
ar
X

iv
:1

31
2.

71
52

v1
 [

cs
.N

I]
 2

6
D

ec
 2

01
3

twister - a P2P microblogging platform

Miguel Freitas∗

Center for Research in Inspection Tecnology (CPTI)
Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil

December 30, 2013

Abstract

This paper proposes a new microblogging architecture based on peer-
to-peer networks overlays. The proposed platform is comprised of three
mostly independent overlay networks. The first provides distributed user
registration and authentication and is based on the Bitcoin protocol. The
second one is a Distributed Hash Table (DHT) overlay network provid-
ing key/value storage for user resources and tracker location for the third
network. The last network is a collection of possibly disjoint “swarms”
of followers, based on the Bittorrent protocol, which can be used for effi-
cient near-instant notification delivery to many users. By leveraging from
existing and proven technologies, twister provides a new microblogging
platform offering security, scalability and privacy features. A mechanism
provides incentive for entities that contribute processing time to run the
user registration network, rewarding such entities with the privilege of
sending a single unsolicited (“promoted”) message to the entire network.
The number of unsolicited messages per day is defined in order to not
upset users.

1 Introduction

Microblogging platforms are one of the most versatile and empowering tech-
nologies on the internet today. Recent events have shown the important role of
these tools for news coverage [1] and also for political movements, like in Mid-
dle East’s “Arab Spring”. Although their role in social revolutions should not
be overstated [2], it is exemplary to learn how dictatorships frequently resort
to shutting down the internet in trying to control such possibly destabilizing
movements [3, 4]. Blocking internet access, however, is never fully effective
against social movements, as some people always find ways to circumvent such
blockage [5].

The possibility that the service providers themselves could be convinced
to participate of a social media blockage [6] would affect people’s ability to
communicate in a much more dramatic way than just disrupting a few network
backbones. As our society’s dependence on these services increases, the single

∗e-mail: miguel@cpti.cetuc.puc-rio.br

1

http://arxiv.org/abs/1312.7152v1

point of failure on such basic communication platforms (at the provider’s own
discretion) is not only unacceptable but also directly opposes Internet’s key
design features of providing redundancy for information transmission [7].

Reports of widescale internet wiretapping with the cooperation of large cor-
porations [8] reveal the danger the present platforms pose to user’s privacy. The
fact that a single entity is able to access private communication and personal
data at their will should raise concerns to anyone who thinks about it for a
while. A recent House of Lords (UK) report openly recognizes the dangers of
mass surveillance1.

All these facts point to an obvious direction: there is an urgent need for
open, secure and distributed personal communication platforms. This is where
the present peer-to-peer microblogging proposal fits in.

Of course, to be sucessful, such P2P microblogging cannot just provide re-
silience and security, but it must also be user-friendly. This is a key point to
the adoption of any new software or web service. Some current P2P message
proposals offer good examples of what not to do in terms of user-friendliness,
like requiring the user to know a cryptic address composed of 36 case sensitive
characters [10].

The ability to provide easy to remember user logins must be considered
a fundamental requirement. While users must be free to choose their login
names, providing anonymity to whoever needs to express himself freely without
fear of retaliation, it is important to realize that a web of trust is built on
these microblogging infrastructure based upon real existing and fully identifiable
people. This issue can be appreciated in Hudson plane crash coverage [1] where
trusted aggregators helped separating the reliable information from random
noise. These people tend to work as hubs in information circulation and are
often defined as “influential”. Any serious P2P microblogging proposal must
foster this kind of organization.

This paper presents a proposal of a new P2P microblogging platform that
is scalable, resilience to failures and attacks, does not depend on any central
authority for user registration, provides easy-to-use encrypted private commu-
nication and authenticated public posts. The architecture tries to leverage from
existing and proven P2P technologies such as Bittorrent and Bitcoin as much
possible. Privacy is also one of the primary design concerns, no one should
be able to see the user’s IP or their followers unless he explicitly shares such
information.

The proposed platform is comprised of three mostly independent overlay
networks. The first provides distributed user registration and authentication
and is based on the Bitcoin protocol. The second one is a Distributed Hash
Table (DHT) overlay network providing key/value storage for user resources
and tracker location for the third network. The last network is a collection of
possibly disjoint “swarms” of followers, based on the Bittorrent protocol, which
can be used for efficient near-instant notification delivery to many users.

