GWD-R (draft-ggf-cddlm-xml-cdl-10.doc)

Editors:
Configuration Description, Deployment and
J. Tatemura, NEC
Lifecycle Management

XML-Based Configuration Description Language

http://forge.gridforum.org/projects/cddlm-wg
12/10/2004

[image: image7.png]ccccccc
ooooooooooo
ooooo

GWD-R (draft-ggf-cddlm-xml-cdl-10.doc)

Configuration Description, Deployment,
and Lifecycle Management

XML Configuration Description Language Specification
Version 1.0 Draft 12-10-2004
Status of this Memo

This document provides information to the community regarding the specification of the Configuration Description, Deployment, and Lifecycle Management (CDDLM) Language. Distribution of this document is unlimited. This is a DRAFT document and continues to be revised.

Abstract

Successful realization of the Grid vision of a broadly applicable and adopted framework for distributed system integration, virtualization, and management requires the support for configuring Grid services, their deployment, and managing their lifecycle. A major part of this framework is a language in which to describe the components and systems that are required. This document, produced by the CDDLM working group within the Global Grid Forum (GGF), provides a definition of the XML-based configuration description language and its requirements.

GLOBAL GRID FORUM

office@ggf.org
www.ggf.org
Full Copyright Notice

Copyright © Global Grid Forum (2004). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the GGF or other organizations, except as needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights defined in the GGF Document process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this recommendation. Please address the information to the GGF Executive Director (see contact information at GGF website).

Table of Contents
3Table of Contents

5List of Figures

61
Introduction

61.1
Notational Conventions

62
CDDLM-WG and the Purpose of this Document

63
Configuration Description in CDDLM

63.1
Configuration Description in Deployment Services Framework

83.2
Use of Configuration

83.2.1
Configurable Components

83.2.2
System Configuration

93.3
Roles of Two Configuration Description Languages

94
Requirements for the Language

105
Configuration Data Model

105.1
Property Lists

105.2
Configuration Description

116
Document Structure

126.1
Types

126.2
Configuration

126.3
System

126.4
Import

126.5
Documentation

127
Configuration Description

127.1
Property List Name

137.2
Prototype References

137.2.1
Reference Model

137.2.2
Resolution

147.2.3
Example

167.3
Value References

167.3.1
Reference Model

187.3.2
Prototype Resolution and References

187.3.3
Resolution

197.3.4
Example

197.3.5
Value Insertion

207.3.6
Expression

217.4
Schema Annotations

227.4.1
Property Value Occurrence Constraints

227.4.2
Property Type Declarations

227.5
Laziness Annotations

227.5.1
Lazy Value Resolution

237.5.2
Lazy Properties

247.5.3
Lazy References

257.6
Parameterization

258
System Description

269
Import

2610
Documentation

2711
Resolution: Operational Aspects

2711.1
Language Processing Model

2711.2
Pre-Runtime Resolution

2711.2.1
Resolvable Prototype Reference

2811.2.2
Resolvable Value Reference

2811.3
Runtime Resolution

2811.4
Resolved Configuration Data

2812
Security Considerations

2813
Editor Information

2814
Acknowledgements

29References

29Appendix A: XML Schema

31Appendix B: Example

List of Figures
8Figure 1: The Deployment Service Framework

9Figure 2: Role of the XML-based Configuration Description Language

11Figure 3: Functionalities of the Configuration Description Notations

18Figure 4: Example of path expression

27Figure 5: CDL Language Processing Model

1 Introduction

Deploying a complex, distributed service presents many challenges related to service configuration and management. These range from how to describe the precise, desired configuration of the service, to how we automatically and repeatably deploy, manage and then remove the service. This document addresses the description challenges, while other challenges are addressed by the follow-up documents. Description challenges include how to represent the full range of service and resource elements, how to support service "templates", service composition, correctness checking, and so on. Addressing these challenges is highly relevant to Grid computing at a number of levels, including configuring and deploying individual Grid Services, as well as composite systems made up of many co-operating Grid Services.

1.1 Notational Conventions

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC 2119.

The following namespaces are used in this document:

	xsd
	http://www.w3.org/2000/10/XMLSchema

	cdl
	http://www.gridforum.org/2004/12/CDDLM/XML-CDL/1.0

2 CDDLM-WG and the Purpose of this Document
The CDDLM WG addresses how to: describe configuration of services; deploy them on the Grid; and manage their deployment lifecycle (instantiate, initiate, start, stop, restart, etc.). The intent of the WG is to gather researchers, developers, practitioners, and theoreticians in the areas of services and application configuration, deployment, and deployment life-cycle management and to explore the community need for a broader effort in this area. The target of the CDDLM WG is to come up with the specifications for CDDML a) language, b) component model, and c) basic services. This document represents one of the two CDDLM language specifications. This specification is based on XML, which provides interoperability with other XML-based Grid specifications, and other specification is based on SmartFrog language developed at HP Labs, which provides user-friendly syntax and functionalities. The two languages will be compatible.

3 Configuration Description in CDDLM
3.1 Configuration Description in Deployment Services Framework

This section provides an overview of deployment services, through which users can manage the deployment lifecycle of their services on the Grid infrastructure. Configuration description, specified in this document, is used in this deployment services framework.

· Configurable Components

A configurable component is a unit with which a service can be deployed. Examples include a Linux server, an application server, and a database server.

· Configuration Properties: A set of properties is defined for each component. The user can configure the component by giving values of these properties.

· Configurable Component Providers: A provider of configurable components publishes description on these components so that users can configure these components properly. This document provides specification on this description. This document, however, does not specify how the description is published and discovered by users.

· Component Lifecycle: A component has status in terms of a deployment lifecycle state such as initialized or running. The configuration description language does not assume any specific lifecycle model.

· Systems (to be deployed)

A system is a set of configurable components required to deploy a service.

· System Lifecycle: A system has status in terms of deployment lifecycle, which is defined based on the status of configurable components within the system. For example, a system is running when all the components in the system are running.

· Deployment Services

A deployment service handles deployment and lifecycle management of a system from deployment to un-deployment.

· Deployment Service Providers: A provider of deployment services may or may not be a provider of configurable components.

· Lifecycle Management Operations: The deployment service provides operations to control system lifecycle.

· Lifecycle Monitoring Services: The deployment service provides methods to monitor the lifecycle status of the system.

