Configuration Description, Deployment,
and Lifecycle Management

CDDLM Deployment API
Draft 2005-02-08

Satus of this Memo

This document provides information to the community regarding the specification of the
Configuration Description, Deployment, and Lifecycle Management (CDDLM)
Language. Distribution of this document is unlimited. Thisis a DRAFT document and
continues to be revised.

Abstract

Successful realization of the Grid vision of a broadly applicable and adopted framework
for distributed system integration, virtualization, and management requires the support
for configuring Grid services, their deployment, and managing their lifecycle. A major
part of this framework is a language in which to describe the components and systems
that are required. This document, produced by the CDDLM working group within the
Global Grid Forum (GGF), provides a definition of the service APl whereby a Grid
Resource is configured, instantiated, and destroyed.

GLOBAL GRID FORUM

office@ggf.org
www.ggf.org

LB BB B B B B BB)
- B a8 e
L] L]
L]

Full Copyright Notice .
Copyright © Global Grid Forum (2004-2005). All Rights Reserved.

This document and trandations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its implementation
may be prepared, copied, published and distributed, in whole or in part, without
restriction of any kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to the
GGF or other organizations, except as needed for the purpose of developing Grid
Recommendations in which case the procedures for copyrights defined in the GGF
Document process must be followed, or as required to trandate it into languages other
than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF
Or its successors or assigns.

This document and the information contained herein is provided on an "AS IS' basis and
THE GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE
USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Intellectual Property Satement

The GGF takes no position regarding the validity or scope of any intellectual property or
other rights that might be claimed to pertain to the implementation or use of the
technology described in this document or the extent to which any license under such
rights might or might not be available; neither does it represent that it has made any effort
to identify any such rights. Copies of claims of rights made available for publication and
any asurances of licenses to be made available, or the result of an attempt made to obtain
agenera license or permission for the use of such proprietary rights by implementers or
users of this specification can be obtained from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or
patent applications, or other proprietary rights which may cover technology that may be
required to practice this recommendation. Please address the information to the GGF
Executive Director (see contact information at GGF website).

1 Table of Contents

R = o | 1=Y o @0 T4 (<! 3
A 101 70 o [0 (o) 1R 4
21 CDDLM-WG and the Purpose of thiS DOCUMENtccoviueeiiiieeiiic e siee e 4
3 Purposeof the DeploymMENt APlooiiiiii et et e sane e 4
31 (05 SY 07 =SS 4
3.2 (= 0 A 0 L= = (o < X 5
I AN (o 011 < 10 (=TT RRT 5
4.1 COrEATCHITECIUN ... e e et e e e s e e e e e e 5
4.2 [= oo TP 8
4.3 (= 0 A 0 L= = (o < X 8
4.4 Other ArChiteCtUral FEAIUMNES.cvviiiieiieee ettt e e e 9
5 Deployment API OVEIVIEWcioiieeiiieciie et stee s ee e sae e st e ssaeessaeesaeeseeesneeens 12
51 POrtal ENCPOINTcvieiiiieciiee ettt et e e sbae e s nsee e s snrerens 12
5.2 SYSLEM ENAPOINL ..ottt et bbb e 13
(ST = o - R 16
6.1 g I (0] 0= 4 1T= RSP 16
6.2 (0701 = 100 1T RSP TRSPIN 17
A S Y (= 1 | USSP RPN 19
7.1 SYSIEM PrOPEITIES. ... 20
7.2 SYSLEM OPEFBLIONS......c.eeeeeeeeeeeie et eeeetes ceeeesteesteeieeste e eesseestes e eneesaeenseeneesneenneeneenees 20
T N[1 Tor= 1 (o o TR 24
8.1 NOEfICETION POHCY...ceiuvieiiieeiie et st b saeenree e 24
8.2 W SNOLITICATON SUPPOM.......eeiiiiiiiiiie ittt s 25
8.3 Fault-Tolerant NOifiCatiON.eeiiiiieeee e e e eans 25
LS T = 0 o 1 o, SRS 25
9.1 [U LR O =0 o 1= PSPPSR 26
9.2 FAUIT SBCUNTTY ...ttt ettt sttt e e st e e st e e b e enane e 27
9.3 (a1 g aT= (0] gT= T 1 o o P, 27
9.4 [1 TS 27
9.5 FaUIt BTOT COUBS ...ttt bbb r e e e e e s e e e e e e e e 29
O = o T] PO POPRRRTRR 29
O o 1 (o g g {01 1 17= (o N 30

2 Introduction

The CDDLM framework needs to provide a deployment APl for programs submitting
jobs into the system for deployment, terminating existing jobs, and probing the state of
the system.

This document defines the WS-Resource Framework-based deployment APl for
performing such tasks. It is targeted at those who implement either end of the API.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
this document are to be interpreted as described in RFC 2119 [RFC2119]

2.1 CDDLM-WG and the Purpose of this Document

The CDDLM WG addresses how to: describe configuration of services; deploy them on
the Grid; and manage their deployment lifecycle (instantiate, initiate, start, stop, restart,
etc.). The intent of the WG is to gather researchers, developers, practitioners, and
theoreticians in the areas of services and application configuration, deployment, and
deployment life-cycle management and to explore the community need for a broader
effort in this area. The target of the CDDLM WG is to come up with the specifications
for CDDML a) language, b) component model, and ¢) basic services.