1“Mass surveillance has the potential to erode privacy. As privacy is an essential pre-
requisite to the exercise of individual freedom, its erosion weakens the constitutional foun-
dations on which democracy and good governance have traditionally been based in this
country.”[9]

2

2 Related work

Existing social networks like Diaspora, StatusNet and identi.ca are fre-
quently cited as free, distributed alternatives to Facebook or Twitter. These
platforms are based on the concept of “federated social networks” [11] where
users may join the social websites of their choice and these sites communicate
with each other using open protocols. While technically superior to a single,
closed platform in terms of achieving better privacy control, the user still needs
to delegate his own data to a third party (unless he wants to setup his own
server to federate).

Previous P2Pmicroblogging proposals exist like Cucko [12] andMegaphone [13].
Neither Cucko or Megaphone seems to address the problem of decentralized user
registration. Privacy is also not one of Cucko’s objectives since it is explicitly
designed to know about the online presence of anyone. One similarity of twister
and Cucko is that both share the idea of using an unstructured overlay network
for dissemination of user posts, unlike Megaphone where all followers must reg-
ister to the sender, forming a multicast tree for post propagation.

A more advanced social network proposal Safebook [14] address several pri-
vacy issues by implementing different levels (“shells”) of access to the published
data. While Safebook’s scope goes far beyond twister’s, it still relies in a cen-
tralized Trusted Identification Service for user registration.

At the present time, no public implementation seems to be available to any
of these P2P proposals.

3 Notation

Tuples (concatenation): [a, b, c, ...]
Apply function f to payload x: y = f(x)
Address of user j: IDj = H(Usernamej); where H is hash function.
Keys of user j: PUBKj;PRIVKj

Note: PUBK(PRIVK(x)) = x and PRIV K(PUBK(y)) = y

Signed content x from user j: SIGj(x) = [PRIV Kj(H(x)), x]

4 User registration P2P network

Decentralized yet secure user registration is achieved by means of the Block
Chain mechanism, which is used in Bitcoin [15] to avoid the double-spending
problem without the need for a central authority. In the proposed system the
mechanism is used to guarantee the uniqueness of users, again with no need
for a central authority. New registrations must be “notarized” by a number of
Blocks before they can be considered granted to a given user. Each Block is
defined as:

Blocki = [i,H(Blocki−1), Noncei, SpamMsgi, [UserRegj, UserRegj+1, ...]]
H(Blocki) produces Proof-Of-Work (POW) due to partial hash collision (by

brute force searching over Noncei space). Difficulty is automatically set by the
network based on the average number of blocks per hour (same as Bitcoin).

UserRegj = [Usernamej , PUBKj, Noncej]
A new user j registering to the network must broadcast UserRegj. Other

Nodes, upon receiving UserRegj, must check POW as a partial hash collision

3

of H(UserRegj) before the request can be retransmited/accepted. This POW
prevents DoS attacks due to flooding of bogus registrations. POW of UserRegj
is much smaller than POW of block chain, tipically just a few minutes of an
average computer time (difficulty may be hardcoded in software and change
only with protocol versions).

Block chain provides public dictionary from Usernamej (or IDj) to PUBKj .
Nodes must enforce the uniqueness of Usernamej before incluing UserRegj

into a new Block. The only exception to this rule is the key replacement case,
where the new public key is signed by the previously known key pair. The
enforcement of uniqueness of IDj and POW of UserRegj is also applied when
receiving new Blocks, since all registrations included therein must be checked.

Usernamej is also subject to additional text rules, such as maximum size and
allowed characters. This further protects ID space from partial hash collision
which might, otherwise, allow monitoring (wiretapping, see section 12).

SpamMsgi is an unsolicited message (commonly and euphemistically called
“promoted”) that must be shown by all clients and provides incentive for joining
the Block generation effort. If the same Bitcoin’s block creation rate is main-
tained (6 per hour), a display probability factor may be implementated in order
to not upset the users with too much spam.

Developers must not implement hiding of spam messages as a “feature”
of their clients since this incentive is important to the security of the entire
network. Omitting unsolicited messages from clients would only hurt the users
in the long run. A display probability factor may implemented, however, and the
client might priorize localization (by giving higher probability to messages of the
same language of the user) to improve effectiveness and also user’s experience.

