
CDDLM Deployment API
Steve Loughran

steve_loughran@hpl.hp.com

Abstract

Successful realization of the Grid vision of a broadly applicable and adopted
framework for distributed system integration, virtualization, and
management requires the support for configuring Grid services, their
deployment, and managing their lifecycle. A major part of this framework is
a language in which to describe the components and systems that are
required. This document, produced by the CDDLM working group within
the Global Grid Forum (GGF), provides a definition of the service API
whereby a Grid Resource is configured, instantiated, and destroyed.

1. Introduction

The CDDLM framework needs to provide a deployment API for programs
submitting jobs into the system for deployment, terminating existing jobs, and
probing the state of the system.

This document defines the WS-Resource Framework-based deployment API for
performing such tasks.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in RFC 2119 [12].

2. CDDLM-WG and the Purpose of this
Document

The CDDLM WG addresses how to: describe configuration of services; deploy

1



CDDLM Deployment API

them on the Grid; and manage their deployment lifecycle (instantiate, initiate, start,
stop, restart, etc.). The intent of the WG is to gather researchers, developers,
practitioners, and theoreticians in the areas of services and application
configuration, deployment, and deployment life-cycle management and to explore
the community need for a broader effort in this area. The target of the CDDLM WG
is to come up with the specifications for CDDML a) language, b) component
model, and c) basic services.

This document describes the SOAP API which a CDDLM service must export, in
order for remote callers to create applications on hosts managed by the service.

This document is accompanied by an XML Schema (XSD) file and a WSDL
service declaration. The latter two documents are to be viewed as the normative
definitions of message elements and service operations. This document is the
normative definition of the semantics of the operations themselves.

3. Purpose of the Deployment API
The deployment API describes the SOAP/WS-RF endpoints and attributes and
operations thereof, of a means of deploying applications to one or more host
computers.

The API is written assuming that the end user is deploying through a console
program, a web site or some automated process. This program will be something
written by a third party to facilitate deployment onto a grid fabric or other network
infrastructure which is running an implementation of the CDDLM infrastructure.
That is, the API is not intended for direct invocation by end-user applications, but
by front-end applications that provide the interface to the grid fabric.

3.1. Use Cases
There are three different use cases that it is designed to support:

1. The deployment target is an OGSA-compliant Grid Fabric. Resource allocation
and Job submission (using JSDL) is part of the deployment process. In this use
case, the deployment API must integrate with the negotiation, and deploy a
CDDLM-language described system over the machines allocated by the
resource manager.

2. The deployment target is a pre-allocated cluster set of machines. The resource
allocation process is bypassed -it can be presumed to have happened out of
band.

2



CDDLM Deployment API

3. One instance of a CDDLM runtime is delegating part of a deployment to
another host. There is no guarantee that the two runtimes are the same
implementation of CDDLM, or, if they are, that they are the same version.

In all these use cases, there is no expectation that the application will be deployed
on the same host that is proving the portal EPR.

3.2. Fault Tolerance
Another aspect of the architecture is that it is intended to be fault tolerant, at least to
the extent thata failure of the portal should not terminate the application, and may
not render the application unreachable.

This is the goal. To be achievable, any set of nodes onto which an application is
deployed, must be visible to and manageable by more than one deployment portal.
This is similar to how a high-availability web service traditionally requires multiple
hosts with a load-balancing front end. The specification avoids depending upon
such a facility by noting that WS-ResourceLifetime[bib:ws-rf] permits EPR
renewal through WS-Policy metadata contained within the EPR.

A mechanism whereby WS-Policy is used to generate a new application EPR from
an EPR that was routed through a failed host is not in this specification. What is
included in the specification is a design that is resilient to such an event occurring.

4. Architecture

4.1. Core Architecture
The API comprises a model for deployment, and a WS-ResourceFramework
(WSRF) based means of doing so.

A deployment client is an application that wishes to use the deployment API to
deploy to a set of machines that have been pre-allocated using a resource allocation
system. A deployment portal is required to be operating at or near these machines.
This portal exports a WS-RF service endpoint that the deployment client
communicates to, in order to deploy applications, and endpoint addressed via a
WS-Addressing Endpoint Reference (EPR). This specific EPR will be referred to as
the deployment EPR through the remainder of the document.