This document defines the WS-Resource Framework-based deployment APl for
performing such tasks. A CDDLM deployment infrastructure must implement this
service in order for remote callers to create applications on the infrastructure.

This document is accompanied by an XML Schema (XSD) file and a WSDL service
declaration. The latter two documents are to be viewed as the normative definitions of
message elements and service operations. This document is the normative definition of
the semantics of the operations themselves.

3 Purpose of the Deployment API

The deployment API is the SOAP/WS-ResourceFramework (WS-RF) API for deploying
applications to one or more target computers, physica or virtua.

The API is written assuming that the end user is deploying through a console program, a
portal Ul or some automated process. This program will be something written by a third
party to facilitate deployment onto a grid fabric or other network infrastructure which is
running the relevant CDDLM services.

3.1 Use Cases
There are three different use cases that it is designed to support:

1 The deployment target is an OGSA -compliant Grid Fabric. Resource allocation and
Job submission (using the JSDL language [JSDL] or equivalent) is part of the
deployment process. In this use case, the deployment APl must integrate with the
negotiation, and deploy a CDDLM -language described system over the machines
allocated by the resource manager.

2 The deployment target is a pre-alocated cluster set of machines. The resource
allocation process is bypassed -it can be presumed to have happened out of band.

3 Orneinstance of a CDDLM runtime is delegating part of a deployment to another host.
There is no guarantee that the two runtimes are the same implementation of CDDLM,
or, if they are, that they are the same version.

3.2 Fault Tolerance

The architecture is intended to support fault tolerant implementations, to the extent that a
failure of the deployment endpoint may not terminate the application, and may not render
the application unreachable.

To be achieve this god, any set of nodes onto which a system is deployed, must be
visible to and manageable by more than one deployment endpoint. Furthermore, if the
failure of this endpoint is not to prevent access, any SOAP endpoints that provide direct
access to the system, must be hosted on the system nodes themselves.

4 Architecture

4.1 Core Architecture

The API comprises amodel for deployment, and a WS-ResourceFramework [WS-RF]
based means of interacting with this model.

A deployment client is an application that wishes to use the deployment API to deploy to
ore more hosts that have been pre-alocated using a resource alocation system. A
deployment portal is a WSRF service endpoint that the deployment client communicates
to, in order to deploy applications, and endpoint addressed via a WS-Addressing
Endpoint Reference (EPR) [WS-A]. This specific EPR is referred to as the portal EPR

To deploy, the client first issues arequest to the portal EPRto create a system. This
request includes a deployment descriptor in one of the CDDLM supported languages and
potentially other information that describes and configures the application. This creation
request returns a new EPR, which provides access to the state and operations of the
system, the system EPR.

The system EPR can be bound to any node that the portal EPR chooses; there is no
requirement that it is bound to the same portal node. For maximum availability, hosting
the system EPR on the same node of the system may be the best approach. An example of
thisis shown in figure 1.

Deployment nodes

System EPR2

System EPR1

Portal EPR#1

Portal EPR#2

Client application

Figurel. Modd of deployment and EPRs. Multiple Portal EPRs can manage the
same set of deployment nodes.

The caller can then make a request to the system EPR to initialize the system. If
successful, the application asynchronoudy enters the next state in its lifecycle, initialized
Once a system has been initialized, it can be moved through other stages of its lifecycle.
The complete lifecycle is defined in section 4.2, and illustrated in figure 2.

instantiated .
erminate/>

<initialize/>

<terminate/> <destroy/>

initialized failed »\ terminated

<run/>

Figure2 . The lifecycle of a deployed application

As a deployed system moves through its stages of its lifecycle, it can send lifecycle event
notification messages to registered listeners, using a mechanism such as WSNotification
[WS-Noatification]. The lifecycle state of the system can aso be determined by querying
the appropriate resource property of the system, according to the WS-Resource Properties
[WS-ResourceProperties] specification. There is aso a synchronous, blocking call to
probe the hedlth of a system; this must be routed to the system itself, so that it can
determine its own health. Thiswill return its current state, and any custom status
information the system chooses to return. If the system has failed, or terminated after a
failure, the status information will include the fault information.

The portal EPR supports other properties and operations. The list of currently deployed
systems can be determined, along with their system EPRs. There are also static
information and dynamic information documents which can be retrieved from the server;
again these are represented as properties following the WS Resource Properties
specification.

The portal EPR can raise events when new systems are created, using the WS
Notification protocol.

4.2 Lifecycle

CDDLM components have a uniform lifecycle, one that is normatively described in the
component model specification [Schaeffer05]. The lifecycle of a deployment matches the
lifecycle of the components within. Thisis essential to permit aggregation of systems.
The main difference is the notion of a destroyed component. When a system is destroyed,

all record of it islost. A terminated system, may till have state that is remotely
accessible.

The states of a system are as follows:

instantiated The system has just been instantiated.
initialized The system has been initialized.
running The system is running

failed The system has failed

terminated The system has terminated
destroyed The system is destroyed.

Instantiation and initialization represent the creation and configuration of a component,
and when it is moved into running then it is actually functional, The state failed is entered
automatically when a failure is detected; termination is the only exit condition;
terminated is the end state of a component and can be entered through a termination
request.

The lifecycle is exposed through the operations of the service. The create operation is
will create and ingtantiate a system. The run operation will move the system to the
running state, and terminate will move it to the terminated state.

