data. Any implementation that provides operations with consistent behaviour is valid.
 For example, a parser might well use a lazy strategy, and evaluate only the parts of a large source needed by the application. Also, there are many ways that the context might be managed, using efficient data structures, caching, and so on. These details are left to implementations.

ToDo: We will have to define conformance criteria.
This is one of a series of three documents produced by the extensibility design team. The documents aim to fill in a number of details as to the logical behaviour of a DFDL parser and in doing so provide the flexibility to extend the capabilities of DFDL to cope with a much broader range of formats than the current proposal.

The three documents can be considered as independent proposals but they relate to a single consistent view of the DFDL parser.

· Context – a simple proposal for a single consistent value store for the logical DFDL parser that provides a single semantics for variables, properties, parameters and constants.
· Hidden elements – a proposal for the ability to hide elements in the format description in such a way that they can be referred to elsewhere in the description but so that the do not appear in the output. For example the length of a prefix string is clearly an element in the format but not of the output or logical model.
· Conversions – a proposal for the underlying mechanism as to how the logical DFDL parser chooses the logic that converts between types. This proposal includes the syntax for specifying conversions.
These three components are intended to provide a complete description of the logical DFDL parser and the (inherent) extensibility mechanisms.
This document represents the work of the author/contributors and others who have participated in DFDL WG meetings over the last few years.

2. Concepts

2.1 DFDL parser

DFDL provides a way to add annotations to an XML schema such that the schema can be used to describe the format of a non-XML data source, formatted for example in ASCII text or binary representations.

A DFDL Parser is an application or code library which can take as input:

1. XML Schema annotated with DFDL annotations and

2. One or more data sources
It is able to use the DFDL description to interpret the data sources and realize an XML data model. The XML data model can then be written out (as XML) or accessed through an API.

Throughout this document we will describe the behaviour of a logical DFDL Parser. Any implementation of a DFDL Parser with equivalent behaviour is valid. For example, for efficiency reasons a real implementation of a DFDL Parser is likely to be lazy in its evaluation of a large data source and only realize those parts of the data which are required by the application it is servicing.
Similarly there is a notion of a DFDL Unparser the unparser works from an XML document, a DFDL annotated schema and possibly additional information and writes out to one or more sources in non-XML formats.
Often both parser and unparser would be implemented in the same piece of code and so we do not always distinguish them. (Although they may, of course, be different pieces of code).
The term DFDL schema simply refers to a DFDL annotated schema.

The logical DFDL parser’s state consists of:

· The DFDL schema and its position in it.

· the context.

· a data stream this is a typed, cursor based stream from which data is pulled (or to which it is pushed) when required.

TODO

1. There is a technical issue with establishing namespaces in annotations (and indeed the context) which needs to be addressed.
2. Term for describing the input is undecided candidates include: feed, source, stream
3. The term for the application that writes data out was discussed candidates include: Unparser, Serializer or Writer
2.2 Context
The context of the logical DFDL parser is a logical store of values which is dynamically modified as the parser processes a DFDL schema. It is conceptually organized as an XML document, this allows us to store structured, typed values and to use XPath expressions to reference them. The concept of a context is limited to being a value store and as indicated above it represents part of the state that the DFDL parser uses when processing a document.

For example let us suppose a very simple context were to look like:
<context>

 <numberOfFields>3</numberOfFields>

</context>

From within DFDL we could have an annotation that referenced that value using an XPath. We adopt the convention that any XPath string preceded by a ‘$’ refers to an entry in the context. This we could refer to the value of this element within a DFDL annotation using the XPath: “$numberOfFields”.

Entries in the context will be referred to as context entries, context values or properties. The terms are synonymous.

We can add data to the context from DFDL directly:

<xs:annotation><xs:appinfo>

 <dfdl:setGlobal name=”numberOfFields” type=”xs:integer” value=”3”/>

</xs:appinfo></xsannotation>

We can also copy values from the output into the context. Suppose we have an element in the document called “zipCode”, represented as an integer. We can place a copy of this into the global context using:

<xs:element name=”numberOfFields” type=”xs:int”

 dfdl:setGlobal=”GlobalNoFields” />
This will add a new element of type xs:int to the context. The element will be called “GlobalNoFields”. It will be populated it with the same value that as the output element “zipCode”. The global context element can be referenced from anywhere below this point in the document using the XPath “$GlobalNoFields”.
Before the logical DFDL parser begins processing a DFDL schema it builds the default context
. It CAN make arbitrary modifications or additions to the default context (e.g. based on command-line flags) to construct the global context for the document. This mechanism allows the processor to pass in values and/or set properties etc. to influence the processing of the document. A critical value to set is to define the root element of the document.
Once processing begins the global context can be added to by the parser, but values in the global context cannot be modified or deleted i.e. the global context is write once.

