
Configuration Description, Deployment,
and Lifecycle Management

A Service API for Deployment

Draft 2005-01-24

This is an interim working draft for comment only

Status of this Memo
This document provides information to the community regarding the specification of the Configuration
Description, Deployment, and Lifecycle Management (CDDLM) Language. Distribution of this document is
unlimited. This is a DRAFT document and continues to be revised.

Abstract
Successful realization of the Grid vision of a broadly applicable and adopted framework for distributed system
integration, virtualization, and management requires the support for configuring Grid services, their
deployment, and managing their lifecycle. A major part of this framework is a language in which to describe
the components and systems that are required. This document, produced by the CDDLM working group within
the Global Grid Forum (GGF), provides a definition of the service API whereby a Grid Resource is configured,
instantiated, and destroyed.

GLOBAL GRID FORUM

office@ggf.org
www.ggf.org

Full Copyright Notice
Copyright © Global Grid Forum (2004-2005). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment
on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in
whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph
are included on all such copies and derivative works. However, this document itself may not be modified in
any way, such as by removing the copyright notice or references to the GGF or other organizations, except as
needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights
defined in the GGF Document process must be followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its successors or
assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE GLOBAL
GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Intellectual Property Statement
The GGF takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or the
extent to which any license under such rights might or might not be available; neither does it represent that it
has made any effort to identify any such rights. Copies of claims of rights made available for publication and
any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or
permission for the use of such proprietary rights by implementers or users of this specification can be obtained
from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or
other proprietary rights which may cover technology that may be required to practice this recommendation.
Please address the information to the GGF Executive Director (see contact information at GGF website).

1 Table of Contents
1Table of Contents..1
2Introduction...1
3CDDLM-WG and the Purpose of this Document..1
4Purpose of the Deployment API...1

4.1Use Cases...1
4.2Fault Tolerance..1

5Architecture..1
5.1Core Architecture...1
5.2Lifecycle..1
5.3Fault Tolerance Support..1
5.4Other Architectural Features...1

5.4.1Named systems...1
5.4.2Deployment Language Agnostic..1
5.4.3Job Language Agnostic...1
5.4.4Deploy-time properties in the language and service API...1
5.4.5Extensibility..1

6Deployment API Overview..1
6.1Portal Endpoint..1

6.1.1Portal EPR Properties...1
6.1.2Portal EPR Operations..1

6.2System Endpoint..1
6.2.1System EPR Properties...1
6.2.2System EPR Operations...1

7Notification...1
7.1Notification Policy...1
7.2WS-Notification Support...1
7.3Fault-Tolerant Notification..1

8Fault Policy...1
8.1Fault Categories... 1

8.1.1Service Faults...1
8.1.2Transport faults...1
8.1.3Relayed Faults..1

8.2Fault Security...1
8.3Internationalisation..1
8.4Fault Type Declarations..1

8.4.1DeploymentFault..1
8.4.2LanguageFault..1
8.4.3WrappedSOAPFault...1

8.5Fault Error Codes...1
9Security...1
10Editor Information..1
11References...1

2 Introduction
The CDDLM framework needs to provide a deployment API for programs submitting jobs into the system for
deployment, terminating existing jobs, and probing the state of the system.

This document defines the WS-Resource Framework-based deployment API for performing such tasks. It is
targeted at implementors and users of the API.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as
described in RFC 2119 [RFC2119]

3 CDDLM-WG and the Purpose of this Document
The CDDLM WG addresses how to: describe configuration of services; deploy them on the Grid; and manage
their deployment lifecycle (instantiate, initiate, start, stop, restart, etc.). The intent of the WG is to gather
researchers, developers, practitioners, and theoreticians in the areas of services and application configuration,
deployment, and deployment life-cycle management and to explore the community need for a broader effort in
this area. The target of the CDDLM WG is to come up with the specifications for CDDML a) language, b)
component model, and c) basic services.