5 Routable DHT network overlay

The second P2P network is a structured Distributed Hash Table (DHT)
overlay network like Kademlia [16]. The single most important feature of this
network is to allow resource storage and retrieval by peers. Direct delivery of
notification between users can be thought as a secondary usage (see section 7).

It would be tempting to use IDj directly as the address of the peer joining
the DHT network, as it would permit simple challenge-response authentication,
possibly preventing ID forgery. Forged ID address is arguably the most serious
security issue on P2P/DHT networks (see Sybil and Eclipse attacks [17, 18]).
Using IDj for DHT addressing, however, would greatly compromise privacy
since it is a fundamental characteristic of such a network to know the IDs

of the other nodes in order to create optimized routing tables. IDj not only
would allow easily detection of online user presence but would also reveal his IP
address.

Instead of IDj , the proposal is to use the standard procedure of hashing IP
address and port number to join the DHT network:

IDnode j = H ([IPj , port])
In [19] it is shown that a secure mapping of external IPs to ID is Sybil-proof

when limited per participant.
Packets on this DHT network sent from IDsrc to IDdst are defined as follows:
Packet = [IDdst, IDsrc, SIGj(payload), IDj)]

4

The payload is signed by a given user IDj, even though it may differ from the
sender IDsrc in case of packet being retransmited/refreshed. These character-
istics comprise the basic “layer 3” functionality offered by this overlay network.

Going up in the conceptual model for the proposed DHT overlay network
there is an “application layer” with a data storage primitive (PUT) defined with
the following payload:

payloadPUT = [target, value, time, seq] where
target = [owner, resource, restype] and IDdst = H(target)
Some simple rules must be checked by destination node in order to accept

the storage request:

1. IDdst = H(target) : ensures the destination address was properly com-
puted.

2. IDdst is neighbor of IDnode that actually received this request (by some
agreed metric).

3. IDj = H(owner), only enforced for restype =“single”.

4. seq is greater previously stored seqold, only enforced for restype =“single”.

5. time is a valid time (ie, not in future).

The two possible restype values are “single” and “multi”. These two types
provide, respectivelly, resources which may only be updated by the owner of this
key (like an avatar image) and resources which collect multiple responses from
different users (like replies to a certain post). In case of the “single” type, the
node stores just a single value associated with this key IDdst. For “multi”, how-
ever, new PUT requests are appended to a list of value’s. This kind of storage
provides no guarantees, values may be discarded following expiration (based
on time field) or Least Recently Used (LRU) cache strategy. Authenticated
(“single”) storage takes precedence over any previously “multi” value.

A data retrieval primitive (GET) may operate on both types of resources
indistinctively. Some special non-storage resources associated with dynamic
content may also be implemented using the same primitives, thus sharing the
same API.

6 User posts

The k-th message of user j is defined as:
UserPostjk = SIGj([Usernamej , k, type,MSGk, REPLYk])
where MSGk is the content (140 characters limited), k is a monotonic in-

creasing number and type may define if it is a new post, a reply, retransmission
(RT) or Direct Message (DM). REPLYk is an optional field which provides a
reference pointer to the original message, in case of a reply/RT (see section 8)
and is defined as tuple REPLYk = [Usernamej′ , k

′], where original post is the
k′-th message of the user j′.

The posts are shared simultaneously in two overlay networks: (1) as a stored
value, possibly short lived, in DHT network and (2) in a file-like archive per-
taining to a kind of Bittorrent network. When a new post is created, the client
must send two PUT requests to the following addresses:

5

IDUserPost jk = H ([Usernamej, “post” + k, “single”]) and
IDswarm j = H ([Usernamej , “swarm”, “single”]).
The IDUserPost jk is the address of a storage target defined in section 5 and

provides arbitrary post retrieval capabilities.
The IDswarm j is a special gateway address to reach a torrent swarm (in

Bittorrent nomenclature [20]). This torrent may contain all posts from a given
user j and helps sharing them independently of the DHT network. The neigh-
bors of IDswarm j are required to join this swarm, as much as the neighbors
of IDUserPost jk are required to store the value. The DHT-torrent interaction
rules are further detailed in section 6.2.

The swarm mechanism for distributing new posts fixes the problem of effi-
cient notification of new posts, sparing the followers the need to do polling on
a certain address of the DHT network. This is a different solution for the same
issue (“lame, repeated polling”) raised by developers behind the pubsubhubbub
protocol [21].

6.1 Direct Messages

User posts may also be used to send Direct Messages (DM), provided that
recipient is a follower of user k (same requirement as Twitter).