As the parser visits an annotation in a branch of the tree of a DFDL schema, the annotations can write to the local context for that branch. Values in the local context can obscure any settings from higher up the tree from the perspective of any actions taken by the parser at that point in the document or at any place lower down that branch of the document tree. This process could be thought of as extending and overriding the data object.

[image: image1.emf]

Default context

Global context

Local context

Local context

Default context modified and added to at runtime to provide the global context

Global context selectively overridden by local context

Successive local contexts override predecessors

Figure 1 Illustrating how the local context is constructed by each parent annotation obscuring values in the global or proceeding contexts. The values in the context at any point in the document are found by looking for them first in the immediate local context and then in its parent and so on.
To set a local context value we can do one of the following:
<dfdl:set name=”$numberOfFields” value=”5”/>

or (if it does not yet exist):

<dfdl:set name=”$numberOfFields” value=”5” type=”xs:int”/>

The local contexts are treated like a stack that follows the DFDL schema tree. When the parser enters a node N of the XML Schema tree a local context c(N) is created for that branch. That local context builds on the local context from the N’s parent. Any children of N will construct local contexts built on c(N). When all the children of N have been parsed the parser and the parser leaves N, c(N) is destroyed.

2.3 Test attribute
The “dfdl:set” and “dfdl:setGlobal” statement has an optional attribute “test”. The test contains an XPath. If this is included the set statement is only applied if the XPath evaluates to a non-Null value that is not FALSE.

This can be used to set values conditionally. For example, the following sets the value of numberOfFields to 5 if and only if it has a sibling called size which evaluates to the string “small”:

<dfdl:set name=”$numberOfFields” value=”5” type=”xs:int”

 test=”../size=’small’”/>

It also allows set statements that only apply if the value they refer to has not, already been set:

<dfdl:set name=”$numberOfFields” value=”5” type=”xs:int”

 test=”not($numberOfFields)”/>

2.4 Static attribute

A static property is a value in the context that has been declared static:

<dfdl:set name=”$numberOfFields” value=”5” type=”xs:int”

 static=”true”/>

A static property may not be set with reference to any values which are dependant on the data i.e. its value may not be set with an XPath that points to an element from the data or to a value derived from the data such as position().

Static properties can be evaluated entirely from the DFDL Schema itself with no reference to the data.

2.5 Position attribute

The “dfdl:set” and “dfdl:setGlobal” has a further optional attribute “position”. When a context value is part of a structured property and it being placed into a sequence the “position” attribute can be used to set its position.

The position attribute is an XPath that must evaluate to the strings “first”, “last” or a number from 0..N where N is the current length of the sequence. If the value is “first” the new element is placed first in the sequence. If the value is “last” the new element is placed last in the sequence. If the value is a number the new value is inserted into the sequence so that the number is its new position.

<dfdl:set name=”$listOfFields/zipCode” value=”94118” type=”xs:int”

 position=”last”/>

2.6 Rules
The following rules apply to setting and referring to values in the context:

· No forward references – XPaths that refer to values in the document must refer to values that have already been parsed and instantiated, i.e. ones higher up the document.

· When an element is added to any level of context it must have a unique (fully qualified) name.
· Values in the context have types associated with them, whenever a value is set at a local level it must conform to the type of its parent value

2.7 Parser traversal of DFDL schema
The behaviour of the logical DFDL Parser is to start its operation at the root node of the XML Schema. It proceeds to work down the XML Schema tree. At each node it visits there can be an annotation. Each annotation can change the local context (details below). When the parser reaches a simple type it evaluates it updates its context with respect to the local annotation and then attempts to populate the output data model with a value of the appropriate type.

When visiting a globally declared type the parser will proceed to visit the annotations of that type after visiting the annotations up to its point of inclusion in the main XML tree.

When visiting a derived type, the parser will visit any annotations in the root of the type first.