This document defines the WS-Resource Framework-based deployment API for performing such tasks. A
CDDLM deployment infrastructure must implement this service in order for remote callers to create
applications on the infrastructure.

This document is accompanied by an XML Schema (XSD) file and a WSDL service declaration. The latter two
documents are to be viewed as the normative definitions of message elements and service operations. This
document is the normative definition of the semantics of the operations themselves.

4 Purpose of the Deployment API
The deployment API is the SOAP/WS-ResourceFramework (WS-RF) API for deploying applications to one or
more target computers, physical or virtual.

The API is written assuming that the end user is deploying through a console program, a portal UI or some
automated process. This program will be something written by a third party to facilitate deployment onto a grid
fabric or other network infrastructure which is running the relevant CDDLM services.

4.1 Use Cases
There are three different use cases that it is designed to support:

1. The deployment target is an OGSA-compliant Grid Fabric. Resource allocation and Job submission
(using the JSDL language [JSDL] or equivalent) is part of the deployment process. In this use case, the
deployment API must integrate with the negotiation, and deploy a CDDLM-language described system
over the machines allocated by the resource manager.

2. The deployment target is a pre-allocated cluster set of machines. The resource allocation process is
bypassed -it can be presumed to have happened out of band.

3. One instance of a CDDLM runtime is delegating part of a deployment to another host. There is no
guarantee that the two runtimes are the same implementation of CDDLM, or, if they are, that they are
the same version.

4.2 Fault Tolerance
he architecture is intended to support fault tolerant implementations, to the extent that a failure of the
deployment endpoint may not terminate the application, and may not render the application unreachable.

To be achieve this goal, any set of nodes onto which a system is deployed, must be visible to and manageable
by more than one deployment endpoint. Furthermore, if the failure of this endpoint is not to prevent access, any
SOAP endpoints that provide direct access to the system, must be hosted on the system nodes themselves.

5 Architecture

5.1 Core Architecture
The API comprises a model for deployment, and a WS-ResourceFramework [WS-RF] based means of
interacting with this model.

A deployment client is an application that wishes to use the deployment API to deploy to ore more hosts that
have been pre-allocated using a resource allocation system. A deployment portal is a WS-RF service endpoint
that the deployment client communicates to, in order to deploy applications, and endpoint addressed via a WS-
Addressing Endpoint Reference (EPR) [WS-A]. This specific EPR is referred to as the portal EPR.

To deploy, the client first issues a request to the portal EPR to create a system. This request includes a
deployment descriptor in one of the CDDLM supported languages and potentially other information that
describes and configures the application. This creation request returns a new EPR, which provides access to the
state and operations of the system, the system EPR.

The system EPR can be bound to any node that the portal EPR chooses; there is no requirement that it is bound
to the same portal node. For maximum availability, hosting the system EPR on the same node of the system
may be the best approach. An example of this is shown in figure 1.

The caller can then make a request to the system EPR to initialize the system. If successful, the application
asynchronously enters the next state in its lifecycle, initialized. Once a system has been initialized, it can be
moved through other stages of its lifecycle. The complete lifecycle is defined in section 5.2.

As a deployed system moves through its stages of its lifecycle, it can send lifecycle event notification messages
to registered listeners, using a mechanism such as WS-Notification [WS-Notification]. The lifecycle state of the
system can also be determined by querying the appropriate resource property of the system, according to the
WS-Resource Properties [WS-ResourceProperties] specification. There is also a synchronous, blocking call to
probe the health of an system; this must be routed to the system itself, so that it can determine its own health.
This will return its current state, and any custom status information the system chooses to return. If the system
has failed, or terminated after a failure, the status information will include the fault information.

The portal EPR supports other properties and operations. The list of currently deployed systems can be
determined, along with their system EPRs. There are also static information and dynamic information
documents which can be retrieved from the server; again these are represented as properties following the WS-
Resource Properties specification.

The portal EPR must be able to raise events when new systems are created, using the WS-Notification protocol
at a minimum.