Figure 1 illustrates how configuration description is used in this deployment services framework. Figure 1 shows two use cases of configuration description in this framework:

· Description of configurable components, which is used in the publish and discovery process

· Description of systems, which is used in the lifecycle management operations

[image: image1.wmf]configurable

component

configurable

component

configurable

component

Deploymen

tService

operation

lifecycle management

operations

configuration

description

(CDL)

configuration

description

(CDL)

deployment

service

requester

service

description

(WSDL)

publish

discovery

system

Figure 1: The Deployment Service Framework

3.2 Use of Configuration

3.2.1 Configurable Components

With the configuration description language, a configurable component provider describes configurable components that are to be published. The description MAY include the following information:

· Property names

· Property types

· Default values of properties

· Whether property values are required or optional

· Properties that are dynamically assigned in deployment time
The description MAY include extra information using other specifications. Examples of such information include:

· Restrictions and negotiability on property values

· Security information

· Other policy information

· Service information such as endpoint references.

Specification on such information is out of scope of this document.

3.2.2 System Configuration

A system configuration is described and used in order to deploy a system that consists of configurable components.

The configuration MAY include

· References to configurable components

· Values of properties

· Value dependencies among properties

Systems described in the language are categorized into the following two types:

· Deployable System Configuration

A deployable system configuration is a complete system configuration that is ready to be used in deployment.

· Partial System Configuration (templates)

A system configuration MAY be incomplete, which means that the description includes properties without values required to deploy the system. Such configurations are used as modules with which a deployable (complete) system description is composed.

3.3 Roles of Two Configuration Description Languages

XML-based Configuration Description Language provides composability with other specifications and interoperability between different implementations:

· Composability with Web Services and Grid components (such as security)

· Interoperability among different service implementations

· Interoperability among different front-end languages and tools

[image: image2.wmf]SmartFrog

CDL

XML

-

CDL

XML

-

CDL

XML

-

CDL

XML/Web

Service

Standards

Grid

Standards

SmartFrog

Platform

Other

Platform

Proprietary

Front

-

end

CDL

Published Configuration

XML

-

CDL

Composability with Web

Service/Grid components

service

service

Figure 2: Role of the XML-based Configuration Description Language

The SmartFrog-based Configuration Description Language provides a user-friendly syntax of description, used as a front-end language. When SmartFrog is used in the deployment service framework, it is preprocessed and translated into XML-CDL.

4 Requirements for the Language

· Declarative Description. The configuration description should be declarative: it should not be a sequence of operations but a set of declarations that describes dependency between resources. The declarative description should provide enough information for a deployment service to dynamically generate correct sequencing of operations across distributed resources for deployment and lifecycle management.

· XML-based. The language should be XML-based. A well-formed description should be a well-formed XML document.

· Dynamic configuration. The language should be able to be applied to dynamic configuration use cases, where some configuration parameter values can not be determined before deployment time.

· Consistency. The language should be able to specify dependencies between configuration parameter values so that the deployment service can manage consistency between parameters.

· Composability. The complete system configuration description should be composed by combining multiple descriptions that may be provided by multiple configuration vendors. The language should provide a way to define a new composed description by referring to existing descriptions.

· Security. The security requirement in the deployment service framework should be achieved by incorporating Web Service/Grid/XML security standards into a configuration description.

· Extensibility. The language should allow the user to add extensibility elements in a description.
5 Configuration Data Model

5.1 Property Lists

Data required to configure a component is given as a list of properties, each of which has a name and a value. A property with a particular name MUST NOT appear more than once in a property list, that is, a property MUST NOT have multiple values in a property list. A property value MAY be a property list so that a nested structure of properties can be constructed.

Properties and property lists are represented as XML data defined with a domain specific schema. A property is an XML element whose name and content represent the name and value of the property, respectively. An attribute of the element MUST NOT be used to define a property value. A property list is an XML element whose children are properties. A property and a property list MUST allow insertion of any type of attributes. A property list MUST allow insertion of any type of elements as its children.

The following is an example of a property list:

<WebServer>

 <hostname>example.com</hostname>

 <port>80</port>

 <maxClients>150</maxClients>

</WebServer>

5.2 Configuration Description

In order to dynamically generate property lists for configurable components from multiple sources, which may be given from different organizations in different timing, the language provides XML notations for the following functionalities:

· Unique naming of property lists

· Inheritance of property lists

· References that define data dependency between properties

[image: image3.wmf]<WebServer>

 <hostname ../>

 ...

</WebServer>

name1

<WebServer>

 <hostname ../>

 ...

</WebServer>

name2

<ApplicationServer>

 ...

</ApplicationServer>

name3

inheritance

reference

(data dependency)

unique naming

<WebPlatform>

 <WebServer>

 ...

 </WebServer>

 ...

 <AppServer>

 ...

 </AppServer>

</WebPlatform>

name4

inheritance

inheritance

Figure 3: Functionalities of the Configuration Description Notations

The language processor resolves this inheritance and reference structure and makes property lists available for configuration of the corresponding components.

6 Document Structure

A configuration description document has the following structure:

<cdl:cdl targetNameSpace=xsd:AnyURI?>

 <cdl:documentation …/>?

 <cdl:import …/>*

 <cdl:types>?

 <cdl:documentation …/>?

 <-- schema definition -->*

 <-- extensibility element -->*

 </cdl:types>

 <cdl:configuration>?

 (<cdl:documentation …/>?

 <-- PropertyList -->)*

 </cdl:configuration>

 <cdl:system>?

 (<cdl:documentation …/>?

 <-- PropertyList -->)*

 </cdl:system>

 <-- extensibility element -->*

</cdl:cdl>

The optional attribute cdl:cdl/@targetNameSpace specifies the namespace of (1) types defined in the cdl:types element, and (2) names of property lists defined in cdl:configuration element.

6.1 Types

The cdl:types element encloses data type definitions using some type system (such as XSD). The configuration description MAY refer to these definitions to declare the type of a property. The namespace of data types within this element is specified at cdl:cdl/@targetNamespace, which is also the namespace of property lists in thecdl:configuration element. When the configuration description refers to data types of other namespaces, the corresponding schema definition SHOULD be specified with a cdl:import element. Use of schema definition for validation in CDL is optional.

6.2 Configuration

The cdl:configuration element describes uniquely named property lists.

6.3 System

The cdl:system element describes a system configuration.

6.4 Import

The cdl:import elements are used to refer to external configuration descriptions or schema definitions with different namespaces.
6.5 Documentation

The cdl:documentation elements are containers for human readable documentation.

