GWD-R (cm_test_results.doc)

Editors:

Configuration description, Deployment and

S. Schaefer
Lifecycle Management

http://forge.gridforum.org/projects/cddlm-wg

2006-07-07

Configuration Description, Deployment,
and Lifecycle Management

CDDLM Component Model Interoperability Test Results

Draft 2006-07-07
Status of this Memo

This document provides information to the community regarding the specification of the Configuration Description, Deployment, and Lifecycle Management (CDDLM) Language. Distribution of this document is unlimited.

Copyright Notice

Copyright © Global Grid Forum (2006). All Rights Reserved.

Trademarks

OGSA is a trademark of the Global Grid Forum.

Abstract

This document reviews the current status of the interoperability tests between implementations of the CDDLM component model.

1 Table of Contents

2 Introduction

The standardization process of the GGF requires multiple independent implementations of a specification. This document shows how the component model implementations were tested in such a manner as to permit a clear statement upon interoperability between different implementations.

The CDDLM Component Model outlines the requirements for creating a deployment object responsible for the lifecycle of a deployed resource. Each deployment object is defined using the CDL language and mapped to its implementation The deployment object provides a WSDM compliant "Component Endpoint" for lifecycle operations on the managed resource. The model also defines the rules for managing the interaction of objects with the CDDLM Deployment API in order to provide an aggregate, controllable lifecycle and the operations which enable this process.

Compnonent Model Interoperability: An interoperable implementation means that a client program using one project's implementation code can utilize a predefined set of CDL files that are appropriate to another project’s implementation and successfully deploy and query those deployment objects created by the other deployment API server. There is no requirement that one project’s implementation be able to execute the components and CDL files of another projects.
Demonstrated Interoperability: An interoperable implementation must perform a predefined set of operations against the server. These operations were written in the component model test plan document. Every team had to write test cases in their chosen test framework (usually JUnit), to implement each of the tests in the test plan. The test clients had to be written so that they could be pointed at remote endpoints. They were then run against each others implementations until all test failures had been resolved. With multiple clients working with the multiple servers, one could then say that for the set of operations tested in the test plan, the implementations were interoperable.

For the CDDLM system, every participating team had to implement their complete CDDLM service, and host it on a public endpoint. Three such endpoints were made available:

	Team
	URL

	HP
	http://deployapi.iseran.com:8080/alpine/portal/

	NEC
	http://cddlm.nec-labs.com:9090/cddlm/services/portal

	UFCG
	http://cddlm.lsd.ufcg.edu.br:8080/muse/services/Portal

1.1 Implementations

Each implementation was different.

1.1.1 HP Implementation

The HP Implementation had the following features

· Hardware: PIII server, 256MB RAM

· Network: ADSL link to the site. WLAN connection to the server.

· OS: SuSE Linux 10.1

· Runtime: Java 1.5.06

· SOAP Stack: HPLabs' "Alpine" prototype; Xom-based SOAP engine.

· WS-RF/WSDM implementations: Custom WSRF and WSDM on top of Alpine.

· HTTP Front end: Jetty 4.2

· CDL Runtime: HP SmartFrog system

The SmartFrog system was self hosting, to the extent that it deployed and configured Jetty and Alpine in its own process, using SmartFrog deployment descriptors to control the deployment.

1.1.2 UFCG Implementation

1.1.3 NEC Implementation

1.2 Tests

The tests are detailed in the test plan, and summarized here for convenience. Any test that either depended upon an optional feature, or was impossible to realistically test, was downgraded to informative. Such tests are italicized.