5.2 Lifecycle
CDDLM components have a uniform lifecycle, one that is normatively described in the component model
specification [Schaeffer05]. The lifecycle of a deployment matches the lifecycle of the components within. This
is essential to permit aggregation of systems.

The states of an system are as follows:

instantiated The system has just been instantiated.
initialized The system has been initialized.
running The system is running
failed The system has failed
terminated The system has terminated
destroyed The system is destroyed.

The normative definition of this lifecycle is the component model [CITE]. Instantiation and initialization
represent the creation and configuration of a component, and when it is moved into running then it is actually
functional, The state failed is entered automatically when a failure is detected; termination is the only exit
condition; terminated is the end state of a component and can be entered through a termination request.

The lifecycle is exposed through the operations1 of the service. The create operation is will create and
instantiate an a system. The run operation will move the system to the running state, and terminate will move it
to the terminated state.

5.3 Fault Tolerance Support
As stated, the architecture is must enable fault tolerant implementations. Here is how this is enabled:

• Multiple Portal EPRs can provide access to the same set of nodes.

• The failure of a portal does not imply the failure of a system.

• The failure of a node hosting a system EPR will result in the destruction of that system.

• Issuing a <wsrl:Destroy> request to a system EPR will destroy the system.

• Every system instance must have a WS-RF property "ID" of type xsd:URI property that must be unique; this
can be used for equality tests through simple string comparison.

• Portal EPRs servicing a set of nodes should be discoverable by a client in some manner. Registration in a
service group is one option [WS-ServiceGroup].

• Implementations may implement fault tolerant EPRs through the use of a dynamic DNS service, one in
which the DNS entries for the hostname(s) of the portal are updated as portal instances appear and disappear.
Client systems should to be written with the knowledge that the IP addresses of an EPR may change, and not
to cache resolved IP addresses indefinitely2.

5.4 Other Architectural Features.

5.4.1 Named systems

Callers may provide a string name for a system. This system name, if provided, must be unique amongst all
systems that a portal EPR can manage.

The system name must begin with one of the characters in the set [A..Za..z_.] and continue with characters in
the range [A..Za..z09_.]. This is a proper subset of the XSD type NCName element names, and is also a subset
of the valid characters in a URL. This is intentional, and while the specification does not itself take advantage
of the fact, languages may choose to do so.

5.4.2 Deployment Language Agnostic

The deployment API is agnostic as to which particular language, or version thereof, is used for a deployment
descriptor. When a remote deployment is created, the language and version of the descriptor must be supplied.
The sole requirement of a language is that it can either be nested inside an XML document, or that a URL to the
descriptor is remotely accessible to the destination. In the case of the latter, the URL to the descriptor must be
provide when initializing the system.

Every language is identified by a unique URI. This language URI must be supplied with the deployment
descriptor or URI.

5.4.3 Job Language Agnostic

Just as the API allows implementations to support deployment languages/versions, the API also permits
multiple Job specification languages. That is, alongside JSDL, an implementation may support the Globus
Resource Specification Language [GlobusRSL].

5.4.4 Deploy-time properties in the language and service API

Consider a deployment descriptor that wants to control onto which machine that it wants different components
deployed onto. When the descriptor is written, the actual hosts are unknown. It is only during deployment that
the mapping becomes apparent. Either the descriptor is rewritten with the fixed values, or we provide a way for
subsidiary information to be passed alongside the descriptor.

The SmartFrog language [Goldsack04] supports this with the PROPERTY and IPROPERTY keywords, which bind
keys in a Java java.System.Properties hashtable to string and integer values. For example, a deployment
descriptor could be bound to three properties:

database extends Database {
sfHostname PROPERTY hosts.database;
password PROPERTY database.password;
localhost LAZY PROPERTY local.hostname

}

At deployment time, each property string is looked up and assigned to the attribute, or a fault is raised. The LAZY
keyword indicates that the evaluation must not take place in the context of the process interpreting the
deployment descriptor, but instead the system actually hosting it. The XML language does not explicitly
contain such a feature [XML-CDL], a standardized component could be designed to extract the values from the
name/value list.