7 Configuration Description

7.1 Property List Name

A property list is called a top level property list when it is a child of a cdl:configuration element. A top level property list MUST have a name unique within the document. Combined with the namespace name specified with cdl:cdl/@targetNamespace, the name is uniquely referred to with a QName.

The following is an example of a CDL document. The children of the cdl:configuration element, WebServer and AppServer are unique names of top level property lists.

<cdl:cdl targetNamespace="urn:tmp-uri1">

<cdl:configuration>

<WebServer>

 <hostname>www.example.com</hostname>

 <port>80</port>

</WebServer>

<AppServer>

 <WebServer …/>

 <hostname …/>

</AppServer>

</cdl:configuration>

</cdl:cdl>

Note that a property list which is not top level may not have a unique name.

7.2 Prototype References

7.2.1 Reference Model

The @cdl:extends attribute is used in a property list to inherit an existing property list.

<xsd:attribute name="extends" type="xsd:QName" />

The value of the @cdl:extends attribute is the QName of a property list that is to be inherited. Only a top level property list, which has a unique name, MAY be the destination of a prototype reference. The @cdl:extends attribute MAY appear at any node that is supposed to have a property list as its value. The following example shows that @cdl:extends can be attached not only to a top level element but also to its descendants at the same time.

<cdl:configuration xmlns:ext="…">
<a cdl:extends="ext:aTemplate">

 <b cdl:extends="ext:bTemplate">

 <c>100</c>

 <d cdl:extends="ext:dTemplate"/>

 <e>200</e>

</cdl:configuration>

7.2.2 Resolution

Resolution of a prototype reference consists of inheritance of elements and attributes. Let a node n have @cdl:extends that refers to a node n’. Resolution of the @cdl:extends attribute is done as follows:

1 If n’ has @cdl:extends, resolve this prototype reference.

2 Inherit elements from n’ to n.

3 Inherit attributes from n’ to n.

4 Remove the @cdl:extends attribute from n.

7.2.2.1 Inheritance of Elements

Inheritance of elements from a node n’ to a node n is defined as follows:

1 Let N an empty node list.

2 For each child element e’ of n’ from the first element to the last element:

2.1 If the node n has a child element e that has the same name as e’, append e to the last of N. Inherit attributes from e’ to e.

2.2 Otherwise, append the child element e to the last of N.

3 For each child element e of the node n from the first element to the last element: if the node list N does not contain an element that has the same name as e, append e to the last of the node list.

4 Replace n’s children with the nodes in N.

Note that the above procedure preserves the order of elements in n’ in the resolved list N, followed by elements not appeared in n’ (if any). Although CDL does not have any semantics in ordering of properties, this inheritance procedure is meant to be compatible with order sensitive schema of parameter lists.
7.2.2.2 Inheritance of Attributes

Inheritance of attributes from a node n’ to a node n is defined as follows:

1 For each attribute a’ of the node n’, if the node n does not have an attribute a that has the same name as a’, insert a’ into the node n.

7.2.3 Example

The following descriptions include examples of inheritance:

<cdl:cdl targetNamespace="urn:tmp-uri1">

<cdl:configuration>

<WebServer>

 <hostname />

 <port>80</port>

</WebServer>

<Tomcat cdl:extends="WebServer">

 <port>8080</port>

 <maxThreads>200</maxThreads>

</Tomcat>

</cdl:configuration>

</cdl:cdl>

<cdl:configuration xmlns:tmpl="urn:tmp-uri1">

<Tomcat cdl:extends="tmpl:Tomcat">

 <hostname>myweb.com</hostname>

</Tomcat>

</cdl:configuration>

These descriptions are resolved as follows:

<WebServer>

 <hostname />

 <port>80</port>

</WebServer>

<Tomcat>

 <hostname />

 <port>8080</port>

 <maxThreads>200</maxThreads>

</Tomcat>

<Tomcat>

 <hostname>myweb.com</hostname>

 <port>8080</port>

 <maxThreads>200</maxThreads>

</Tomcat>

Note that the inheritance rule is only applied to immediate child elements (i.e., properties of the list) and is not applied to descendants of the children (i.e., property values of the list). When a child element is overridden, its value is fully replaced.

<AppPlatform>

 <WebServer>

<hostname>localhost</hostname>

<port>80</port>

 </WebServer>

 <ApplicationServer>

 <hostname>localhost</hostname>

 <port>8080</port>

 </ApplicationServer>

 <DatabaseServer>

 <hostname>localhost</hostname>

 <port>6000</port>

 </DatabaseServer>

</AppPlatform>

<MyApp cdl:extends="AppPlatform">

 <WebServer>

 <hostname>www.example.com</hostname>

 </WebServer>

 <ApplicationServer/>

</MyApp>

The property list "MyApp" is resolved to:

<MyApp>

 <WebServer>

 <hostname>www.example.com</hostname>

 </WebServer>

 <ApplicationServer/>

 <DatabaseServer>

 <hostname>localhost</hostname>

 <port>6000</port>

 </DatabaseServer>

</MyApp>

Note that the value of WebServer/port in the property list AppPlatform is not inherited to the property list MyApp. In order to allow an inheriting property list to override non-top-level properties in a hierarchy, the description SHOULD use parameterization, which is a pattern of description with combination of prototype references and value references. See Section 7.6 for parameterization.

Another way to achieve hierarchical inheritance is placing prototype references hierarchically. In the following example, because of the prototype reference MyApp/WebServer/@cdl:extends, the value of WebServer/port is inherited to the property list MyApp.

<WebServer>

<hostname>localhost</hostname>

<port>80</port>

</WebServer>

<AppPlatform>

 <WebServer cdl:extends="WebServer"/>

 <ApplicationServer>

 <hostname>localhost</hostname>

 <port>8080</port>

 </ApplicationServer>

 <DatabaseServer>

 <hostname>localhost</hostname>

 <port>6000</port>

 </DatabaseServer>

</AppPlatform>

<MyApp cdl:extends="AppPlatform">

 <WebServer cdl:extends="WebServer">

 <hostname>www.example.com</hostname>

 </WebServer>

</MyApp>

The property list MyApp is resolved as follows:

<MyApp>

 <WebServer>

 <hostname>www.example.com</hostname>

 <port>80</port>

 </WebServer>

 <ApplicationServer>

 <hostname>localhost</hostname>

 <port>8080</port>

 </ApplicationServer>

 <DatabaseServer>

 <hostname>localhost</hostname>

 <port>6000</port>

 </DatabaseServer>

</MyApp>

7.3 Value References

7.3.1 Reference Model

A reference to a particular property in a document is specified with two global attributes: @cdl:refroot and @cdl:ref.
<xsd:attribute name="refroot" type="xsd:QName"/>

<xsd:attribute name="ref" type="cdl:pathType"/>

They are placed in an element that represents a property without a value (i.e., a leaf node of a tree). Value references MUST NOT be placed in an element that has child elements whereas prototype reference MAY be placed in such an element to let child elements inherit from a prototype..