UserPost(j → l)k = SIGj ([“”, k, “dm”, [PUBKl(DMk), H(DMk)]])
One should note that DM is equivalent to a normal post except that
[PUBKl(DMk), H(DMk)] replaces the usual public message payload above.
DM is only received by destination user l by checking for sucessful decryp-

tion. No other user will know for which recipient the DM was sent to, although
the encrypted message will be seen by all his followers.

This naive description of DM encryption mechanism is only meant to explain
the concept and the actual implementation may differ. Currently, the working
twister prototype is based on an ECIS (Elliptic Curve Integrated Encryption
Scheme) implementation by Ladar Levison [22] (formerly the owner of Lavabit
encrypted email service) supposedly following the SECG SEC1 standard [23].

6.2 User posts torrent/tracker rules

• Online neighbors of IDswarm j within a certain distance in hash space are
required to join (or create) the swarm.

• When a neighbor of IDswarm j receives a new post from the DHT net-
work he must act like a gateway, incorporating the posts into the file-like
structure shared by the Bittorrent network.

• The Bittorrent tracker is a special “read-only” multi-value list storage
addressable by IDtracker j = H ([Usernamej , “tracker”, “multi”])

• Followers of user j should join the swarm to receive real-time updates. To
do so they query IDtracker j (GET primitive) for a list of initial peers.

• The IDtracker j differs from other storage keys because it’s read-only na-
ture. This is a security measure to prevent tracker poisoning and also
to protect privacy of swarm members. The list of IP addresses is there-
fore obtained from the swarm protocol itself (Bittorrent) instead of being

6

writtable from the DHT network. This adds an additional requirement
though: online neighbors of IDtracker j are required to join the swarm as
well.

• Swarmmembers only know each other by their IP addresses. This Bittorrent-
like network must provide no hint of their Usernames.

• A table of hashes of all user posts (ie. like Torrent’s pieces checksums) is
not needed since all posts (including DMs) are already signed and can be
verified.

• Increment in k (new post) is be propagated directly by broadcast within
the swarm (flooding).

• Swarm members exchange bitlists of available posts. Members may choose
to only keep/request the most recent posts.

• Seeders are nodes who choose to be archivists.

• The producer (the user j) may choose not to be member of his own swarm
(for privacy purposes, protecting his IP).

• If the producer chooses to be member of the swarm, he might skip entirely
the IDswarm j gateway scheme, losing some IP privacy.

• Even if a producer is a member of the swarm, he does not need to be a
seeder.

• In Bittorrent terminology, the number of existing pieces must be increase
to k with new posts. This is achieved by sending an (unsolicited) “have”
message.

• Clients must regard the parameter of a “have” message as the new number
of pieces. In order to prevent Denial-Of-Service attacks, this number is
constrained by k < 2 ∗ (iBlockcurrent − iBlockUser reg)+ 20. The number
is recused otherwise.

• If a new Block k is produced every 10 minutes this limits the mean post
rate of new users, for life, to a maximum of 288 posts/day. Average.

7 Mentioning

If a message mentions the user j in a new post (@username) the client must
also send a notification to IDj , by including the full message. Notification is
routed by DHT network.

Mentioning is the only feature in the proposed architecture which would
require to route packets to a specific user addressed IDj, not IDnodej . Alter-
natively, a different

IDmention j = H ([Usernamej, “mention”])
could be set to receive and accumulate mentions, to be maintained by nodes

which are neighbors of IDmentionj
. The only issue here is again the “lame,

repeated polling” as the user would need to periodically pool such key (although
in a much more limited scale than a hashtag, for example).

7

A way to prevent pooling of user mentions while preserving some degree of
privacy is to elect “listeners” for an IDj destination. Those listeners would then
forward the packets to the final user. The idea is partially based in SASON [24],
although not as secure since an additional anonymizing network is not used.

The system would work like this: the recipient IDj first uses the DHT
network to find nodes near IDj. He then asks them directly to forward all
IDj traffic to IDnode j , therefore revealing his real identity to a small group of
listeners. Listeners must do a challenge validation to make sure the user is really
IDj by asking for SIGj(random number). Since the other node has access to
the full directory of public keys, he can easily authenticate.

Mentioning, like other mechanisms described here, requires the cooperation
of the client software in order to work. If a given user does not send the no-
tification packet to the network (along with his own post) the mentioned user
would never know.