To enable this functionality within the Service interface, one of the deployment options declares a set of
name/value pairs. How these tuples are exposed to a deployment language/framework is a language-specific
feature.

5.4.5 Extensibility

The deployment API is designed to support extensible implementations, and future enhancements to the API
over time.

Extra Operations

A service implementation may offer extra operations at any EPR. Such extensions must not add new
declarations to the XML namespaces used in this document: they must be in their own, private, namespace.
Implementations should document these operations and provide updated WSDL descriptions.

There is no requirement for the extra operations supported by an EPR to remain constant over any period of
time.

Extra WS-Resource Properties

A service implementation may offer extra WS-Resource properties at any EPR. Again, they must be in their
own, private, namespace. Implementations should document these properties and provide updated WSDL
descriptions.

Extra deployment options

It is possible that extra deployment options will be desired on different implementations or over time. The core
of such customization should be in deployment descriptors themselves, yet there may be a need to provide extra
deployment metadata.

This is implemented through an <options> element in the <initialize> message. This (optional) element
contains a list of zero or more deployment options. These are extra parameters to the deployment request. Every
option is named with a URI, and can have a string or integer attribute value, or contain nested XML. A
mustUnderstand attribute is used to indicate whether or not an option must be understood.

The option list is a very powerful aspect of the API, but potentially dangerous. Any protocol standard which
has optional aspects is harder to write clients against than one which does not, as there is likely to be less
consistency between different implementations. To manage this risk, the deployment API has the following
requirements on optional metadata parameters:

● All options must be that: optional. It must not be an error to deploy a system with no options declared.

● Every option is named by a URI.

● All URIs that begin with http://gridforum.org/cddlm/ are reserved for options defined by the CDDLM
working group.

● Options must contain either string, integer, Boolean or arbitrary XML values. String and integer values are
supported via attributes; XML is supported as nested data.

● An options must contain only one value type. Implementations must raise a fault if multiple nested or
attribute values are declared on the same option.

● All options that an implementation supports must be enumerated in the server information property of the
portal EPR.

● It is an error to include multiple options of the same URI in a descriptor. Implementations must raise a fault
when this occurs.

● Options may be processed in any order. Options must not require a specific order of processing.

● Service implementations must ignore any options that they do not recognize, if mustUnderstand="false" for
that option.

● Service implementations must understand all options which are supplied with mustUnderstand="true" for
that option. If any such option is not understood, a fault must be raised.

The processing rules for deployment are as follows:

1. Option processing must take place before the system is instantiated.

2. An implementation must be able to create a system when the entire options portion of the request is empty
or omitted.

3. To be "understood", an option must be processed in accordance with the specification of that option.

4. Any option that is marked mustUnderstand="true" MUST be understood. If not, the Fault "not-understood"
must be raised, identifying the particular option by its URI in the extraData field of the fault.

5. Implementations must not raise this fault when they do not understand any options that are marked
mustUnderstand="false", or for which there is no mustUnderstand attribute. These must be ignored.

6. Duplicate options must cause the operation to be rejected with a bad-argument fault, identifying the
particular option by its URI in the extraData field of the fault.

6 Deployment API Overview
The service API consists of two endpoint types, portal endpoints, addressed by portal EPRs, and system
endpoints, addressed by system EPRs. Portal EPRs return system EPRs to callers, either in response to
lookup/mapping messages, or when a system is successfully created.

The two endpoint types are Resources within the terminology of the WS-Resource Framework specifications.