<hostname cdl:refroot="…" cdl:ref="…"/>

The @cdl:refroot attribute is optional. The value of @cdl:refroot is the name of a top level property list (xsd:QName). The value of @cdl:ref is a subset of XPath expression (cdl:pathType): It MUST be a valid XPath expression, as defined in [XPath], and conform to the following extended BNF:

Path ::= ('/')? Step ('/' Step)*
Step ::= '.' | '..' | QName

The @cdl:ref attribute specifies a path to the destination of the value reference. The context information of XPath evaluation is given as follows:

· Let a node n have a @cdl:ref attribute. When the node n has @cdl:refroot:

· The root node ('/'): the root of the property list identified with @cdl:refroot.
· The context node ('.'): the root node.
· Otherwise:

· The root node ('/'): the root of the property list that contains the node n.

· The context node ('.'): the parent of the node n.

A reference whose path starts with "/" is referred to as an absolute reference. The other type of reference is referred to as a relative reference. An absolute reference can be translated to an equivalent relative reference. Let an absolute reference path be placed at a node n. Let the depth (i.e., the number of steps to the top level element) of the node n be d.

When n does not have @cdl:refroot:

· If d > 1, the equivalent path is:

[image: image4.wmf]..

1

d

2

/..

path

where summation represents concatenation of strings.

· If d = 1, the equivalent path is "." + path.

When n has @cdl:refroot, the equivalent path is "." + path.

The following is a configuration example for explanation of path expression. A reference is placed at a node "i".

<cdl:configuration>

<a>

 <c>

 <g>

 <i cdl:refroot="qname" cdl:ref="xpath"/>
 <j><k>1</k></j>

 </g>

 <h>2</h>

 </c>

 <d>3</d>

 <e>4</e>

 <f>5</f>

</cdl:configuration>

This XML can be visualized as a tree, as seen in Figure 4. A labeled box with an arrow pointing at a node shows path expressions to refer to the corresponding node from the node "i".

[image: image5.wmf]cdl

:configuration

a

b

g

h

c

e

f

i

j

@

ref

/

“

/

c/h

”

 or

”

../h

”

“

/c/g/j

”

 or

“

j

”

“

/c/g

”

 or

“

.

”

refroot

=

“

b

”

refroot

=

“

b

”

ref=

“

/e

”

k

“

/c/g/j/k

”

 or

“

j/k

”

d

“

/

d

”

 or

”

../../d

”

“

/c

”

 or

“

..

”

Figure 4: Example of path expression

7.3.2 Resolution

Resolution of a value reference is defined as the following transformation:

1 Let a node n1 the node identified with @cdl:ref, which is attached to the node n.

2 Let a node list N be the children of the node n1 (i.e., the value of the property n1).

3 Insert nodes in the list N into the node n with their order preserved.

4 Remove @cdl:ref and @cdl:refroot (if it exists) at the node n.

7.3.3 Prototype Resolution and Value References

Prototype references (@cdl:extends) MUST be resolved before resolution of value references.

When a prototype contains absolute references without @cdl:refroot attributes, they MUST be translated to equivalent relative references before prototype resolution.

In the following example, a3 extends a, which contains a reference "/b" at d.

<a>

 100

 <c>

 <d cdl:ref="/b"/>

 </c>

<a2>

 200

 <a3 cdl:extends="a">

 300

 </a3>

</a2>

The reference "/b" at d must be translated to the equivalent relative reference "../b" when it is inherited. The result of prototype resolution is as follows:

<a2>

200

 <a3>

 300

 <d cdl:ref="../b"/>

 </a3>

</a2>

The value of the property d will be 300 after reference resolution.

Note that copying the reference to a3 without translation yields erroneous resolution result as follows:

<a2>

200

 <a3>

 300

 <d cdl:ref="/b"/>

 </a3>

</a2>

In this description, the value of the property d will be 200 after reference resolution.

7.3.4 Example

The following description includes examples of references.

<cdl:configuration>

<a>

 test

 <c>100</c>

 <d>200</d>

 <e>

 <f>abc</f>

 <g>def</g>

 </e>

<aa>

 <b cdl:refroot="a" cdl:ref="/b" />

 <c>300</c>

 <d cdl:ref="/c" />

 <e>

 <f cdl:refroot="a" cdl:ref="/e/g"/>

 <g cdl:ref="/e/f"/>

 </e>

</aa>

</cdl:configuration>

Here, the property list "aa" is resolved as follows:

<aa>

 test

 <c>300</c>

 <d>300</d>

 <e>

 <f>def</f>

 <g>def</g>

 </e>

</aa>

7.3.5 Value Insertion

A cdl:ref element is a special type of value references and inserts a value into a structured data.

<cdl:ref refroot="xsd:QName"? ref="cdl:pathType" cdl:lazy="xsd:boolean"?/>

This element is typically used when a property has a value of structured data type. By placing a cdl:ref element within a structured data, external data can be imported as a part of the structured data.

7.3.5.1 Resolution

As a special type of value reference, cdl:ref is resolved as follows:

1 Let a node n1 the node identified with cdl:ref/@ref.

2 Let a node list N be the children of the node n1 (i.e., the value of the property n1).

3 Replace the node cdl:ref with nodes in the list N with their order preserved.

The following @cdl:ref attribute and cdl:ref element are equivalent and resolved to the same result:

<a cdl:ref="/b">

<a><cdl:ref ref="/b"/>

7.3.5.2 Example

The following is an example use case of a cdl:ref element. A property list "a" has a property "portList" whose value is a list of "port" elements. The cdl:ref element is used in a property list "b" in order to import this list and add a new "port" element.