To deploy, the caller first issues a request to the deployment EPR, to create an
application. This creation request returns a new EPR, which provides access to the
state and operations of the application, the application EPR. .

3



CDDLM Deployment API

With the application EPR, the caller can make a request to initialize the application.
This request includes a deployment descriptor and other information that describes
and configures the application. The result will be that the application enters the next
state in its lifecycle, initialized. This state transition will be asynchronous, as it may
take some time to enter the new state.

Once an application has been initialized, it can be started, and later, terminated. An
application can also fail, which means that a component in the application has
failed. A failed application can only be terminated. The complete lifecycle is
defined inSection 4.2

As an application moves through its stages of the lifecycle, it can send lifecycle
event notification messages to a registered listener, using WS-Notification. The
lifecycle state of the application can also be determined by querying the appropriate
property of the application, using the mechanism described in WS-Resource
Properties. There is also a synchronous, blocking call to probe the health of an
application; this must be routed to the application itself, so that it can determine its
own health. This will return its current state, and any custom status information the
application chooses to return. If the application has failed, or terminated after a
failure, the status information will include the fault information.

The portal EPR offers some properties and operations alongside the create request.
The list of currently deployed applications can be determined, along with their
application EPRs. There are also static information and dynamic information
documents which can be retrieved from the server; again these are represented as
properties following the WS-Resource Properties specification.

The portal EPR also supports WS-Notification events when new applications are
created.

4.2. Lifecycle
CDDLM components have a well-defined lifecycle, one that is covered in the
component model specification [12]. The lifecycle of a deployment matches the
lifecycle of the components within. This is essential to permit delegation, in which a
component can be built to manage the entire deployment of an application to a
remote system using the deployment API.

4



CDDLM Deployment API

Figure 1. The lifecycle of a deployed application

5



CDDLM Deployment API

The lifecycle states are listed inTable 1

Table 1. States of an application

State Meaning
instantiated the application has just been created

initialized The application has been initialized

running The application is running

failed The application has failed

terminated The application has terminated

The normative definition of this lifecycle is the component model.

Instantiation and initialization cover the creation and configuration of a component,
and when it is moved intorunningthen it is actually functioning, The statefailed is
entered automatically when a failure is detected; termination is the only exit
condition;terminated is the end state of a component and can be entered through
a termination request. From terminated, adestroy operation will remove all record
of the application itself.

The lifecycle is exposed through the operations1 of the service. Thecreate
operation is will create and instantiate an application. The run operation will move
the application to the running state, and terminate will move it to the terminated
state.

4.3. Implementing Fault Tolerance
The design that is intended to enable fault It has the following implications:

• Application EPRs resolve to WS-RF resources that represent views of the
application, not the application itself.

• Multiple, different EPRs can map to the same application. For example, EPRs
that routed through different portal nodes would be different.

• Application EPR comparison is not appropriate for comparing applications for
equality. Multiple EPRs may refer to the same application.

• Every application must have an ID property that must be unique; this can be used
for equality tests through simple string comparision

• Issuing a<wsrl:Destroy/> request to an application EPRdoes not destroy the
application. All that does is destroy that particular view of the application.

6



CDDLM Deployment API

• A portal EPR must provide a means of mapping from an invalid application EPR
(from a now-defunct portal) to a valid one hosted out of that EPR. This is the
underpinning of the renewal mechanism.

• Portal EPRs servicing a set of nodes should be discoverable by a client in some
manner. Registration in a service group is one option [WS-ServiceGroup]

4.4. Other Aspects
These are other features of the architecture

4.4.1. Language Agnostic

The deployment API is agnostic as to which particular language is being used, or
which version of that language. When a remote deployment is created, the language
and version of the descriptor must be supplied. The sole requirement is that it can
either be nested inside a SOAP request, or that a URL to the descriptor is remotely
accessible to the destination.

Every language is identified by a unique URI. In acreateoperation, the URI of the
language is included, along with the deployment descriptor itself.

4.4.2. Deploy-time properties

Consider a deployment descriptor that declares the host that it wants different
components to deploy to. When the descriptor is written, the actual hosts are
unknown, so placeholders have to be used. It is only during deployment that the
mapping becomes apparent. Either the descriptor is rewritten with the fixed values,
or we provide a way for subsidiary information to be passed alongside the
descriptor.