In this section of the document, the following listed prefixes refer to the stated namespaces

prefix URI description
xsd http://www.w3.org/2000/10/XMLSchema XML Schema Types

wsa http://schemas.xmlsoap.org/ws/2003/02/
addressing

WS-Addressing types

api http://www.gridforum.org/cddlm/serviceAPI/
2004/ 10/11

Deployment API

cddlm-types http://www.gridforum.org/cddlm/serviceAPI/type
s/2004/10/11

API types

cddlm-faults http://gridforge.org/cddlm/serviceAPI/faults/2
004/10/11/

API Faults

cdl http://www.gridforum.org/2004/12/CDDLM/XML-
CDL/1.0

XML CDL

cmp http://www.gridforum.org/cddlm/components/2004
/11/06

Component Model

wsrf-bf WS-BaseFaults

wsrf-rl http://www.ibm.com/xmlns/stdwip/web-
services/WSResourceLifetime

WS-Resource Framework

wsrf-rp http://www.ibm.com/xmlns/stdwip/web-
services/WSResourceProperties

WS Resource Properties

wsrf-nt http://www.ibm.com/xmlns/stdwip/web-
services/WSBaseNotification

WS-Notification

wsrf-n http://www.ibm.com/xmlns/stdwip/web-
services/WSTopics

env http://www.w3.org/2003/05/
soap-envelope

SOAP1.2 Envelope

xml http://www.w3.org/XML/1998/namespace XML attributes

6.1 Portal Endpoint
The portal endpoint is the endpoint which the caller initially locates and communicates with. It can be used to
create a new system within the set of nodes that it manages, or it can be used to locate an existing system.

6.1.1 Portal EPR Properties

Name Type Meaning
staticPortalStatusProperty cddlm-api:staticPortalStatusType static server info; constant for the lifetime

of the portal itself

dynamicPortalStatusProperty cddlm-api:dynamicPortalStatusType dynamic server info; may be different on
every read

systemListProperty cddlm-api:systemReferenceListType List of system EPRs

WS-Resource Lifetime Properties Properties required for WSRL

6.1.2 Portal EPR Operations

Name In Out Meaning
create name: xsd: string

jsdl: xsd:any

descriptor: xsd:any

wsa:EPR Create a system.

lookupSystem xsd:string wsa:EPR Map from system name to a system EPR

WS-Resource Lifetime
Operations

Operations used by the WS-RL
specification to manage the lifetime of
EPR-referenced entities

WS-Notification Operations Operations used by the WS-Notification
specification to enable callers to subscribe
to supported topics.

6.2 System Endpoint
This represents a system that has been deployed. System EPRs are obtainable by creating one at the portal EPR,
or through lookup operation offers by a portal.

6.2.1 System EPR Properties

Name Type Meaning
systemNameProperty xsd:string user-defined name (optional)

systemIdentifierProperty xsd:anyUri unique identifier

systemStateProperty cddlm-api:lifecycleStateEnum current system state

stateInfo xsd:string Text state info

systemExtendedStateProperty cddlm-api:unboundedXMLAnyNamespace Component state

systemCreatedProperty xsd:dateTime Time system was created

systemStartedProperty xsd:dateTime Time system was terminated

systemTerminatedProperty xsd:dateTime end time (not present until system is
terminated)

systemTerminationRecordProperty cddlm-api:terminationRecordType termination record

WS-Resource Lifetime Properties Properties required for WSRL

6.2.2 System EPR Operations

Name In Out Meaning
init job cddlm-api:jobDescriptorType

descriptor cddlm-api:
deploymentDescriptorType

cddlm-api:void Initialize a system; pass in the job and component
descriptors and build up the component graph.

addFile uri xsd:anyURI
mimetype xsd:string
data xsd:base64Binary

xsd:integer Add a file to this document so that it is accessible
by a URI from within the deployment descriptor.

run cddlm-api:void cddlm-api:void Start running an initialized system

ping cddlm-api:void cddlm-api:status Probe a system's health.

terminate xsd:string Message cddlm-api:void Terminate a system; pass in a message

resolve xsd:string path xsd:any Resolve a reference relative to this system. Can
return EPRs to components; string or other data

WS-Resource
Lifetime
Operations

Operations used by the WS-RL specification to
manage the lifetime of EPR-referenced entities

WS-
Notification
Operations

Operations used by the WS-Notification
specification to enable callers to subscribe to
supported topics.