4.3 Fault Tolerance

As stated, the architecture must enable fault tolerant implementations. Here is how thisis
accomplished:

Multiple Portal EPRS can provide access to the same set of nodes.
The failure of a portal does not imply the failure of a system.

The failure of a node hosting a system EPR will result in the destruction of that
system.

Issuing a <wsr | : Dest roy> request to a system EPR will destroy the system.

Every system instance must have a WS-RF property "ID" of type xsd: UR
property that must be unique; this can be used for equdlity tests through simple
string comparison.

Portal EPRs servicing a set of nodes should be discoverable by aclient in some
manner. Registration in a service group is one option [WS ServiceGroup].

Implementations may implement fault tolerant EPRSs through the use of a dynamic
DNS service, one in which the DNS entries for the hostname(s) of the portal are
updated as portal instances appear and disappear. Client systems should to be

written with the knowledge that the I P addresses of an EPR may change, and not
to cache resolved | P addresses indefinitely.

4.4 Other Architectural Features.
4.4.1 Named systems

Callers may provide a string name for a system. This system name, if provided, must be
unique amongst all systems that a portal EPR can manage.

The system name must begin with one of the charactersintheset [A . za..z_.] and
continue with charactersin therange [A. . za. . z09_.]. Thisis a proper subset of the XSD
type Nonane element names, and is also a subset of the valid charactersin a URL. Thisis
intentional, and while the specification does not itself take advantage of the fact,
languages may choose to do so.

4.4.2 Deployment Language Agnostic

The deployment API is agnostic as to whic h particular language, or version thereof, is
used for a deployment descriptor. When a remote deployment is created, the language
and version of the descriptor must be supplied. The sole requirement of a language is that
it can either be nested inside an X ML document, or that a URL to the descriptor is
remotely accessible to the destination. In the case of the latter, the URL to the descriptor
must be provide when initializing the system.

Every language is identified by a unique URI. This language URI must be supplied with
the deployment descriptor or URI.

4.4.3 Job Language Agnostic

Just as the API allows implementations to support deployment languages/versions, the
APl aso permits multiple Job specification languages. That is, dongside JSDL, an
implementation may support the Globus Resource Specification Language [GlobusRSL].

4.4.4 Deploy-time properties in the language and service API

Consider a deployment descriptor that wants to control onto which machine that it wants
different components deployed onto. When the descriptor is written, the actual hosts are
unknown. It is only during deployment that the mapping becomes apparent. Either the
descriptor is rewritten with the fixed values, or we provide away for subsidiary
information to be passed aongside the descriptor.

The SmartFrog language [Goldsack04] supports this with the PRoPERTY and | PROPERTY
keywords, which bind keysin aJava j ava. Syst em Properti es hashtable to string and
integer values. For example, a deployment descriptor could be bound to three properties:

dat abase extends Database {
sf Host nane PROPERTY host s. dat abase;
password PROPERTY dat abase. passwor d;
| ocal host LAZY PROPERTY | ocal . host nane

At deployment time, each property string is looked up and assigned to the attribute, or a
fault israised. The Lazy keyword indicates that the evaluation must not take place in the
context of the process interpreting the deployment descriptor, but instead the system

actually hosting it. The XML language does not explicitly contain such a feature [XML-

CDL], a standardized component could be designed to extract the values from the
name/value list.

To enable this functionality within the Service interface, one of the deployment options
declares a set of name/value pairs. How these tuples are exposed to a deployment
language/framework is a language- specific feature.

4.4.5 Extensibility

The deployment API is designed to support extensible implementations, and future
enhancements to the API over time.

4.4.5.1 ExtraOperations

A service implementation may offer extra operations at any EPR. Such extensions must
not add new declarations to the XML namespaces used in this document: they must be in
their own, private, namespace. |mplementations should document these operations and
provide updated WSDL descriptions.

Thereis no requirement for the extra operations supported by an EPR to remain constant
over any period of time.

4.45.2 Extra WS-Resource Properties

A service implementation may offer extra WS-Resource properties at any EPR. Again,
they must be in their own, private, namespace. |mplementations should document these
properties and provide updated WSDL descriptions.

4.45.3 Extra deployment options

It is possible that extra deployment options will be desired on different implementations
or over time. The core of such customization should bein deployment descriptors
themselves, yet there may be a need to provide extra deployment metadata.

Thisis implemented through an <opt i ons> element in the <i ni ti al i ze> message. This
(optional) element contains a list of zero or more deployment options. These are extra
parameters to the deployment request. Every option is named with a URI, and can have a
string or integer attribute value, or contain nested XML. A nust Under st and &ttribute is
used to indicate whether or not an option must be understood.

The option ligt is a very powerful aspect of the API, but potentially dangerous. Any
protocol standard which has optional aspects is harder to write clients against than one
which does not, as there is likely to be less consistency between different
implementations. To manage this risk, the deployment API has the following
requirements on optional metadata parameters:

All options must be that: optional. It must not be an error to deploy a system with
no options declared.

Every option is named by a URI.

All URIs tha begin with nht t p: // gri df orum or g/ cddi i are reserved for options
defined by the CDDLM working group.

Options must contain either string, integer, Boolean or arbitrary XML values.
String and integer values are supported via attributes; XML is supported as nested
data.

An option must contain only one vaue type. Implementations must raise a fault if
multiple nested or attribute values are declared on the same option.

All options that an implementation supports must be enumerated in the server
information property of the portal EPR.