<cdl:configuration>

<a>

 <portList>

<port>80</port><port>8080</port>

</portList>

 <portList>

<port>8070</port><cdl:ref refroot="a" ref="/portList"/>

 </portList>

</cdl:configuration>

The property list b is resolved to:

 <portList>

 <port>8070</port><port>80</port><port>8080</port>

 </portList>

7.3.6 Expression

A cdl:expression element is a special type of value references and gives a property a boolean, number, or string value derived from other property values.

<cdl:expression value-of="xsd:string">

 <cdl:variable name="xsd:NCName" refroot="xsd:QName"?

 ref="cdl:pathType" cdl:lazy="xsd:boolean"? />*

</cdl:expression>

The @value-of attribute is an XPath expression that is evaluated to yield a boolean, number or string value. The expression MUST be a valid XPath expression as specified in [XPath]. It MUST NOT contain any location path. It MAY contain a variable reference, which is defined with a cdl:variable element.

7.3.6.1 Resolution

As a special type of value references, cdl:expression is resolved as follows:

1 For each cdl:variable elements in cdl:expression,

1.1 Identify a node n with @refroot and @ref.

1.2 Bind the children of the node n (i.e., the value of the property n) to the name specified with @name.

2 Evaluate the XPath expression specified as the @value-of attribute with the set of variable bindings given above.

3 Replace the cdl:expression node with the evaluation result.

7.3.6.2 Example

The following is an example use case of a cdl:expression element. An XPath function is used in the @value-of attribute to concatenate two strings, one of which is given by a cdl:variable element that refers to the "hostname" property value.

<MyServer>

<hostname>www.example.org</hostname>

<url><cdl:expression value-of="concat(’http://’,$host,’/’)">

 <cdl:variable name="host" ref="/hostname"/>

</cdl:expression></url>

</MyServer>

It is resolved to:

<MyServer>

<hostname>www.example.org</hostname>

<url>http://www.example.org/</url>

</MyServer>

7.4 Schema Annotations

A configurable component provider SHOULD describe well-defined data types of properties so that users of components can provide valid property values. Schema annotations defined as follows MAY be placed at properties to provide schema information to users. Use of specified annotations is optional: an implementation of CDL language processor MAY use this information for validation or other purposes (e.g., generation of XML Schema definition that validates the CDL document itself).
7.4.1 Property Value Occurrence Constraints

A @cdl:use attribute MAY be placed at a property. The attribute specifies whether the property requires a value:

· required: The user of the configurable component MUST assign values of this property.

· optional: The user of the configurable component MAY assign values of this property.

The default value of @cdl:use is "optional". A configurable component provider SHOULD place @cdl:use attributes at properties that require values.

<xsd:simpleType name="propertyUseType">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="required"/>

 <xsd:enumeration value="optional"/>

 </xsd:restriction>

</xsd:simpleType>

<xsd:attribute name="use" type="cdl:propertyUseType"/>

The following is an example of a property list with @cdl:use specified.

<WebServer>

 <hostname cdl:use="optional"/>

 <port cdl:use="required">80</port>

</WebServer>

7.4.2 Property Type Declarations

A @cdl:type attribute MAY be placed at a property. The attribute specifies the data type (schema) of the property. The value of the attribute is a QName that identifies a data type.

<xsd:attribute name="type" type="xsd:QName"/>

A @cdl:type MAY refer to either a type defined in the cdl:types in the current CDL document, a type defined in an external namespace imported with a cdl:import element, or primitive datatypes of XML Schema defined in [XML Schema Datatype].

A configurable component provider SHOULD provide data type information on properties with @cdl:type attributes so that users of configurable components can provide valid values.

The following is an example of a property list with @cdl:type specified.

<WebServer>

 <hostname cdl:type="xsd:string"/>

 <port cdl:type="xsd:positiveInteger">80</port>

</WebServer>

7.5 Laziness Annotations

7.5.1 Lazy Value Resolution

In some case, a required property value is not fixed before deployment of the system. A deployment service needs to resolve value references to such values at runtime. A @cdl:lazy attribute allows a deployment service to defer timing of value reference resolution.

<xsd:attribute name="lazy" type="xsd:boolean"/>

There are two use cases of the @cdl:lazy attribute:

· A lazy property: A property declaration with a @cdl:lazy attribute. Typically, a component provider specifies a lazy property in a component description.

· A lazy reference: A value reference with a @cdl:lazy attribute. Typically, a user of components specifies a lazy reference in a system description.

Value resolution of a reference to a lazy property or a lazy reference is deferred after the removal of the @cdl:lazy attribute. This removal of a @cdl:lazy attribute is referred to as resolution of the @cdl:lazy attribute.

A laziness resolution is defined as resolution of one or more @cdl:lazy attributes at the same time. After a laziness resolution, a value reference resolution MUST be applied to the document.

Resolution timing and selection of @cdl:lazy attribute to resolve is not defined in the CDL specification but defined as a component model, which defines constraints, or policies, on ordering of lifecycle management operations on components. For example, a lazy property is resolved (with a property value assigned) when the component is deployed, and a lazy reference is resolved when the component is ready to deploy.
7.5.2 Lazy Properties

A @cdl:lazy attribute MAY be placed at any property that has no value. A reference to an property with a @cdl:lazy attribute MUST NOT be resolved before the @cdl:lazy attribute is resolved.

7.5.2.1 Resolution

Resolution of a lazy property is defined as the following transformation:

1 Let a node n has the @cdl:lazy attribute to be resolved

2 Insert a value into the node n if a value is defined

3 Remove the @cdl:lazy attribute at the node n
After the resolution, value reference resolution is done.

7.5.2.2 Example

In this example, a system consists of two components, server1 and server2. The server2 component requires the port number of the server1 component as the value of a "destination" property. The "port" property value of server1 is, however, given dynamically at deployment time. The provider of the server1 component will place a @cdl:lazy attribute at the "port" property to declare that its value is assigned at run time. A value reference to this property will not be resolved before the resolution of this @cdl:lazy attribute.

<server1>

 <port cdl:lazy="true"/>

</server1>

<server2>

 <destination cdl:refroot="server1" cdl:ref="/port"/>

</server2>

When a "server1" component is deployed, the port number of this component is fixed. Within the CDL document, this event is seen as a laziness resolution that resolves the @cdl:lazy attribute at the port property as follows:

<server1>

 <port>8001</port>

</server1>

<server2>

 <destination cdl:refroot="server1" cdl:ref="/port"/>

</server2>

Value reference resolution is done immediately after the laziness resolution. The result of resolution is as follows:

<server1>

 <port>8001</port>

</server1>

<server2>

 <destination>8001</destination>

</server2>

7.5.3 Lazy References

A @cdl:lazy attribute MAY be placed at any node that has a @cdl:ref attribute. The reference represented with the @cdl:ref attribute MUST NOT be resolved before the @cdl:lazy attribute is resolved.