8 Explict message request

User l may request explicitly a certain message from user j without joining
the swarm. This is achieved by a simple authenticated value retrieval from
address IDUserPost−jk .

This feature allows for “upward message thread navigation” like in Twitter
and is not resource intensive.

9 Downward message thread navigation

Downward navigation (finding out about replies/RT of a certain post) might
be a difficult problem since there are many, possibly unlimited, answers to the
question “what are the replies to this particular post?”.

One possible solution is to send another notification to the special address
of multi-value list storage:

IDreplies jk = H ([Usernamej , “replies” + k, “multi”])
The values to store are copies of the replies themselves (UserPost format

defined in section 6). Again, it is the cooperation of client posting the reply
which allows this mechanism to work.

10 Hashtags

Just like mentioning, hashtags must be detected in the content of new mes-
sages being posted to the network. A copy of the message is sent to a special
address of multi-value list storage:

IDhashtagt = H ([hashtagt, “hashtag”, “multi”])
This is pretty much the same mechanism of downward message thread nav-

igation except for an additional feature: a hashtag creates a new swarm similar
to IDswarm j . Neighbors of such IDhashtagt are be forced to join this virtual
swarm which has no sequential content (file). Posts that include the hashtag are
DHT routed to a neighbor member of the swarm, from which they are broadcast
to the swarm’s members.

8

This swarm is therefore just used to create a distributed tracker and broad-
cast mechanism for users willing to monitor such hashtags. New members join-
ing the swarm may also request the last messages from the multi-valued storage
(DHT network), without guarantee of completeness.

11 Word search

Searching for arbitrary words may be achieved by extending the hashtag
implementation concept to all words in every post. In order to reduce overhead
and network traffic, certains limits can be imposed like minimum word size,
excluding prepositions and so forth.

Another difference to hashtags is that creating swarms for all possible words
may be considered an overkill. So the collection of posts containing a given
word would be limited to a temporary multi-value list storage addressable by

IDwordw
= H ([wordw , “word”, “multi”])

12 Concluding remarks

The proposed architecture provides a distributed P2P microblogging network
with security, scalability and privacy features.

• The architecture is resilient like other P2P technologies, so it is believed
that no single company, government or other entity should able shut it
down.

• The distributed user registration mechanism is secure like Bitcoin transac-
tions, providing content authentication without relying on any particular
entity.

• Real existing people have an incentive for early adoption in order to choose
their username of preference.

• Using common usernames, instead of long cryptographic hashes as seen
in some other proposals, makes the system as user-friendly as existing
microblogging systems.

• Public key replacement allows one to change one’s own key pair when
security is compromised in any way (eg. stolen cell phone). It also makes
possible for users or companies to buy their usernames of choice (like
existing domain names commerce).

• Main features of other existing microblogging systems are replicated, in-
cluding simple username search, thread navigation, mentioning, private
messages, hashtags and word search.

• The DHT routing provides a way to send notifications to, and request
resource data (avatar image, profile etc) from a particular user, without
knowing if he is online or not.

• In order to detect a user’s IP address or interfere/spy his activities, an
entity would need to try assigning itself an IDnode which is close to the

9

victim’s (or one of his associated resources, like trackers). Because restric-
tions imposed on IDnode validation from external IP addresses, this is not
an easy task.

• An entity in possession of big resources (lots of blocks of IPs to choose
from) might be able to achieve this partial IDnode collision to spy on the
activities from of a specific user. This moves the wiretapping capabilities
from “mass surveillance” to the much more reasonable “targeted surveil-
lance” (see [9] for definitions).

• While finding an user’s online presence might be difficult, this is not a
strict guarantee of this architecture. Users demanding further privacy are
suggested to use twister on top of Tor [25].

• The architecture provides incentive for enterprises to run the system in-
frastructure in order to have the right to send promoted messages at a
very limited rate. While this may be commerced as advertisement, it also
allows groups of users to join in a community effort to try to spread some
information out (like Bitcoin mining pool). So the proposal is also quite
democratic.

• Independent providers may offer twister access from a standard web inter-
face, joining the P2P network on the backend. However, while perfectly
legal and supported, this model defeats most of the privacy and security
features since the provider would be in possession of the user’s PRIV K.