It is an error to include multiple options of the same URI in a descriptor.
Implementations must raise a fault when this occurs.

Options may be processed in any order. Options must not require a specific order
of processing.

Service implementations must ignore any options that they do not recognize, if
nust Under st and="f al se" for that option.

Service implementations must understand all options which are supplied with
nust Under st and="t rue” for that option. If any such option is not understood, a
fault must be raised.

The processing rules for deployment are as follows:

1
2

Option processing must take place before the system is moved to the running state

An implementation must be able to deploy a system when the entire options portion of
the request is empty or omitted.

Any option that is marked must nder st and="t rue” MUST be understood. If not, the
Fault " not - under st ood” must be raised, identifying the particular option by its URI in
the extrapat a fidld of the fault.

Implementations must not raise this fault when they do not understand any options that
are marked nust Under st and="f al se", or for which there is no nust under st and
atribute. These must be ignored.

Duplicate options must cause the operation to be rejected with a bad- ar gunent fault,
identifying the particular option by its URI in the ext rabat a field of the fault.

5 Deployment APl Overview
The service APl consists of two endpoint types, portal endpoints, addressed by portal
EPRs, and system endpoints, addressed by system EPRs. Portal BPRs return system

EPRs to callers, either in response to lookup/mapping messages, or when a system is
successfully created.

The two endpoint types are Resources within the terminology of the WS-Resource
Framework specifications.

In this section of the doc ument, the following listed prefixes refer to the stated

namespaces:
prefix URI
xsd ht t p: / / waww. wW3. or g/ 2000/ 10/ XM_Schena

api

cdl

cnp

wsr f-bf

wsrf-rl

wsrf-rp

wsr f-nt
wst op
s12

xm

http: //schemas. xm soap. or g/ ws/ 2003/ 03/ addr essi ng

http://www. gri df orum or g/ cddl m servi ceAPI / 2004/ 10/ 11
htt p: // ww. gri df orum or g/ 2004/ 12/ CDDLM XM.- CDL/ 1. 0
htt p: // ww. gri df orum or g/ cddl nf conponent s/ 2004/ 11/ 06
htt p://docs. oasi s- open. or g/ wsr f / 2004/ 06/ wsr f- W&

BaseFaul ts- 1. 2-draft- 01. xsd

htt p: // ww. i bm coni xm ns/ st dwi p/ web-
servi ces/ WBResour ceLi feti me

ht t p: // waw. i bm coni xml ns/ st dwi p/ web-
servi ces/ WBResour ceProperti es

http: //ww. i bm coni xm ns/ st dwi p/ web-
servi ces/ WsBaseNot i fi cati on

http://ww. i bm coni xml ns/ st dwi p/ web-ser vi ces/ W5Topi cs
ht t p: / / waw. W3. or g/ 2003/ 05/ soap-envel ope

ht t p: / / www. w3. or g/ XM/ 1998/ nanespace

description

XML Schema
Types

WS Addressing
types

Deployment AP
XML CDL
Component Model
WS BaseFaults

W S Resource
Framework

WS Resource
Properties

WS Notification
WS Topics
SOAPL.2 Envelope
XML attributes

Unprefixed types in the document and accompanying schema are in the api namespace.

5.1 Portal Endpoint

The portal endpoint is the endpoint that the caller initially locates and communicates
with. It can be used to create a new system within the set of nodes that it manages, it can
be used to locate an existing system, and it can be used as a source of system creation

events.

5.1.1 Portal EPR Properties

Name Type

Meaning

StaticPortal Status

Stati cPortal StatusType

Satic portal information; constant
for the lifetime of the portal itsel f

Name

Type

Meaning

Dynam cPortal St at us

Dynanmi cPort al St at usType

Dynamic server infamation; may
be different on every read

Depl oyedSyst ens

Syst enRef er encelLi st Type

List of system EPRs

Topi cs

wsr f-nt : Topi cExpr essi onType

List of topics

Fi xedTopi cSet

xsd: bool ean

flag toindicate whether topic set
isfixed

Topi cExpressi onD al ects

xsd: anyURI

Dialect of topicset

5.1.2 Portal EPR Operations

Name

In

Out

O eate

host nane: xsd:

string

wsa: EPR

Create a system; hostname is optional

LookupSyst em

xsd: string

wsa: EPR

Map from system name to a system EPR

wsr f-
rp: Get Resour ceProperties

wsrf-rp:
CGet Resour cePr oper t yRequest

wsr f-rp:
Cet Resour cePr opert yResponse

Get the value of aresource

wsr f-
rp: Get Ml ti pl eResour ceProp
erties

wsrf-rp:
Get Mul ti pl eResour ceProperties
Request

wsr f-rp:
Get Mul ti pl eResour cePropertiesR
esponse

Read multiple resources

wsr f-nt: Subscri be

wsr f-nt: Subscri be |

wsnt : Subscri beResponse

Subscribe to events

If a portal has a managed lifetime, then it may also implement WS -Resourcel ifetime

properties and operations
5.2 System Endpoint

This represents a system that has been deployed. System EPRs are obtainable by creating
one a the portal EPR, or through lookup operation offers by a portal.