The SmartFrog language supports this with thePROPERTYandIPROPERTY

keywords, which bind keys in the Java virtual machine’s
java.System.Properties global HashTable to string and integer values [12].
For example, a deployment descriptor could be bound to three properties:

database extends Database {
sfHostname PROPERTY hosts.database;
password PROPERTY database.password;
localhost LAZY PROPERTY local.hostname

}

At deployment time, the value of the property string is extracted and assigned to the
attribute, or a resolution fault is raised. TheLAZY keyword indicates that the

7



CDDLM Deployment API

evaluation is not to take place in the context of the process interpreting the
deployment descriptor, but instead the system actually hosting it. As Java System
properties are extractable, this can make a significant difference. Although the XML
language does not explicitly contain such a feature, a standardized component could
be designed to extract the values from the name/value list.

To enable this functionality within the Service interface a set of name/value pairs is
one of the options that be specified when creating a deployed application.

4.5. Extensibility
It is inevitable that different implementations of the framework will, over time, have
different features that can be used to control and configure a deployment. While the
deployment API does not address the need to offer new operations by the service
endpoints, it does allow the operation

4.5.1. Extra operations

A service implementation may offer extra operations at the same endpoint as an
portal EPR an application EPR. Such extensions must not add new declarations to
the XML namespaces used in this document.

4.5.2. Extra WS-Resource Properties

A service implementation may offer extra WS-Resource properties at an EPR.

4.5.3. Extra deployment options

It is possible that extra deployment options will be desired on different
implementations or over time. The core of such customization should be in
deployment descriptors themselves, yet there may be a need to provide extra
deployment metadata.

This is implemented through an<options>element in the message that instantiates
an application. This (optional) element contains a list of zero or more creation
options. These are extra parameters to the deployment request.

The option list is a very powerful aspect of the API, but potentially dangerous. Any
protocol standard which has optional aspects is harder to write clients against than
one which does not, as there is likely to be less consistency between different
implementations.

8



CDDLM Deployment API

• All options must be that: optional.

• Every option provides metadata to the deployment infrastructure.

• Every option is named by a URI.

• All URIs that begin withhttp://gridforum.org/cddlm/ are reserved for
options defined by the CDDLM working group.

• Options can contain string, integer, Boolean or arbitrary XML values.

• All options that an implementation supports must be enumerated in the static
server info message

• It is an error to include multiple options of the same URI in a descriptor

• There are no rules as to which order options may be processed. Options must not
be designed so that they should be processed in a particular order.

Here are the processing rules for options

1. Option processing must take place before the application is instantiated.

2. An implementation must be able to create an application when the entire
options portion of the request is empty.

3. To be "understood", an option must be processed in accordance with the
specification of that option. That is, it is not sufficient to recognise an option; it
must be acted upon.

4. Any option that is markedmustUnderstand="true" MUST be understood.
If not, the Fault"not-understood"must be raised, identifying the particular
option by its URI in the body of the fault.

5. Implementations must not raise this fault when they do not understand any
options that are markedmustUnderstand="false" , or for which there is no
mustUnderstand attribute.

6. Duplicate options must cause the operation to be rejected with a
bad-argument fault.

5. Service Endpoints
These are the endpoints of the service

9



CDDLM Deployment API

5.1. Portal Endpoint
The portal endpoint is what the caller initially locates and communicates with. It
can be used to create a new application within the set of nodes that it manages, or it
can be used to locate an existing application.

Table 2. Properties

Name Type Meaning
staticInfo static server info;

constant for the lifetime of
the portal itself

dynamicInfo dynamic server info; may
be different on every read

applications xsd:list List of application EPRs

Table 3. Properties

Name In Out Meaning
create TODO wsa:EPR Create an

application

lookup xsd:string wsa:EPR Map from
application name to
application

rebind wsa:EPR wsa:EPR Take an existing
application EPR,
from any portal
serving the same
set of nodes, and
return an EPR
bound to this
portal. If the
application EPR is
already bound to
this node, this is a
no-op.