• A clever evolution of the web interface to twister network would store
a password-encrypted version of PRIVK in the server so that, in order
to send new messages, the key is temporary decrypted by the javascript
running within the browser. This idea would prevent the server’s owner
from being able to impersonate the user.

• Read-only web interfaces for reading users’ public posts and hashtags are
possible and do not compromise security.

• Resource-limited clients (like mobile phones) may choose to work with
some optimizations. For example, they may not store the full block chain
but rather just the chain of block hashes. In order to search for a particular
user they might ask the network which block specifically contains this
user registration. Then the client would download just the required block
without incurring any loss of security (the block integrity is verifiable).
Instead of a full block download a partial Merkle tree can be used.

References

[1] Rachel Sklar. Hudson plane crash on twitter: First reports,
best coverage. MEDIAite http://www.mediaite.com/online/

hudson-plane-crash-on-twitter-first-reports-best-coverage/,
2009. [Online; accessed 23-July-2013].

[2] Habibul Haque Khondker. Role of the new media in the arab spring. Glob-
alizations, 8(5):675–679, 2011.

10

http://www.mediaite.com/online/hudson-plane-crash-on-twitter-first-reports-best-coverage/
http://www.mediaite.com/online/hudson-plane-crash-on-twitter-first-reports-best-coverage/

[3] James Glanz. How mubarak shut down egypt’s inter-
net. The Age World http://www.theage.com.au/world/

how-mubarak-shut-down-egypts-internet-20110216-1awjj.html,
2011. [Online; accessed 23-July-2013].

[4] Margaret Warner. Syria internet shutdown: A loser’s strat-
egy. PBS Newshour http://www.pbs.org/newshour/rundown/2012/11/

syria-internet-shutdown---a-losers-strategy.html, 2012. [Online;
accessed 23-July-2013].

[5] Adam Dachis. How to foil a nationwide internet shut-
down. lifehacker http://lifehacker.com/5746046/

how-to-foil-a-nationwide-internet-shutdown, 2011. [Online;
accessed 23-July-2013].

[6] Josh Halliday. Facebook and twitter to oppose calls for social media
blocks during riots. The Guardian http://www.guardian.co.uk/media/

2011/aug/24/uk-riots-facebook-twitter-blackberry, 2011. [Online;
accessed 23-July-2013].

[7] Wikipedia. History of the internet. http://en.wikipedia.org/wiki/

History_of_the_Internet#Packet_switching, 2013. [Online; accessed
23-July-2013].

[8] Glenn Greenwald et al. How microsoft handed the nsa access to encrypted
messages. The Guardian http://www.guardian.co.uk/world/2013/jul/

11/microsoft-nsa-collaboration-user-data, 2013. [Online; accessed
23-July-2013].

[9] House of Lords (UK). Surveillance: Citizens and the state, volume
i. http://www.publications.parliament.uk/pa/ld200809/ldselect/

ldconst/18/18.pdf, 2009. [Online; accessed 29-July-2013].

[10] Jonathan Warren. Bitmessage: A peer-to-peer message authentication and
delivery system. 2012.

[11] wikipedia. Distributed social network. http://en.wikipedia.org/wiki/
Distributed_social_network, 2013. [Online; accessed 29-July-2013].

[12] Tianyin Xu, Yang Chen, Jin Zhao, and Xiaoming Fu. Cuckoo: towards
decentralized, socio-aware online microblogging services and data measure-
ments. In Proceedings of the 2nd ACM International Workshop on Hot
Topics in Planet-scale Measurement, page 4. ACM, 2010.

[13] Timothy Perfitt and Burkhard Englert. Megaphone: Fault tolerant, scal-
able, and trustworthy p2p microblogging. In Internet and Web Applications
and Services (ICIW), 2010 Fifth International Conference on, pages 469–
477. IEEE, 2010.

[14] Leucio Antonio Cutillo, Refik Molva, and Thorsten Strufe. Safebook: A
privacy-preserving online social network leveraging on real-life trust. Com-
munications Magazine, IEEE, 47(12):94–101, 2009.