5.2.1 System EPR Properties

Name

Type

Meaning

Syst enNane

xsd: string

user -defined name

Name

Type

Meaning

System dentifier xsd: anyUr i unique identifier
Syst enft at e cnp: Li f ecycl eSt at eEnum current system state
Statelnfo xsd: string Text state info

Syst enExt endedSt at e UnboundedXM_AnyNanespace Component state

O eat edTi ne

xsd: dat eTi me

Time system was created

St art edTi me

xsd: dat eTi e

Time system was terminated

Ter m nat edTi e

xsd: dat eTi e

end time (not present until system
isterminated)

Ter m nat i onRecor d

Ter m nat i onRecor dType

termination record (present after
termination)

Topi cs

wsr f-nt: Topi cExpr essi onType

List of notification topics

Fi xedTopi cSet

xsd: bool ean

flag to indicate whether topic set
isfixed

Topi cExpressi onD al ects

xsd: anyURI

Dialect of topicset

5.2.2 System EPR Operations

Name In Out

Initialize j ob JobDescri pt or Type voi d
descri ptor
Depl oynent Descri pt or Type
Initialize a system; pass in the job and component descriptors and build
up the component graph.

addFi | e m et ype xsd:string xsd: anyURl
dat a xsd: base64Bi nary
Add afile to this document so that it is accessible by a URI from within
the deployment descriptor.

Run voi d | voi d
Start running an initialized system

Pi ng voi d | St at usType
Probe a system's health.

Resol ve xsd: string path | xsd: any

Resolve areference relative to this system. Can return EPRs to

Name

In

Out

components; string or other data

Term nat e

xsd: string Message

|v0id

Terminate a system; pass in a message

wsr f-rp: Destroy

Destroy the System EPR, terminating the System if it is not yet

terminated

wsr f-
r p: Get Resour ceProperties

wsrf-rp:
Get Resour cePr oper t yRequest

wsrf-rp:
Get Resour cePr oper t yResponse

Get the value of a resource

wsr f-
rp: Get Ml ti pl eResour ceProp
erties

wsrf-rp:
Get Mul ti pl eResour ceProperties
Request

wsrf-rp:
Get Mul ti pl eResour cePropertiesR
esponse

Read multiple resources

wsr f-nt: Subscri be

wsr f-nt: Subscri be

wsnt : Subscri beResponse

Subscribe to events

6 Portal

6.1 Portal Properties

6.1.1 StaticPortalStatus:
This property contains static portal information; information constant for the lifetime of
the portal instance The portal elements details contains static diagnostics information,

such as product name and timezone portal. The information lists are al lists of URIs that
can be used to determine features.

Portal Details

Listof — — — — — — —
languages

tns:nameUriListType |

joblanguages == |tem |

______ TP
(staticPortal StatusType E]—@E!— List of -
supported Job
languages; each by
Static status should their own URI
be constant for the life of
this instance of the .,
servic ;\-h|l.e dynamic | tns:uriListType |
information is viewed as e y
------------ st
| 0= |
Listof ———————
supported
notification
mechanisms
r- — — — — /1
| tns:uriListType |
[opions B—(=pFiem §
| 0. |
Listof ——————-
options that are
understood

6.1.2 DynamicPortalStatus

This is any dynamic status information.

6.1.3 DeployedSystems

Thisisalist of deployed systems which the Portal is aware of. This may include systems
in the portal which the portal did not deploy, but which a peer portal deployed. It may
also be restricted to those systems to which the caller has access rights. Network
partitioning and other events may cause systems to be temporarily invisible to thisligt,
and return later.

S —

systemReferencelListType

from namespace
"http://schemas.xml
15/2002/1
cy#policy" are
used, they must
appear first (before
any extensibility
elements)

|
|
|
|
I If "Policy" elements
|
|
|
|
|

6.2 Operations

6.2.1 Portal::Create(hostname)

This requests the portal implementation to create a new system, ready for deployment.
The hostname element specifies an optional hostname. If set, it nominates a host onto
which the port should instantiate the System, and hence the system EPR. If unset, or if
the identified host is deemed unsuitable/unavailable, the portal can instantiate the system

on a hogt of its choosing. Thus the hostname is merely a hint, a hint to improve
availability and performance.

The name is an optional name of the system. One will be generated if none is supplied.

createRequest B ———TF- 72T

System names are constrained strings:

<xsd: si npl eType nane="syst enNaneType" >
<xsd: annot ati on>
<xsd: docunent ati on>
This is the policy for the nanming of systens
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd:restriction base="xsd: NCNanme" >
<xsd: pattern value="[a-zAZ \-\.][a-zA- Z \-\ .\P{Nd}]*"/>
</ xsd:restriction>
</ xsd: si npl eType>
The response is an EPR to the ingtantiated system, an EPR which can be immediately
used for direct communications. Creation of a system EPR is therefore a synchronous

operation.

createResponse [

If an entity is registered with the portal for creation events, then the portal must send
notification to that entity that new system has been created. The notification must not be
sent until the system is ready for direct communication. There is no specification of the
ordering of returning from thecr eat e operation and the sending of any notification
mechanism. If there are multiple portals supporting deployment to a cluster of nodes,
notification events may be sent to listeners on one portal, even if the deployment was
requested on the other.

6.2.2 LookupSystem(name)
This maps from an system name to an EPR (or a fault)

lookup SystemRequest

Look up a system:
pass in the name and get a
reference back
(or an error, if there
is no such system or
security pr
the caller seeing it}

lookup SystemResponse [== +

as.xml
002/1

|

|

|

|

| J

| from namespace
|

: Y are
|

|

-1

7 System

The System EPR represents the deployed system. After creation, it is still undefined, and
must be configured before it can be moved to a running state.

