Component Model Test Plan
CDDLM Components are expected to live within a larger framework hosted by an implementor of the Deployment API specifications. The following tests are functional tests of a Component Model implementation based on testing one or more exemplary components. This will require the creation of a test harness to host the components, or use of the framework. These tests attempt to avoid testing the operation of the harness or framework.
All CDDLM Components must implement the WSRF API as per the Component Model Specification. It is expected that only the required elements of that API will be tested as they relate to the Component Model.

1. Component Properties
The following tests require the instantiation of one single component. This component must expose an additional property according to its CDL, such that its property Get/Set behavior can be tested. The following is an example CDL for such a component.

<cdl:cdl targetNamespace=”http://example.org/test1”>
<cdl:system>

<Test1>

 <cmp:CodeBase>http://localhost/test1.jar</cmp:CodeBase>

 <cmp:CommandPath>com.exns.Test1</cmp:CommandPath>

 <TestProperty>TestValue</TestProperty>

</Test1>

</cdl:system>

</cdl:cdl>

a. Identity

Query the ResourceId of the Component. For complete testing, it would be recommended to instantiate more than one instance of this same component, and test to ensure that the ResourceId values are distinct.

b. ComponentStatus

Query the ComponentStatus property. Parse the return to ensure that each element is properly formed.

· The State element must be of type <cmp:lifecycleStateType> which is an extension of <muws-p2-xs:StateType>.

· The LifecycleTransition element must be of type <muws-p2-xs:StateTransition>.

· The ExtendedState is optional, but if exists must be well formed XML.

c. Test Property

The following tests simply check to ensure that a component implements the WSRF behavior for resource properties.
i. GetResourceProperty

The value of the additionally defined resource property should be queried and tested for correctness.

ii. SetResourceProperties

The value of the additionally defined resource property should be changed. Then it should be requeried to verify that it has in fact changed to the correct value, and that the value is persistent.

2. Component Operations

The following tests verify the external command API of a component.

a. Lifecycle Tests
In the following tests, each sequence should be run through to ensure proper behavior according to the lifecycle definition. In order to provide complete coverage it is desirable to simulate failure of some stage(s). This is not required, however it is recommended to create more than one component for each of the following test. One component that will simulate correct behavior, and one which will purposefully fail.

i. Simple

In the simple lifecycle test, a component should be walked through its lifecycle. At each stage, the ComponentStatus property should be checked to ensure proper reporting both of the new state and the state transition.

Once the component has been instantiated, it should be queried. Then it should be intitialized, run, terminated, and finally destroyed. If implementing the negative test, an example transition could be initilialized, failed, terminated, destroyed.

ii. Delegate

In this lifecycle test, two components should be created one of which is a delegate to the other. Both components should be queried to ensure that the lifecycle is being enacted properly. However, only the component delegate should be sent lifecycle commands.

As with the simple test, both positive and negative tests should be performed. In the case of the negative tests, it is recommended that only one of the components fail, to ensure that the delegate properly handles the desired behavior.
b. Maintenance
A simple RunTask command should be created and sent to an example component. Verify that the return is well formed.

3. Notifications

The following tests duplicate the actions of the earlier tests, but add the requirement that WS-Notifications be used to receive the events generated by these commands.
a. Lifecycle Events

A simple lifecycle test should be enacted as described above. Both positive and negative cases are recommended. The test should subscribe for all notifications such as OnInitialized, OnRunning, OnFailed, OnTerminated. The events should be parsed to ensure that they are:

· Valid WSDM ManagementEvent(s)

· ResourceId matches that of the component

· Situation is of type <cmp:LifecycleSituation>

· StateTransition is a well formed WSDM structure

b. Property Change Event

The SetResourceProperties test from section 1 should be repeated. In this test, a subscription should be made to the resource properties that will be modified. The event received should contain the value set during the call.

4. Control Flow

The following tests require the use three or more components to simulate control flow behavior. It is important that the test harness be able to verify the order of execution of lifecycle commands. This can be done by checking the ComponentStatus of components or receiving events. To ensure coarse enough granularity of the reported transition times, it is recommended that components specifically delay or use some other behavior to ensure that the test can accurately verify the order enacted during the test.
The following CDL is an example of an implementation for this test.

<cdl:cdl targetNamespace=”http://example.org/test1”>
<cdl:system>

<Test2>

<cmp:sequence lifecycle=”initialization”/>

<cmp:reverse lifecycle=”termination” />

<cmp:flow lifecycle=”execution” />

 <ComponentA>

 <cmp:CodeBase>http://localhost/test2.jar</cmp:CodeBase>

 <cmp:CommandPath>com.exns.ComponentA</cmp:CommandPath>

</ComponentA>

<cmp:wait lifecycle=”initialization” duration=”PT5S”/>

 <ComponentB>

 <cmp:CodeBase>http://localhost/test2.jar</cmp:CodeBase>

 <cmp:CommandPath>com.exns.ComponentB</cmp:CommandPath>

 </ComponentB>

 <ComponentC>

 <cmp:CodeBase>http://localhost/test2.jar</cmp:CodeBase>

 <cmp:CommandPath>com.exns.ComponentC</cmp:CommandPath>

 </ComponentC>

</Test2>

</cdl:system>

</cdl:cdl>

a. Sequence

The initialization of this system should follow the order ComponentA, ComponentB, ComponentC.

b. Reverse

The termination of this system should follow the order ComponentA, ComponentB, ComponentC.

c. Flow

The execution behavior of this system should be random.

d. Wait
The elapsed time between initialization of ComponentA and ComponentB should be five seconds.

e. Switch

The switch operator test is more complex. The following test requires two components, one of which must expose a modifiable property. The test must be run twice, changing the value before each test. By changing the value, it should alter the order of initialization of components. The following CDL shows an example of this test.
<cdl:cdl targetNamespace=”http://example.org/test1”>
<cdl:system>

<Test3>

<cmp:switch lifecycle=”initialization”>

 <cmp:case condition=”/Test3/ComponentA/SwitchProperty=’A’”>

 <cdl:ref ref=”/Test3/ComponentA”/>

 </cmp:case>

 <cmp:otherwise>

 <cdl:ref ref=”/Test3/ComponentB”/>

 <cmp:otherwise>

</cmp:switch>

 <ComponentA>

 <cmp:CodeBase>http://localhost/test3.jar</cmp:CodeBase>

 <cmp:CommandPath>com.exns.ComponentA</cmp:CommandPath>
 <SwitchProperty>A</SwitchProperty>
</ComponentA>

 <ComponentB>

 <cmp:CodeBase>http://localhost/test3.jar</cmp:CodeBase>

 <cmp:CommandPath>com.exns.ComponentB</cmp:CommandPath>

 </ComponentB>

</Test3>

</cdl:system>

</cdl:cdl>