7 Notification
Notification enables front-end applications to receive notification when a system finishes. It also enables
management tools to track the number of running systems.

All implementations of the deployment API must support WS-Notification (WS-N), as specified in the
document. The implementations are free to implement alternate mechanisms; that is beyond the scope of this
document. What is covered, however, is a means of listing all notification mechanisms supported by an
implementation. Every server instance is required to enumerate all supported mechanisms in a list included in
its static server information property this can be used by callers to choose which mechanism is appropriate.

7.1 Notification Policy
• Implementations MUST support WS-Notification.

• Implementations MAY support alternate notification mechanisms.

• Implementations MUST list all supported notification mechanisms in the staticInfo information.

• Implementations MUST support the topics defined below, on the relevant EPR types.

• Implementations MAY also support Terminate notification events of WS-ResourceLifetime, which are
raised after an EPR is destroyed.

• There will be one notification for system lifecycle events.

• There will be one notification for the portal EPRs, which is raised when a system is created.

• There is no guarantee of fault tolerant subscriptions. Implementations MAY include WS-Policy metadata
that informs callers how to renew subscriptions in the event of system failure.

7.2 WS-Notification Support
As stated above, implementations MUST support WS-Notification; this does not prevent them also
implementing supplementary mechanisms. There are specific topic spaces [WS-Topics] define:

• Portal EPRs must support a WS-TopicSpace that contains one topic: system addition events.

• System EPRs must support a WS-TopicSpace that contains one topic: lifecycle events

7.3 Fault-Tolerant Notification
Implementations are not required to provide fault-tolerant notification. The failure of portal may result in the
loss of portal event subscriptions, and the failure of a system may result in the loss of system event
subscriptions.

8 Fault Policy
Faults are based upon the WS-BaseFault model [WS-BF], taking on some of the lessons of [Loughran02],
namely that extra information such as hostname and process is essential for locating which process among
many has failed on a clustered system.

Faults are raised in response to errors either at the remote endpoint, in the local framework, or between the
remote endpoint and other parts of the distributed system. They can be returned to callers in response to a an
operation on an endpoint, or sent as part of a notification event.

All faults that will be explicitly sent are derived from WS-BaseFault faults. Service implementations may
implicitly raise SOAPFault faults, as that is inherent in most implementations.

8.1 Fault Categories

8.1.1 Service Faults

These are the faults that are raised by the service. They are grouped into a hierarchy of WS-BaseFault faults.
There is a base fault class DeploymentFault, from which all others are derived.

All Service interfaces must declare that they raise these DeploymentFault instances, rather than list the specific
faults. This is to provide forward extensibility.

The API lists specific subclassed faults of DeploymentFault that may be generated by a service or received by a
client. These faults represent some of the faults that a service implementation may send.

If an implementation has a fault state whose meaning matches that of the predefined fault, the predefined fault
must be thrown. If this predefined fault has standard elements for embedded fault information, the
implementation should fill them in. The implementation may add implementation-specific data within the
extra-data element of the fault, to supplement this information. This extra data must not add new types to the
XML namespaces of this deployment data. The XML schema and semantics of this extra data should be
documented.

If an existing fault type is not suitable, implementations may create new fault types.

If an implementation creates new fault types, these must extend the existing fault types which operations are
declared as throwing, which effectively means that they must extend DeploymentFault. These new faults must
not change the XML schemas of the deployment API, and they must be in a new namespace. The new faults
and XML content should be publicly documented.

If an implementation adds new operations or properties at the existing endpoints, these new operations may
raise whatever faults they see fit, within the constraints of the WS-BaseFaults specification. Again, the
implementation must not add new types to the deployment API namespace.

8.1.2 Transport faults

Transport faults will inevitably be raised as the appropriate fault for the system. For example, the Apache Axis
SOAP client raises AxisFault faults for all SOAP events, wrapping stack trace and even HTTP Fault data
within the fault as DOM elements. Microsoft .NET WSE has a similar fault class.