7.5.3.1 Resolution

Resolution of a lazy reference is defined as the following transformation:

1 Let a node n has the @cdl:lazy attribute to be resolved

2 Remove the @cdl:lazy attribute at the node n
After the resolution, value reference resolution is done.

7.5.3.2 Example

System environment information is typically represented as a property list with a special name. In this example, this property list has a QName "sys:systemProperties". Suppose a property "deploymentTime" requires a time stamp of deployment and a property "time" of the "sys:systemProperties" property list provides the current time. A @cdl:lazy attribute at the "deploymentTime" property let an implementation control the timing of value assignment.

<deploymentTime cdl:refroot="sys:systemProperties" cdl:ref="/time" cdl:lazy="true"/>

When a component is deployed, the implementation resolves the @cdl:lazy attribute as follows:

<deploymentTime cdl:refroot="sys:systemProperties" cdl:ref="/time"/>

Value reference resolution is done immediately after the laziness resolution. The result of resolution is, for example, as follows:

<deploymentTime>2004-08-01T10:00:00Z</deploymentTime>

7.6 Parameterization

Parameterization is a pattern of configuration description, with which a provider of description can expose properties, which are located inside of the property list hierarchy, as top-level properties so that users can override these values with extension.

<server>

 <hostname>localhost</hostname>

 <port>4567</port>

</server>

<serverPair>

 <host1>localhost</host1>

 <host2>localhost</host2>

 <server1 cdl:extends="server">

 <hostname cdl:ref="/host1"/>

 </server1>

 <server2 cdl:extends="server">

 <hostname cdl:ref="/host2"/>

 </serer2>

</serverPair>

<myPair cdl:extends="serverPair">

 <host1>one.example.com</host1>

 <host2>two.example.com</host2>

</myPair>

8 System Description

A system can be described with the cdl:system element, which contains a property list. After resolution, a deployment service implementation observes the content of the cdl:system element to process deployment of multiple components.

The following is an example of a system description:

<cdl:system>

 <WebServer cdl:extends="webserver">

 …
 </WebServer>

 <AppServer cdl:extends="appserver">

 …
 </AppServer>

 <Database cdl:extends="database">

 …
 </Database>

</cdl:system>

9 Import

The cdl:import is used to refer to external configuration description or schema information specified with external namespaces which MUST be different from the one specified at cdl:cdl/@targetNamespace.
Multiple namespaces MAY be declared for the same location. The same namespace/location pair MAY be declared multiple times. However, the same namespace MUST NOT be declared for different locations.

<xsd:element name="import">

 <xsd:complexType>

 <xsd:attribute name="namespace" type="xsd:anyURI" use="optional"/>

 <xsd:attribute name="location" type="xsd:anyURI"
 use="required"/>

 </xsd:complexType>

</xsd:element>

The following is a use case example of the cdl:import element:

<cdl:import namespace="http://example.com/serverconfig/"
 location="http://example.com/serverconfig.cdl"/>

…
<cdl:configuration xmlns:ex="http://example.com/serverconfig/">

 <MyServer cdl:extends="ex:genericwebserver" …/>

 …
</cdl:configuration>

…
10 Documentation

The cdl:documentation element contains arbitrary text and elements for human readable documentation.

<xsd:element name="documentation">

 <xsd:complexType mixed="true">

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:any minOccurs="0" maxOccurs="unbounded"/>

 </xsd:choice>

 <xsd:anyAttribute/>

 </xsd:complexType>

</xsd:element>

11 Resolution: Operational Aspects

11.1 Language Processing Model

Figure 5 illustrates a model of CDL language processing. Note that it does not specify anything on implementation.

[image: image6.wmf]Prototype

resolution

Value

resolution

Laziness

resolution

@extends

@ref

@lazy

source

CDL

result

CDL

Pre

-

Runtime Resolution

Runtime Resolution

events

observer

<cdl:system>

Figure 5: CDL Language Processing Model

11.2 Pre-Runtime Resolution

Resolution is done in the following order:
1 Prototype reference resolution

Repeat resolution of a resolvable prototype reference until there is no resolvable prototype reference
2 Value reference resolution

Repeat resolution of a resolvable value reference until there is no resolvable value reference
When the configuration document includes laziness annotations (@cdl:lazy), some value references may not be resolved until deployment time (runtime).

11.2.1 Resolvable Prototype Reference

A prototype reference is resolvable if and only if:

· There is one and only one top level property list (let it be n) identified with the value of @cdl:extends
· The node that represents the name of the property list n does not have a @cdl:extends attribute.

The following shows an example of a prototype reference that is not resolvable.

<a …/>

<b cdl:extends="a" …/>

<c cdl:extends="b" …/>

The prototype reference at the property list c is not resolvable until the prototype reference at the property list b is resolved.
11.2.2 Resolvable Value Reference

A value reference is resolvable if and only if:

· A @cdl:lazy attribute does not exist where the reference is placed.

· Evaluation of the location path returns one and only one node (let it be n).

· The node n and its descendants do not have any @cdl:ref and @cdl:lazy attribute.

11.3 Runtime Resolution

A runtime resolution is invoked by an event during deployment time.

1 Laziness resolution

Resolution of one or more laziness annotations

2 Value reference resolution

Repeat resolution of a resolvable value reference until there is no resolvable value reference

11.4 Resolved Configuration Data

An implementation that uses results of CDL processing MAY observe the content of the cdl:system element after each resolution. The semantics of data structure in the cdl:system element depends on the implementation.

12 Security Considerations

The security requirements are achieved by combining Web Service/Grid/XML security standards with configuration description. For example, descriptions may be signed and encrypted. The deployment service must be allowed to decrypt configuration descriptions in order to process them. Future issues here include security setting when configurable component providers and deployment service providers are different organizations.

13 Editor Information

Junichi Tatemura

NEC Laboratories America, Inc.

10080 North Wolfe Road, Suite SW3-350

Cupertino, CA 95014-2515

USA

Email: tatemura@sv.nec-labs.com

14 Acknowledgements

The editors wish to acknowledge the contributions from many people, including: Steve Loughran, Stuart Schaefer, Peter Toft, Dejan Milojicic, and Takashi Kojo.