	Test
	Summary

	cm-01: identity-test
	Verify that a component exports its WSDM ResourceID property.

	cm-02: status-test
	Verify that a component is able to properly report its state.

	cm-03: get-property-test
	Verify that a component can properly set a resource property from its CDL definition.

	cm-04: set-property-test
	Verify that a component is able to runtime modify its resource properties.

	cm-05: simple-lifecycle-test
	After instantiating a component, verify that it has properly recorded its state transition. Step the component through its lifecycle and repeat the query.

	cm-06: simple-lifecycle-fail-test
	Instantiate the component which is designed to fail. Step to the running state. Verify that the component has failed.

	cm-07: delegate-lifecycle-test
	Instantiate the component delegate and its children. Step the delegate through its lifecycle. Verify that all components properly transition.

	cm-08: delegate-state-test
	Instantiate the component delegate and its children. Step the delegate through its lifecycle. Verify that the delegate properly reports the transitions.

	cm-09: delegate-fail-test
	Instantiate the component delegate and its children. Step the delegate through its lifecycle. Verify that the delegate properly reports failure.

	cm-10: maintenance-test
	Send a maintenance command to an instantiated component. Verify that the return is well formed.

	cm-11: simple-event-test
	Subscribe to a component for lifecycle events. Verify that events are received during lifecycle transitions.

	cm-12: property-event-test
	Subscribe to property change notifications. Verify that events are received during property value changes.

	cm-13: lifecycle-event-test
	Verify that components are able to automate lifecycle transitions based on events.

	cm-14: flow-test
	Verify that control flow markers can modify the sequence of lifecycle events.

	cm-15: switch-test
	Verify that the switch command is properly able to change control flow based on observed values.

2 Results

2.1 HP Implementation
This is the summary of the tests against the three live endpoints.

	Test
	HP
	UFCG
	NEC

	cm-01: identity-test
	Success
	
	

	cm-02: status-test
	Success
	
	

	cm-03: get-property-test
	Success
	
	

	cm-04: set-property-test
	Success
	
	

	cm-05: simple-lifecycle-test
	Success
	
	

	cm-06: simple-lifecycle-fail-test
	Success
	
	

	cm-07: delegate-lifecycle-test
	Success
	
	

	cm-08: delegate-state-test
	Success
	
	

	cm-09: delegate-fail-test
	Success
	
	

	cm-10: maintenance-test
	Success
	
	

	cm-11: simple-event-test
	Success
	
	

	cm-12: property-event-test
	Success
	
	

	cm-13: lifecycle-event-test
	Success
	
	

	cm-14: flow-test
	Success
	
	

	cm-15: switch-test
	Success
	
	

2.2 UFCG Implementation

This is the summary of the tests against the three live endpoints.

	Test
	HP
	UFCG
	NEC

	cm-01: identity-test
	Success
	
	

	cm-02: status-test
	Success
	
	

	cm-03: get-property-test
	Success
	
	

	cm-04: set-property-test
	Success
	
	

	cm-05: simple-lifecycle-test
	Success
	
	

	cm-06: simple-lifecycle-fail-test
	Success
	
	

	cm-07: delegate-lifecycle-test
	Success
	
	

	cm-08: delegate-state-test
	Success
	
	

	cm-09: delegate-fail-test
	Success
	
	

	cm-10: maintenance-test
	Success
	
	

	cm-11: simple-event-test
	Success
	
	

	cm-12: property-event-test
	Success
	
	

	cm-13: lifecycle-event-test
	Success
	
	

	cm-14: flow-test
	Success
	
	

	cm-15: switch-test
	Success
	
	

2.3 NEC Implementation

This is the summary of the tests against the three live endpoints. The HP implementation has no WS-Notification support, so all such tests fail against all endpoints.

	Test
	HP
	UFCG
	NEC

	cm-01: identity-test
	Success
	
	

	cm-02: status-test
	Success
	
	

	cm-03: get-property-test
	Success
	
	

	cm-04: set-property-test
	Success
	
	

	cm-05: simple-lifecycle-test
	Success
	
	

	cm-06: simple-lifecycle-fail-test
	Success
	
	

	cm-07: delegate-lifecycle-test
	Success
	
	

	cm-08: delegate-state-test
	Success
	
	

	cm-09: delegate-fail-test
	Success
	
	

	cm-10: maintenance-test
	Success
	
	

	cm-11: simple-event-test
	Success
	
	

	cm-12: property-event-test
	Success
	
	

	cm-13: lifecycle-event-test
	Success
	
	

	cm-14: flow-test
	Success
	
	

	cm-15: switch-test
	Success
	
	

3 Implications for the Component Model
4 Issues

5 Recommendations for other working groups

cddlm-wg@ggf.org