10



CDDLM Deployment API

Name In Out Meaning
WS-Resource
Lifetime
Operations

Operations used
by the WS-RL
specification to
manage the lifetime
of EPR-referenced
entities

WS-Notification
Operations

Operations used
by the
WS-Notification
specification to
enable callers
subscribe to
supported topics.

5.2. Application Endpoint
This represents an application that has been created.

It has an ID property that MUST be strongly unique. That is, it SHOULD be unique
for a single deployment of a single application, MUST NOT be re-used, and
SHOULD be unique even between different deployment installations. The
recommended approach is to use a guid: URI with a properly generated GUID.

Table 4. Properties

Name Type Meaning
name xsd:string user-defined name

(optional)

id xsd:uri unique name

deploymentInfo xsd:any deployment data

state xsd:enum state current application state

stateInfo (xsd:any) most recent extra state
info

terminationInfo (message, fault,

xsd:any)

termination info

started xsd:dateTime started time

terminated xsd:dateTime end time (not present
until application is
terminated)

11



CDDLM Deployment API

Name Type Meaning
WS-Resource

Lifetime Properties

Properties requires for
WSRL

It may also be convenient to formalise timestamp recording as a list of state
transitions and the time those transitions occurred.

Table 5. Properties

Name In Out Meaning
initialize xsd:any Initialize an

application; pass in
the component
descriptor and
build up the
component graph.

run xsd:string

Message

Start running an
initialized
application

ping

resolve xsd:string

path

xsd:any Resolve a
reference relative
to this application.
Can return EPRs to
components; string
or other data

WS-Resource
Lifetime
Operations

Operations used
by the WS-RL
specification to
manage the lifetime
of EPR-referenced
entities

WS-Notification
Operations

Operations used
by the
WS-Notification
specification to
enable callers
subscribe to
supported topics.

12



CDDLM Deployment API

6. Notification
Notification enables front-end applications to receive notification when an
application finishes. It also enables management tools to track the number of
running applications.

All implementations of the deployment API must support WS-Notification (WS-N),
as specified in the document. The implementations are free to implement alternate
mechanisms; that is beyond the scope of this document. What is covered, however,
is a means of listing all notification mechanisms supported by an implementation.
Every server instance is required to enumerate all supported mechanisms in a list
included in its static server information document; this can be used by callers to
choose which mechanism is appropriate.

6.1. Notification Policy

• Implementations MUST support WS-Notification.

• Implementations MAY support alternate notification mechanims.

• Implementations MUST list all supported notification mechanisms in the
staticInfo information.

• Implementation must support the topics defined below, on the relevant EPR types.

• Implementations MAY also support Terminate notification events of
WS-ResourceLifetime, which are raised after an EPR is destroyed.

• There will be one notification for lifecycle events of applications

• There will be one notification for the portal EPRs, which is raised when an
application is created.

• There is no guarantee of fault tolerant subscriptions. Implementations MAY
include WS-Policy metadata that informs callers how to renew subscriptions in
the event of system failure.

6.2. WS-Notification Support
As stated above, implementations MUST support WS-Notification; this does not
prevent them also implementing alternate mechanism.

Application EPRs support a WS-TopicSpace that contains one topic: lifecycle
events

13



CDDLM Deployment API

Portal EPRs support a A WS-TopicSpace that contains one topic: application
addition events.

6.3. Fault-Tolerant Notification
Fault tolerance is an extra complication; because the origin EPR is included in each
notification, the sender must know its EPR. If an app is visible through more than
one portal, it must know the EPR used by a subscriber, and return that EPR with the
request. If the application/portal EPR is changed when the subscriber switches to a
different portal, then the EPRs in the notifications must also be updated.

The easy way to do this is to have the portal manage the notifications, and do not
require subscription EPRs to be fault tolerant. If a portal fails, the subscriptions are
lost. As they are renewable anyway, this is no real hardship. The biggest risk that a
subscriber does not know that a subscription has been lost, and so an event is
missed.

An alternative is for the application to retain all knowledge about subscribers on the
node on which it runs, including the EPR by which each subscriber knows it. This
adds an interesting feature: the ability for an application to send a prescriptive ’EPR
changed’ notification for the benefit of all relevant subscribers, when the EPR in use
was no longer available.