7.1 System Properties

fSystemName

i m e .

—fTerminatedTime

SystemEndpointProperties E]—E—jﬂ—

3
'

7.1.1 SystemName

This is the name of the system.

7.1.2 CreatedTime/StartedTime/TerminatedTime

These are al xsd: dat eTi me timestamps of when a system entered a particular state.
7.1.3 SystemTerminationRecord

Thiscontainsa cnp: type, t er mi nat i onRecor dType

—
| unboundedXMLAnyNamespace

It contains information about the reason for the system's termination. It is only present

after a system has been terminated.
7.2 System Operations
7.2.1 System::Initialize

Thisis a complex request, as it configures the system and moves it into the initialized

state.

A deployment descriptor must be supplied; it consists of alanguage URI, and either an
inline deployment descriptor or a URL to a location where the descriptor can be located.

initializeRequest &

The optiona <j sdi > element contains the job description that was used when submitting
the job to the front- end portal. Aswith the <descri pt or >, it is of type descri pt or Type; it
must have a language URI and either an inline body or a URL to the descriptor. The
interpretation of this data by the service implementation is undefined.

The optiona <opti ons> element contains alist of zero or more configuration options.
These are late-binding parameters to the deployment request, or to the deployment
runtime.

When the request message is received, the system EPR must validate it (synchronously)
and initialize the system. For CDDLM implementations, initialization implies that the
and deployment descriptor and JSDL descriptor may be retrieved (if needed) and parsed.
The application is configured, entering the initialized state. This can be a time consuming
process, so must be an asynchronous operation.

The response to a successful request is an empty response, <ini ti al i zeReponse>:

initializeResponse

It's presence implies that the initial validation was successful, and that initialization has
begun, or has at least been scheduled.

7.2.1.1 The propertyMap schema type
To aid those options that take a map of name/value pairs, there is a predefined XML
Schema type that can represent the construct:

i_|: 'CTE ?I’Lu:_leT;e_ _|

" name

proper t yMap elements can be placed into the <xni > child element of an option. Both the
name and value of a propert yTupl e Within a propert yvap €lement are of type xsd: stri ng;
individual options are free to declare extra restrictions on the value of properties,
restrictions which can be validated when processing the option.

There is no requirement that the name/value pairs are unique within a pr oper t yMap
element; that is also a restriction that can be declared in a specification of a particular
option.

7.2.2 System::addFile(file)

This request uploads a file to the infrastructure, such that it is visible by deployed
programs, and by the System EPR itself.

addFileRequest & Mime t

Comment [slo1]: Do clients
want theright to ask for a
particular type? They may get

The response returns a URI to the uploaded file, a URI either of type Kile: or htt

EaddFiIeRespunse turned down, but sometimesyou
- PR may want file: URLSfor legacy
R apps.

The file must be visible to programs deployed by this descriptor. They may be visible to
other programs running with the same credentias, but this can not be guarantees. If
exposed as afile: URL, the file should be read-only.

The lifespan of the uploaded file is bound to that of the created system; when the System
EPR is destroyed, all uploaded files are destroyed.

There is no guarantee of high-availability in deployment; failure of a single node may
render the URL unreachable.

7.2.3 System::Run

This request runs a system. This triggers an asynchronous action, as it may take some
time to enter the running state. It is only valid from a state in which the lifecycle permits
running to be reached; initialized and, implicitly, running. In the case of the latter, the
operation is a no-op. If the system isinitidizing itself, asaresult of an initialize
request, the request should be queued for processing after the state transition is
completed.

The response is an empty eement:

runResponse

A response means that the system has been queued to enter the running state
asynchronousdly, or that it now isin that state.

7.2.4 System::Ping

(This is a synchronous request to the system, to query its health) /[e ke o2l May went o
_________________ -

pingResponse [

| i
: -1 extendedState EXH{——F+ 1/ any i |

"""""""""" | B |

If the system is not running, the System EPR must return with the current state. If the
system is running, the request must be forwarded to the application, which can return any
extended state information.

This effectively acts as a liveness test upon the application.

7.2.5 System::Resolve

This operation resolves a path and returns its value or an error. It must be avaid
operation when a system isinitialized or running. It may be vaid in afailed or terminated
system.

resolveRequest [== m

Fath to resolve

The response is arbitrary XML data, the contents of which depend upon what the path
resolved to.

e i
| unboundedXMLAnyNamespace |

resolveResponse [-Lany

7.2.6 System::Terminate

This request terminates the system. To be idempotent, this call does not raise a fault when
the system is already terminated.

terminateRequest ==

Upon receipt, system termination should commence. Termination is asynchronous.

terminateResponse

The response is an empty element.

7.2.7 <wsrf-rp:Destroy/>

The <wsr f-r p: Dest roy/ > Operation destroys the System EPR itself. All files uploaded are
destroyed, and the system is terminated if it is not aready terminated.

Wter sending this message and receiving aresponse, service consumers should not make
cdls of the EPR, as it may not be valid.

Implementations may continue to export System EPR valid urtil the system is
terminated. If this is the case, receipt of a multiple Destroy request should not be an error.

However, receipt of all other requests on the endpoint from external callers may be
faultin] Comm_e-nt [slc_:)3]: Not sure
treated as faulti g. about thisbehaviour.