Consider Example 1 below. The comments describe the order in which the annotations are visited. In evaluating testElement1 testProp will have the value 4 because this is the last thing to be added to the local context before the type is evaluated. In evaluating testElement2 testProp will have the value 3.
Example 1
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:simpleType name="otherNewType">

<xs:annotation>

<!-- Visit this annotation fourth -->

<xs:appinfo>

<dfdl:property name="testProp" value="4"/>

</xs:appinfo>

</xs:annotation>

<xs:restriction base="newType">

<xs:maxInclusive value="5"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="newType">

<xs:annotation>

<xs:appinfo>

<!-- Visit this annotation third and sixth-->

<dfdl:property name="testProp" value="3"/>

</xs:appinfo>

</xs:annotation>

<xs:restriction base="xs:integer">

<xs:maxInclusive value="10"/>

</xs:restriction>

</xs:simpleType>

<xs:element name="root">

<xs:complexType>

<xs:annotation>

<xs:appinfo>

<!-- Visit this annotation first -->

<dfdl:property name="testProp" value="1"/>

</xs:appinfo>

</xs:annotation>

<xs:sequence>

<xs:element name="testElement1" type="otherNewType">

<xs:annotation>

<xs:appinfo>

<!-- Visit this annotation second -->

<dfdl:property name="testProp" value="2"/>

</xs:appinfo>

</xs:annotation>

</xs:element>

<xs:element name="testElement2" type="newType">

<xs:annotation>

<xs:appinfo>

 <!-- Visit this annotation fifth -->

<dfdl:property name="testProp" value="5"/>

</xs:appinfo>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>
</xs:schema>
3. Variable examples
These examples of the use of context are borrowed from the document by Geoff Judd on variables. They demonstrate how the semantics required by the variables in that document can be supplied by the concept of “context” described here. The syntax is essentially equivalent, although I am using tag and attribute names that are more suggestive of the semantics I have given than Geoff’s were.

A simple example where the number of repeats of an element is given by the previous element is shown below:
<xsd:element name=”outerElem”>

<xsd:complexType>
 <xsd:sequence>

<xsd:element name=”numberOfEntries” type=”xsd:int” dfdl:setGlobal=”COUNT”/>

<xsd:element name=”repString” type=”xsd:string”

minOccurs=”0” maxOccurs=”unbounded”

 dfdl:repeatCount=”$COUNT”/>

</xsd:sequence>

</xsd:complexType>
</xsd:element>
Below is the same example used in the Choices document but modified to use wildcards and variables.
 <xsd:element name=”envelope”>

<xsd:complexType>

 <xsd:choice dfdl:resolutionMethod=”useInitiator”>

 <xsd:element name=”envA” dfdl:initiatorPattern=”aaa”>

<xsd:complexType>

 <xsd:sequence>

.......

 <xsd:element name=”metaData”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name=”messageType” type=”xsd:string”

 dfdl:setGlobal =”MSG_ID”>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

.......

<xsd:element name=”textBlock”>

 <xsd:complexType>

<xsd:any dfdl:resolutionMethod=”useCalc”

 dfdl:aliasId=”$MSG_ID”/>

 </xsd:complexType>

</xsd:element>

 </xsd:sequence>

 </xsd:complexType>

.......

</xsd:element>

......

 </xsd:choice>

</xsd:complexType>

</xsd:element>

<xsd:element name=”mess1” dfdl:alias=”1”>

<xsd:complexType>

.......

</xsd:complexType>

</xsd:element>

<xsd:element name=”mess2” dfdl:alias=”2”>

<xsd:complexType>

.......

</xsd:complexType>

</xsd:element>

 <xsd:element name=”mess3” dfdl:alias=”3”>

<xsd:complexType>

.......

</xsd:complexType>

</xsd:element>
4. Inclusions in the context
Here is a list of standard elements that SHOULD always be present in the context

· <rootElement>nameOfRootOfSchemaTree</rootElement >

· <parseDirection>unparsing</parseDirection>

· …

What should be in this list?

�I don't think this concept of a default context is needed anymore - this should be revisited when the other documents have been finished off.

File name: DFDL_Context_3.doc

 Page 3 of 9
Last saved: 2006-01-10T17:27:00 (ET.US)

http://forge.gridforum.org/projects/dfdl-wg/

_1196691692.doc

[image: image1]

Default context

Global context

Local context

Local context

Default context modified and added to at runtime to provide the global context

Global context selectively overridden by local context

Successive local contexts override predecessors