References

[CDDLM] Configuration Description, Deployment, and Lifecycle Management (CDDLM) Foundation, http://forge.gridforum.org/projects/cddlm-wg/document/CDDLM_Foundation_Document/en/1
[SF-CDL] Configuration Description, Deployment, and Lifecycle Management (CDDLM) SmartFrog-based Language Specification,

[XPath] XML Path Language, James Clark and Steve DeRose, eds., W3C, 16 November 1999. http://www.w3.org/TR/1999/REC-xpath-19991116
[XML Schema Datatypes] XML Schema Part 2: Datatypes, Paul V. Biron and Ashok Malhotra, eds., W3C, 2 May 2001. http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
Appendix A: XML Schema

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.gridforum.org/2004/12/CDDLM/XML-CDL/1.0"

 xmlns:cdl="http://www.gridforum.org/2004/12/CDDLM/XML-CDL/1.0"

 elementFormDefault="qualified">

<simpleType name="propertyUseType">

 <restriction base="string">

 <enumeration value="required"/>

 <enumeration value="optional"/>

 </restriction>

</simpleType>

<simpleType name="pathType">

 <restriction base="string">

 <pattern value="/|(/)?((\i\c*:)?(\i\c*)|\.|\.\.)(/((\i\c*:)?(\i\c*)|\.|\.\.))*">

 </pattern>

 </restriction>

</simpleType>

<attribute name="refroot" type="QName"/>

<attribute name="ref" type="cdl:pathType"/>

<attribute name="extends" type="QName"/>

<attribute name="type" type="QName"/>

<attribute name="use" type="cdl:propertyUseType"/>

<attribute name="lazy" type="boolean"/>

<element name="ref">

 <complexType>

 <attribute name="refroot" type="QName" use="optional"/>

 <attribute name="ref" type="cdl:pathType" use="required"/>

 <attribute name="lazy" use="optional"/>

 </complexType>

</element>

<complexType name="variableType">

 <attribute name="name" type="NCName" use="required"/>

 <attribute name="refroot" type="QName" use="optional"/>

 <attribute name="ref" type="cdl:pathType" use="required"/>

 <attribute name="lazy" use="optional"/>

</complexType>

<element name="expression">

 <complexType>

 <sequence>

 <element name="variable" type="cdl:variableType"

 minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 <attribute name="value-of" type="string" use="required"/>

 </complexType>

</element>

<element name="documentation">

 <complexType mixed="true">

 <choice minOccurs="0" maxOccurs="unbounded">

 <any minOccurs="0" maxOccurs="unbounded"/>

 </choice>

 <anyAttribute/>

 </complexType>

</element>

<complexType name="anyAttr" abstruct="true">

 <sequence>

 <element ref="cdl:documentation" minOccurs="0" maxOccurs="1"/>

 </sequence>

 <anyAttribute namespace="##other" processContents="lax"/>

</complexType>

<element name="import">

 <complexType>

 <complexContent>

 <extension base="cdl:anyAttr">

 <attribute name="namespace" type="anyURI" use="optional"/>

 <attribute name="location" type="anyURI" use="required"/>

 </extension>

 </complexContent>

 </complexType>

</element>

<element name="types">

 <complexType>

 <complexContent>

 <extension base="cdl:anyAttr">

 <sequence>

 <any namespace="##other" processContents="lax"

minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

</element>

<complexType name="propertyListType">

 <choice minOccurs="0" maxOccurs="unbounded">

 <element ref="cdl:documentation"

 minOccurs="0" maxOccurs="1"/>

 <any namespace="##other" processContents="lax"

 minOccurs="0" maxOccurs="unbounded"/>

 </choice>

 <anyAttribute namespace="##other" processContents="lax"/>

</complexType>

<element name="configuration" type="cdl:propertyListType"/>

<element name="system" type="cdl:propertyListType"/>

<element name="cdl">

 <complexType>

 <complexContent>

 <extension base="cdl:anyAttr">

 <sequence>

 <element ref="cdl:import"

minOccurs="0" maxOccurs="unbounded"/>

 <element ref="cdl:types"

minOccurs="0" maxOccurs="1"/>

 <element ref="cdl:configuration"

minOccurs="0" maxOccurs="1"/>

 <element ref="cdl:system"

minOccurs="0" maxOccurs="1"/>

 <any namespace="##other" processContents="lax"

minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 <attribute name="targetNamespace"

type="anyURI" use="optional"/>

 </extension>

 </complexContent>

 </complexType>

</element>

</schema>
Appendix B: Example

This section provides an example of component and system description in CDL.

CDL itself does not assume any component model (i.e., required properties, lifecycle models, etc). Here, a component model is provided as follows just for this example.

<cdl:cdl

 targetNamespace="http://cddlm.org/component-model-example"

 xmlns="http://cddlm.org/component-model-example"

 xmlns:cdl="http://www.gridforum.org/2004/12/CDDLM/XML-CDL/1.0"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<cdl:types>

 <xsd:schema>

 <xsd:simpleType name="classNameType">

 <xsd:restriction base="xsd:string"/>

 </xsd:simpleType>

 <xsd:simpleType name="policyType">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="Sequential"/>

 <xsd:enumeration value="ReverseSequential"/>

 <xsd:enumeration value="Parallel"/>

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:simpleType name="componentIdType">

 <xsd:restriction base="xsd:anyURI"/>

 </xsd:simpleType>

 </xsd:schema>

</cdl:types>

<cdl:configuration>

<Component>

 <ClassName cdl:type="classNameType"/>

 <ComponentId cdl:type="componentIdType" cdl:lazy="true"/>

</Component>

<Compound cdl:extends="Component">

 <ClassName>Compound</ClassName>

 <deploy cdl:type="policyType">Sequential</deploy>

 <undeploy cdl:type="policyType">ReverseSequential</undeploy>

 <start cdl:type="policyType">Sequential</start>

 <stop cdl:type="policyType">ReverseSequential</stop>

</Compound>

</cdl:configuration>

</cdl:cdl>
The element Component is the base definition all components will inherit. The component has two properties: ClassName and ComponentId. ClassName is an identifier to specify a class of component. When a component provider publishes a component, the description must inherit this Component and override ClassName to specify the class. ComponentId is an identifier to specify an instance of component (i.e., a Grid resource). Since this value is given at runtime (after resource allocation), the element has a @cdl:lazy attribute to declare its laziness.