8 Notification

Notification enables front-end applications to receive notification when a system finishes.
It also enables management tools to track the number of running systems.

All implementations of the deployment APl must support WS-Natification (WS-N), as
specified in the document. The implementations are free to implement alternate
mechanisms; that is beyond the scope of this document. What is covered, however, is a
means of listing al notification mechanisms supported by an implementation. Every
server instance is required to enumerate all supported mechanismsin alist included in its
static server information property.

8.1 Notification Policy
Implementations MUST support WS-Notification.

Implementations MAY support alternate notification mechanisms.

Implementations MUST list al supported notification mechanismsin the
stati cl nf o information.

Implementations MUST support the topics defined below, on the relevant EPR
types.

Implementations MAY also support Terminate notification events of WS
Resourcel ifetime, which are raised after an EPR is destroyed.

There will be one natification for system lifecycle events.

There will be one notification for the portal EPRS, which is raised when a system
iscreated.

There is no guarantee of fault tolerant subscriptions. Implementations MAY
include WS-Policy metadata that informs callers how to renew subscriptionsin

the event of system failure.
8.2 WS-Notification Support

As stated above, implementations MUST support WS-Notification; this does not prevent

them also implementing supplementary mechanisms. There are specific topic spaces
[WS Topics] defined:

Portal EPRs must support a WS- TopicSpace that contains one topic: system
creation events. This notifies callers that a new system has been created.

System EPRs must support a WSTopicSpace that contains one topic: lifecycle

events. This notifies calers of changes in a system's lifecycle state.

8.3 Fault-Tolerant Notification
Implementations are not required to provide fault-tolerant notification. The failure of

portal may result in the loss of portal event subscriptions, and the failure of a system may

result in the loss of system event subscriptions.

9 Fault Policy

Faults are based upon the WS-BaseFault model [WS-BF], taking on some of the lessons
of [Loughran02], namely that extra information such as hostname and process is essentia

for locating which process among many has failed on a clustered system.

Faults are raised in response to errors either at the remote endpoint, in the local

framework, or between the remote endpoint and other parts of the distributed system.
They can be returned to callers in response to a an operation on an endpoint, or sent as

part of a notification event.

All faults that will be explicitly sent are derived from WS BaseFault faults. Service
implementations may implicitly raise SOAPFault faults, as that is inherent in most
implementations.

9.1 Fault Categories
9.1.1 Service Faults

These are the faults that are raised by the service. They are grouped into a hierarchy of
WS-BaseFault faults. There is a base fault class Depl oynent Faul t , from which all others
are derived.

All Service interfaces must declare that they raise these pepl oyrment Faul t instances, rather
than list the specific faults. Thisis to provide forward extensibility.

The API lists specific subclassed faults of Depl oynent Faul t that may be generated by a
service or received by a client. These faults represent some of the faults that a service
implementation may send.

If an implementation has a fault state whose meaning matches that of the predefined
fault, the predefined fault must be thrown. If this predefined fault has standard elements
for embedded fault information, the implementation should fill them in. The
implementation may add implementation-specific datawithin the ext r a- dat a element of
the fault, to supplement this information. This extra data must not add new types to the
XML namespaces of this deployment data. The XML schema and semantics of this extra
data should be documented.

If an existing fault type is not suitable, implementations may create new fault types.

If an implementation creates new fault types, these must extend the existing fault types
which operations are declared as throwing, which effectively means that they must
extend Depl oynent Faul t . These new faults must not change the XML schemas of the
deployment API, and they must be in a new namespace. The new faults and XML content
should be publicly documented.

If an implementation adds new operations or properties at the existing endpoints, these
new operations may raise whatever faults they seefit, within the constraints of the WS
BaseFault specification. Again, the implementation must not add new types to the
deployment API namespace.

9.1.2 Transport faults

Transport faults will inevitably be raised as the appropriate fault for the system. For
example, the Apache Axis SOAP client raises Axi sFaul t faults for all SOAP events,
wrapping stack trace and even HTTP Fault data within the fault as DOM elements.
Microsoft NET WSE has a similar fault class.

9.1.3 Relayed Faults

Relayed faults are those received by the far end and passed on. They may be WS
BaseFault Faults, HTTP error codes, SOAP faults, native language faults wrapped as
SOAPFaults, or predefined deployment faults.

WS-BaseFault uses fault nesting for relaying faults; however, all faults must be a
derivative of WS-BaseFault. This is addressed by defining a new WS BaseFault
derivative, a w appedsoapFaul t . This type is actually an extension of Depl oynent Faul t .
This fault can nest any received SOAPFault, with an element containing the received
XML data. Well-known elementsin this fault data (such as the Apache Axis stack trace

and HTTP fault code) should be copied into any fields in the main fault that fill the same
role.

9.2 Fault Security
Sites offering deployment services, may, for security reasons, wish to strip out some

information, such as stack trace data. Implementations should provide a means to enable
such an action prior to transmitting faults to callers.

Host name and process information may be viewed as sensitive, yet again, thisis
exceedingly useful to operations. Implementations may provide a means to disguise this
information, so that it does not describe the real hostname or process ID of a process, but
instead pseudonyms that can still be used in communications with any operations team.

9.3 Internationalization

The WS-BaseFault specification makes no statement upon which language error
descriptions are in.