8.1.3 Relayed Faults

Relayed faults are those received by the far end and passed on. They may be WS-BaseFault Faults; HTTP error
codes, SOAP faults, native language faults wrapped as SOAPFaults, or predefined deployment faults.

WS-BaseFault uses fault nesting for relaying faults; however, all faults must be a derivative of WS-BaseFault.
This is addressed by defining a new WS-BaseFault derivative, a WrappedSOAPFault. This type is actually an
extension of DeploymentFault. This fault can nest any received SOAPFault, with an element containing the
received XML data. Well-known elements in this fault data (such as the Apache Axis stack trace and HTTP
fault code) should be copied into any fields in the main fault which fill the same role.

8.2 Fault Security
Sites offering deployment services, may, for security reasons, wish to strip out some information, such as stack
trace data. Implementations should provide a means to enable such an action prior to transmitting faults to
callers.

Host name and process information may be viewed as sensitive, yet again, this is exceedingly useful to
operations. Implementations may provide a means to disguise this information, so that it does not describe the
real hostname or process ID of a process, but instead pseudonyms that can still be used in communications with
any operations team.

8.3 Internationalisation
The WS-BaseFault specification makes no statement upon which language error descriptions are in.

If an implementation can return descriptions in one language, it must use xml:lang attributes to indicate the
language of a description. Multiple descriptions, in different languages may be included. The client application
should extract the description(s) whose language is the nearest match to that of the client.

8.4 Fault Type Declarations
The fault hierarchy is shown in Figure 3.

8.4.1 DeploymentFault

This type represents any fault thrown during deployment. All endpoint operations must declare that they throw
this fault, and must not declare that they throw any derivative fault.

Element Type Meaning
Host xsd:string Hostname or pseudonym

Process xsd:string Any process identifier suitable for diagnostics

ExtraData xsd:any Extra fault data

Component xsd:string Path to component raising the fault

Stacktrace api:stacktrace Stack trace of fault

Implementations must include a component reference if it is known. Implementations should include hostname
and process information. Process information may be a low level identifier (such as an operating system
process ID), or it may be some application specific identifier. Its role is merely to distinguish which process
amongst many in a load-balanced implementation raised the fault.

8.4.2 LanguageFault

A language fault represents any fault in language processing for which a file and line number are relevant.

Element Type Meaning
File xsd:string Filename/URI of file at fault

Line xsd:integer Line number within the file

This information must be included.

If the error is in the inline deployment descriptor, the File element must be empty. Furthermore, the Line
element must be relative not to the deployment request, but to the inline descriptor. Recipients of faults can
then infer from the empty file element that the

Note that a consequence of this design is that implementations must preserve white space in the deployment
descriptor when saving them to file.

8.4.3 WrappedSOAPFault

This type represents a mapping of a classic W3C SOAPFault [SOAP1.2] to a WS-BaseFault, as an extension of
DeploymentFault. It adds two new elements to contain data unique to SOAPFaults.

Element Type Meaning
SoapFaultCode env:FaultCode Fault code information

SoapFaultRole xsd:anyURI Role of sender

The normative mapping of SOAPFault elements to WrappedSOAPFault elements is as follows:

SOAP1.2 WrappedSOAPFault
/env:Code /api:SoapFaultCode

/env:Role /api:SoapFaultRole

/env:Detail /api:ExtraData

/env:Reason/env:text /wsrf-bf:Description

Any text elements under env:Reason must be converted into separate description elements in the fault; all
xml:lang attribute must be preserved.

Detail from SOAP stacks with well-known fault fields, such as the Apache Axis stack trace, may be imported
into appropriate fields in the DeploymentFault.

8.5 Fault Error Codes
Specific fault error codes, and their meaning, are covered in a separate document.

Every unique fault will be described by its own fault code. Deployment faults that are part of the API
specification will all be in the namespace http://X/Y/Z with their code value described in the CDDLM Fault
Specification.

9 Security
The deployment requests must only be granted by suitably authorized individuals, or their suitably authorized
agents.