7. Fault Policy

7.1. Origin of Faults
Faults are raised in response to errors either at the remote endpoint, in the local
framework, or between the remote endpoint and other parts of the distributed
system.

7.1.1. Local faults

Local faults will inevitably be raised as the appropriate fault for the system. For
example, the Apache Axis SOAP client raisesAxisFault faults for all SOAP
events, wrapping stack trace and even HTTP Fault data within the fault as DOM
elements.

14



CDDLM Deployment API

7.1.2. Service Faults

These are the faults that are raised by the service. They are categorized into a
hierarchy of WS-BaseFault faults.

7.1.3. Relayed Faults

Relayed faults are those received by the far end and passed on. They may be
WS-BaseFault (WS-BF) Faults; HTTP error codes, SOAP faults, native language
faults wrapped as SOAPFaults, or predefined deployment faults.

WS-BaseFault uses fault nesting for relaying faults; however, all faults must be a
derivative of WS-BaseFault. This is addressed by defining a new WS-BaseFault
derivative, a wrapped SOAPFault.

7.2. Fault List
The normative list of faults is described in the XML Schema documents that
accompany this document.Appendix Bis generated from an XSLT transformation
of this fault list.

8. Out of scope
The following activities are not covered by the service API.

8.1. Resource Allocation
The API assumes that the appropriate resources for an application have been
allocated by the underlying infrastructure. Furthermore, information provided in or
alongside the deployment infrastructure provides explicit information mapping the
components of the application to specific resources.

That is: it is not the role of the deployment API to decide where application
components should go, merely to enact decisions already made.

8.2. File upload
Uploading files is not addressed. We are assuming that other mechanisms
-specifically a JSDL-based front end to the system- will address that problem by

15



CDDLM Deployment API

retrieving the files and offering them somewhere that deployment hosts can retrieve
by means of a URL.

We do need a way of knowing the mapping from the identification of files in the job
submission. This can be either by having the front end generate a new deployment
descriptor which includes this information, or by providing a name/value mapping
list alongside the descriptor.

8.3. Discovery and binding
We assume that registration of, discovery of and binding to instances of the
deployment portal is handled by external discovery and binding mechanisms.

8.4. EPR Replacement
We do not cover how EPRs held against a failed server are renewed.

9. Compliance
This section covers requirements and non-requirements for compliance with the
specification.

9.1. Non-Requirements
These are things which are explicitly not required for compliance. That does not
mean that implementations MUST not support them, but that they MAY support
them if desired. There will be no tests for these features in any compliance test suite.

• There is no requirement to support WS-MetaData Exchange

• There is no requirement to implement get/set multiple properties, and if
implemented, no requirement for atomicity.

• There is no requirement to implement QueryResourceProperties

• If a component supports WS-MetaDataExchange, there is no requirement for the
list of resources and operations above and beyond the set we define to remain
constant for any period of time. That means an application EPR can add and
remove attributes, and the metadata could dynamically list those attributes, but
they could be removed at any time.

16



CDDLM Deployment API

Bibliography

WS-Resource Framework, 2004.

Notes
1. In this document, operations, are taken to mean message exchanges between

caller and the relevant WS-Addressing EPR-referenced endpoint.

17



CDDLM Deployment API

18


	1. Introduction
	2. CDDLMWG and the Purpose of this Document
	3. Purpose of the Deployment API
	3.1. Use Cases
	3.2. Fault Tolerance

	4. sarchitecture
	4.1. Core Architecture
	4.2. Lifecycle
	4.3. Implementing Fault Tolerance
	4.4. Other Aspects
	4.4.1. Language Agnostic
	4.4.2. Deploytime properties

	4.5. Extensibility
	4.5.1. Extra operations
	4.5.2. Extra WSResource Properties
	4.5.3. Extra deployment options


	5. Service Endpoints
	5.1. Portal Endpoint
	5.2. Application Endpoint

	6. Notification
	6.1. Notification Policy
	6.2. WSNotification Support

	7. Fault Policy
	8. TODO
	9. Out of scope
	9.1. Resource Allocation
	9.2. File upload
	9.3. Discovery and binding

	10. Compliance
	10.1. NonRequirements
	Bibliography