If an implementation can return descriptions in one language, it must use xni : 1 ang
attributes to indicate the language of a description. Multiple descriptions, in different
languages may be included. The client application should extract the description(s) whose
language is the nearest match to that of the client.

9.4 Faults

9.4.1 DeploymentFault

This type represents any fault thrown by the deployment infrastructure All endpoint
operations must declare that they throw this fault, and must not explicitly declare any
derivative faults that they may throw.

Element Type Meaning

Host xsd: string Hostname or pseudonym

Process xsd: string Any process identifier suitable fa diagnostics
ExtraDat a unboundedXM_AnyNanespace Extrafault data

Cornponent xsd: string Path to component raising the fault

St ack stringLi st Type Optional $ack trace

Implementations must include a component reference if it is known. Implementations
should include hostname and process information. Process information may be a low-
level identifier (such as an operating system process ID), or it may be some application
specific identifier. Its role is merely to distinguish which process amongst many in a
load-balanced implementation raised the fault.

9.4.2 LanguageFault

A language fault represents any fault in language processing for which afile and line
number are relevant.

LanguageFault &

Element Type Meaning
File xsd: string Filename/URI of file at fault
Line xsd: i nt eger Line number within thefile

If the error isin the inline deployment descriptor, the Fi | e element must be empty "™ or
omitted. Furthermore, the Li ne element must be relative not to the deployment request,
but to the inline descriptor. Recipients of faults can then infer from the empty/absent file
element that the fault was in the inline request.

Note that a consequence of this design is that implementations should preserve white
space in the deployment descriptor when saving them to file.
9.4.3 WrappedSOAPFault

This type represents a mapping of a classic W3C SOAPFault [SOAPL.2] to aWS
BaseFault, as an extension of Depl oynent Faul t. It adds two new e ements to contain data
unigue to SOAPFaullts.

Element Type Meaning
SoapFaul t s12: Faul t Fault code information

The normative mapping of SOAPFault elements to w appedsoaPFaul t elementsis as
follows:

SOAP1.2 WrappedSOAPFault
/ s12: Faul t W appedSQAPFaul t / api : SoapFaul t
SQAP endpoi nt W appedSQAPFaul t / wsr f -bf : ori gi nat or

The SOAP endpoint must be trandated into a wsa: Endpoi nt Ref er ence if it isa Smple
URL/SOAPAction tuple.

Detail from SOAP stacks with well -known fault fields, such as the Apache Axis stack
trace, may be imported into appropriate fields in the Depl oyment Faul t .
9.5 Fault Error Codes

Specific fault error codes, and their meaning, are covered in a separate informative
document.

10 Security

The deployment requests must only be granted by suitably authorized individuals, or their
suitably authorized agents. For deployment to a Grid infrastructure, that means that the
standardized security model of the infrastructure must be used to authenticate callers.
Only callers with the relevant rights may deploy systems.

When delegating deployments across nodes, the node issuing the deployments needs to
have the rights to do so, and the deployment itself still needs to be authenticated as a
legitimate request of the sender.

Along with deployment, the ability of acaller to list and manipulate running systems,
introduces another security issue: that of who has access to the set of deployed systems.

Files uploaded via syst em : addFi | e must only be visible to the deployed application, and
potentialy other applications deployed under the same credentials.

11 Editor Information
Steve Loughran, HP Laboratories
steve_|oughran@hpl.hp.com

12 References

[Axis] Apache Software Foundation, Apache Axis

[Foster04] Foster et a., Moddling Stateful Resources with Web Services, 2004.

[Goldsack04] Goldsack, SmartFrog Language 2004

[GlobusRSL] Globus, Resource Specification Language, 2004

[JSDL] Job Service Description Language, 2004.

[Loughran02] Loughran, Making Web Services that Work, HP Laboratories,
TR-HPL-2002-274, 2002.

[ParastatidisO3] Parastatidis et a., A Grid Application Framework based on Web
Services Specifications and Practises, University of Newcastle, 2003.

[RFC2119] S. Bradner, RFC 2119 - Key words for use in RFCs to Indicate
Requirement Levels, 1997

[Scheeffer05] Schaeffer., CDDLM Component Model Specification, 2005

[SOAPL.2] W3C, SOAP Version 1.2 2003.

[XML-CDL] CDDLM XML Configuration Description Language Specification
version 1.0 draft 2004-12-10.

[WSA] Gudgin, M. and Hadley S., Web Services Addressing -Core, 2004.
[WS-BF] Tuecke et a., Web Services Base Faults (WS-BaseFaults), 2004.
[WS-BaseNatification] Graham et a., Web Services Base Notification 1.0 (WS

BaseNatification), 2004.

[WS-BrokeredNotification] Graham et d., Web Services Brokered Notification 1.0
(WS-BrokeredNotification), 2004.

[WS-Policy] Schlimmer et a., Web Services Policy Framework (WS Policy), 2004

[WS-Resourcelifetime] Frey et al., Web Services ResourcelLifetime 1.1 (WS
Resourcel ifetime), 2004.

[WSRF] Tuecke et al., Web Services Resource Framework (WSRF), 2004.

[WS-ResourceProperties] Graham et a., Web Services Resource Properties 1.1 (WS
ResourceProperties), 2004.

[WS ServiceGroups] Graham et a., Web Services Service Group Specfication 1.0 (WS-
ServiceGroups), 2004.

[WSTopics] Graham et al., Web Services Topics (WS-Topics), 2004.