The element Compound defines a special component that can contain other components as its children. Properties such as deploy and undeploy specify a policy in ordering of operations on child components. For example, when the Compound component is deployed, its children are deployed sequentially in the order of appearance. A component that extends the Compound can modify this default action by overriding the deploy element.

Based on the above component model, a component provider publishes a set of components that are used to run web applications.

<cdl:cdl

targetNamespace="http://example.org/webapp-template"

xmlns="http://example.org/webapp-template"

xmlns:cdl="http://www.gridforum.org/2004/12/CDDLM/XML-CDL/1.0"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:c="http://cddlm.org/component-model-example">

<cdl:configuration>

 <DBConnection>

 <JNDIName/>

 <hostname/>

 <port/>

 <username/>

 <password/>

 </DBConnection>

 <WebServer cdl:extends="c:Component">

 <c:ClassName>WebServer</c:ClassName>

 <application cdl:type="xsd:anyURI"/>

 <applicationPath cdl:type="xsd:string"/>

 <hostname cdl:lazy="true"/>

 <port>8080</port>

 <dbconnection cdl:extends="DBConnection"/>

 </WebServer>

 <DBServer cdl:extends="c:Component">

 <c:ClassName>DBServer</c:ClassName>

 <data cdl:type="xsd:anyURI"/>

 <hostname cdl:lazy="true"/>

 <port>3306</port>

 <username/>

 <password/>

 </DBServer>

 <WebApp cdl:extends="c:Compound">

 <application/>

 <applicationPath/>

 <dbname/>

 <data/>

 <dbuser/>

 <dbpassword/>

 <DB cdl:extends="DBServer">

 <data cdl:ref="/data"/>

 <username cdl:ref="/dbuser"/>

 <password cdl:ref="/dbpassword"/>

 </DB>

 <Web cdl:extends="WebServer">

 <application cdl:ref="/application"/>

 <applicationPath cdl:ref="/applicationPath"/>

 <dbconnection cdl:extends="DBConnection">

 <JNDIName cdl:ref="/dbname"/>

 <hostname cdl:ref="/DB/hostname"/>

 <port cdl:ref="/DB/port"/>

 <username cdl:ref="/DB/username"/>

 <password cdl:ref="/DB/password"/>

 </dbconnection>

 </Web>

 </WebApp>

</cdl:configuration>

</cdl:cdl>
Two components, WebServer and DBServer, extend Component and define additional properties such as hostname and port. The component user will define component description that extends these components and provide appropriate values by overriding properties.

DBConnection is not a component but merely a composite data structure since it does not inherit Component. Such data structures are defined and extended for convenience.

WebApp is a compound component that consists of two components that extend WebServer and DBServer. References are specified so that an application on WebServer can connect to a database on DBServer. Parameterization pattern is effectively used in this definition so that the user of this template only needs to override parameters such as application and applicationPath by extension. Given those parameter values, properties of sub-components are appropriately assigned through reference resolution.

By referring to the above component description, a deployment service requester requests deployment of a web application as follows:

<cdl:cdl
targetNamespace="http://example.org/webapp-deploy"

xmlns="http://example.org/webapp-deploy"

xmlns:t="http://example.org/webapp-template"

xmlns:cdl="http://www.gridforum.org/2004/12/CDDLM/XML-CDL/1.0">

<cdl:system>

 <WebApplication cdl:extends="t:WebApp">

 <t:application>http://repository.org/test.war</t:application>

 <t:applicationPath>/test</t:applicationPath>

 <t:dbname>jdbc/Test</t:dbname>

 <t:data>http://repository.org/db.zip</t:data>

 <t:dbuser>myapp</t:dbuser>

 <t:dbpassword>pass</t:dbpassword>

 </WebApplication>

</cdl:system>

</cdl:cdl>
The above system description is statically resolved as follows:

<WebApplication>

<c:ClassName cdl:type="c:classNameType">Compound</c:ClassName>

 <c:ComponentId cdl:lazy="true" cdl:type="c:componentIdType"/>

 <c:deploy cdl:type="c:policyType">Sequential</c:deploy>

 <c:undeploy cdl:type="c:policyType">ReverseSequential</c:undeploy>

 <c:start cdl:type="c:policyType">Sequential</c:start>

 <c:stop cdl:type="c:policyType">ReverseSequential</c:stop>

 <t:application>http://repository.org/test.war</t:application>

 <t:applicationPath>/test</t:applicationPath>

 <t:dbname>jdbc/Test</t:dbname>

 <t:data>http://repository.org/db.zip</t:data>

 <t:dbuser>myapp</t:dbuser>

 <t:dbpassword>pass</t:dbpassword>

 <t:DB>

 <c:ClassName cdl:type="c:classNameType">DBServer</c:ClassName>

 <c:ComponentId cdl:lazy="true" cdl:type="c:componentIdType"/>

 <t:data cdl:type="xsd:anyURI">http://repository.org/db.zip</t:data>

 <t:hostname cdl:lazy="true"/>

 <t:port>3306</t:port>

 <t:username>myapp</t:username>

 <t:password>pass</t:password>

 </t:DB>

 <t:Web>

 <c:ClassName cdl:type="c:classNameType">WebServer</c:ClassName>

 <c:ComponentId cdl:lazy="true" cdl:type="c:componentIdType"/>

 <t:application cdl:type="xsd:anyURI">http://repository.org/test.war</t:application>

 <t:applicationPath cdl:type="xsd:string">/test</t:applicationPath>

 <t:hostname cdl:lazy="true"/>

 <t:port>8080</t:port>

 <t:dbconnection>

 <t:JNDIName>jdbc/Test</t:JNDIName>

 <t:hostname cdl:ref="../../t:DB/t:hostname"/>

 <t:port>3306</t:port>

 <t:username>myapp</t:username>

 <t:password>pass</t:password>

 </t:dbconnection>

 </t:Web>

</WebApplication>
Note that the reference at WebApplication/t:Web/t:dbconnection/t:hostname has not been resolved since it refers to a lazy property, WebApplication/t:DB/t:hostname. A runtime system is supposed to resolve this reference in deployment time.

PAGE
28
cddlm-wg@ggf.org

_1152442365.unknown

_1152442440.unknown

_1158582550.unknown

_1152455477.unknown

_1152442377.unknown

_1152442347.unknown