11

http://www.theage.com.au/world/how-mubarak-shut-down-egypts-internet-20110216-1awjj.html
http://www.theage.com.au/world/how-mubarak-shut-down-egypts-internet-20110216-1awjj.html
http://www.pbs.org/newshour/rundown/2012/11/syria-internet-shutdown---a-losers-strategy.html
http://www.pbs.org/newshour/rundown/2012/11/syria-internet-shutdown---a-losers-strategy.html
http://lifehacker.com/5746046/how-to-foil-a-nationwide-internet-shutdown
http://lifehacker.com/5746046/how-to-foil-a-nationwide-internet-shutdown
http://www.guardian.co.uk/media/2011/aug/24/uk-riots-facebook-twitter-blackberry
http://www.guardian.co.uk/media/2011/aug/24/uk-riots-facebook-twitter-blackberry
http://en.wikipedia.org/wiki/History_of_the_Internet#Packet_switching
http://en.wikipedia.org/wiki/History_of_the_Internet#Packet_switching
http://www.guardian.co.uk/world/2013/jul/11/microsoft-nsa-collaboration-user-data
http://www.guardian.co.uk/world/2013/jul/11/microsoft-nsa-collaboration-user-data
http://www.publications.parliament.uk/pa/ld200809/ldselect/ldconst/18/18.pdf
http://www.publications.parliament.uk/pa/ld200809/ldselect/ldconst/18/18.pdf
http://en.wikipedia.org/wiki/Distributed_social_network
http://en.wikipedia.org/wiki/Distributed_social_network

[15] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Con-
sulted, 1:2012, 2008.

[16] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer infor-
mation system based on the xor metric. In Peer-to-Peer Systems, pages
53–65. Springer, 2002.

[17] Lin Wang. Attacks against peer-to-peer networks and countermeasures. In
T-110.5290 Seminar on Network Security, 2006.

[18] Yu Yang and Lan Yang. A survey of peer-to-peer attacks and counter
attacks. In International Conference on Security & Management (SAM
2012), pages 176–182, 2012.

[19] Jochen Dinger and Hannes Hartenstein. Defending the sybil attack in p2p
networks: Taxonomy, challenges, and a proposal for self-registration. In
Availability, Reliability and Security, 2006. ARES 2006. The First Inter-
national Conference on, pages 8–pp. IEEE, 2006.

[20] Wikipedia. Glossary of bittorrent terms. http://en.wikipedia.org/

wiki/Glossary_of_BitTorrent_terms, 2013. [Online; accessed 23-July-
2013].

[21] Brad Fitzpatrick et al. pubsubhubbub - a simple, open, webhook based
pubsub protocol and open source reference implementation. http://code.
google.com/p/pubsubhubbub/, 2013. [Online; accessed 24-July-2013].

[22] Ladar Levison. Code for using ecies to protect data (ecc
+ aes + sha). http://openssl.6102.n7.nabble.com/

Code-for-using-ECIES-to-protect-data-ECC-AES-SHA-td39269.

html, 2010. [Online; accessed 1-October-2013].

[23] Standards for Efcient Cryptography Group. Sec1: Elliptic curve cryptog-
raphy, ver. 2. http://www.secg.org/download/aid-780/sec1-v2.pdf,
2009. [Online; accessed 1-October-2013].

[24] Henry Tsai and Aaron Harwood. A scalable anonymous server overlay
network. In Advanced Information Networking and Applications, 2006.
AINA 2006. 20th International Conference on, volume 1, pages 973–978.
IEEE, 2006.

[25] The Tor Project. Tor (the onion router). https://www.torproject.org,
2013. [Online; accessed 23-July-2013].

12

http://en.wikipedia.org/wiki/Glossary_of_BitTorrent_terms
http://en.wikipedia.org/wiki/Glossary_of_BitTorrent_terms
http://code.google.com/p/pubsubhubbub/
http://code.google.com/p/pubsubhubbub/
http://openssl.6102.n7.nabble.com/Code-for-using-ECIES-to-protect-data-ECC-AES-SHA-td39269.html
http://openssl.6102.n7.nabble.com/Code-for-using-ECIES-to-protect-data-ECC-AES-SHA-td39269.html
http://openssl.6102.n7.nabble.com/Code-for-using-ECIES-to-protect-data-ECC-AES-SHA-td39269.html
http://www.secg.org/download/aid-780/sec1-v2.pdf
https://www.torproject.org

	1 Introduction
	2 Related work
	3 Notation
	4 User registration P2P network
	5 Routable DHT network overlay
	6 User posts
	6.1 Direct Messages
	6.2 User posts torrent/tracker rules

	7 Mentioning
	8 Explict message request
	9 Downward message thread navigation
	10 Hashtags
	11 Word search
	12 Concluding remarks