For deployment to a Grid infrastructure, that means that the standardized security model of the infrastructure
must be used to authenticate callers. Only callers with the relevant rights may deploy systems.

When delegating deployments across nodes, the node issuing the deployments needs to have the rights to do so,
and the deployment itself still needs to be authenticated as a legitimate request of the sender.

Along with deployment, the ability of a caller to list and manipulate running systems, introduces another
security issue: that of who has access to the set of deployed systems.

10Editor Information
Steve Loughran, HP Laboratories

11References
[Axis] Apache Software Foundation, Apache Axis,
[Foster04] Foster et al., Modeling Stateful Resources with Web Services, 2004.
[Goldsack04] Goldsack, SmartFrog Language, 2004
[GlobusRSL] Globus, Resource Specification Language, 2004
[JSDL] Job Service Description Language, 2004.
[Loughran02] Loughran, Making Web Services that Work, HP Laboratories,

TR-HPL-2002-274, 2002.
[Parastatidis03] Parastatidis et al., A Grid Application Framework based on Web Services Specifications

and Practises, University of Newcastle, 2003.
[RFC2119] S. Bradner, RFC 2119 - Key words for use in RFCs to Indicate Requirement Levels, 1997
[Schaeffer05] Schaeffer., CDDLM Component Model Specification, 2005
[SOAP1.2] W3C, SOAP Version 1.2, 2003.
[XML-CDL] CDDLM XML Configuration Description Language Specification version 1.0 draft 2004-

12-10.
[WS-A] Gudgin, M. and Hadley S., Web Services Addressing -Core, 2004.
[WS-BF] Tuecke et al., Web Services Base Faults (WS-BaseFaults), 2004.
[WS-BaseNotification] Graham et al., Web Services Base Notification 1.0 (WS-BaseNotification), 2004.
[WS-BrokeredNotification] Graham et al., Web Services Brokered Notification 1.0 (WS-BrokeredNotification),

2004.
[WS-Policy] Schlimmer et al., Web Services Policy Framework (WS-Policy), 2004
[WS-ResourceLifetime] Frey et al., Web Services ResourceLifetime 1.1 (WS-ResourceLifetime), 2004.
[WS-RF] Tuecke et al., Web Services Resource Framework (WS-RF), 2004.
[WS-ResourceProperties] Graham et al., Web Services Resource Properties 1.1 (WS-ResourceProperties),

2004.
[WS-ServiceGroups] Graham et al., Web Services Service Group Specfication 1.0 (WS-ServiceGroups), 2004.
[WS-Topics] Graham et al., Web Services Topics (WS-Topics), 2004.

1 In this document, operations, are taken to mean message exchanges between caller
and the relevant WS-Addressing EPR-referenced endpoint
2This is of particular relevance to Java applications, where the default behavior is to cache the resolved address of a hostname for the
duration of the application.

Figure 2Lifecycle of a component

instantiated

running

failed terminatedinitialized

<initialize/>

<run/> <terminate/>

<destroy/>fail

fail

<terminate/>

<create/>

fail

Figure 1 Conceptual Model of Portal and system EPRs

Portal EPR#1 Portal EPR#2

System EPR2

Deployment nodes

Client application

System EPR1

Figure 3 Fault Hierarchy

DeploymentFault
base for all faults in the API

Host: xsd:string
Process: xsd:string (0..1)
ExtraData: xsd:any (0..1)
Component: xsd:string (0..1)
Stacktrace: api:stacktrace (0..1)

WS-BaseFault

Timestamp: xsdDateTime
OriginatorReference: wsa:EPR
ErrorCode: xsd:string
Description: xsd:string
FaultCause: wsbf:BaseFault

WrappedSoapFault
converts SOAPFault to WS-BF

SoapFaultCode: env:FaultCode
SoapFaultRole: xsd:anyURI

LanguageFault
Fault in the language where file+line
provide information

File: xsd:string
Line: xsd:integer

