Testing a Specification: the CDDLM Experience

Steve Loughran, Jun Tatemura, Stuart Schaeffer, Ayla Debora Dantas de Souza, Satish Bhat

Introduction

This informative document covers the different ways that the CDDLM specification was tested during its transformation from a specification to a working implementation.

The output of an OGF working group often includes XSD and WSDL files to describe the content of messages and the communications protocols. These are not just machine readable artifacts, they are testable artifacts. A test-centric process can be built up which ensures that these type and protocol artifacts match expectations, and that valid programming-language files can be derived from them. All of this can be automated, so that artifact authors can be sure that their schema files are working.

One key point of the experience is that while Test-Driven Development has transformed how software is written, software specifications are yet to embrace any such methodology. While this may result in a more timely specification, it tangibly increases the time lag between a specification and an implementation, while simultaneously creating interoperability problems. Without a near-normative test suite against which implementations can be run, implementing teams are reduced to finger-pointing to identify where each team misunderstood a different part of the specification.

SCM Repository

The first step for preparing for testing was to create a shared SCM repository, open to all members of the working group, and publicly accessible to all. This became the location for all test documents, and for many of the specifications.

At the time this repository was created, the GridForge infrastructure did not provide CVS or Subversion repositories, so we resorted to using SourceForge, creating the project http://sourceforge.net/projects/deployment. We chose a BSD license for code in the repository, to enable free reuse. There was no specific 'GGF license' for us to adopt, and every SourceForge-hosted project must select one of the OSI-approved licenses.

A GGF specific license would be convenient, but add complication. Perhaps GGF could recommend a license which should be used for OSS projects related to GGF, be it Apache, BSD or CDL.

This repository was publicly accessible via anonymous read-only access, which enabled Continuous Integration services to access the repository. However, up until May 2006, the anonymous access had a lag of 2-4 days upon the private read/write repository. This did change, but only after a month's outage when there was no CVS access at all.

A team SCM repository is invaluable; an unreliable one less so.

We added to this repository all XSD and WSDL files which we were developing, and all XSD, DTD and WSDL files of specifications on which our application depended. This enabled us to refer to these files while validating the XML.

Validating XML

The first problem of the team was to validate the many XML documents produced as part of the specification, the XSD and WSDL files. For this we used a task in Ant1.7, <schemavalidate>. This can validate XSD documents against a list of schemas. The Ant declaration of a new task to validate XML schema is as follows, assuming that soap.dir is set to a directory containing the SOAP, XSD and WSDL files:

<presetdef name="validate-xsd">

 <schemavalidate>

 <schema namespace="http://www.w3.org/2001/XMLSchema"

 file="${soap.dir}/XMLSchema.xsd"/>

 <schema namespace="http://www.w3.org/XML/1998/namespace"

 file="${soap.dir}/xml.xsd"/>

 <dtd publicId="http://www.w3.org/2001/datatypes.dtd"

 location="${soap.dir}/datatypes.dtd"/>

 </schemavalidate>

</presetdef>

This can be used to validate any document against the XSD schemas and datatypes. This was extended to validate SOAP, WSRF, and MOWS, before we added project-specific declarations of our own schemas:

<presetdef name="validate-cddlm">

 <validate-mows>

 <schema

 namespace="http://www.gridforum.org/namespaces/2005/02/cddlm/CDL-1.0"

 file="${xml-cdl.xsd}"/>

 <schema namespace="http://www.gridforum.org/cddlm/deployapi/2005/02"

 file="${deployment-api.xsd}"/>

 <schema namespace="http://www.gridforum.org/cddlm/components/2005/02"

 file="${component-model.xsd}"/>

 <schema namespace="http://www.gridforum.org/cddlm/test-helper/2005/02"

 file="${test-helper.xsd}"/>

 <schema namespace="http://www.gridforum.org/cddlm/smartfrog/2005/02"

 file="${smartfrog.xsd}"/>

 <schema namespace="http://www.gridforum.org/cddlm/cdl-test/2005/02"

 file="${test-cdl.xsd}"/>

 </validate-mows>

</presetdef>

These macros can be used in targets to validate XSD-based documents, such as our own specifications:

 <target name="xsd"

 description="validate the XSD files"

 depends="declare-schemavalidators">

 <validate-cddlm file="${component-model.xsd}"/>

 <validate-cddlm file="${deployment-api.xsd}"/>

 <validate-cddlm file="${xml-cdl.xsd}"/>

 </target>

This Ant target would fail with an error if the XSD documents themselves were invalid.

This does not guarantee that the XSD matches what we want, only that the files are syntactically correct. To check the semantics of the schemas, we created test files that represented valid CDL documents. These test files were then verified by a bulk validation option.

 <validate-cddlm>

 <fileset dir="${normative.valid.cdl.dir}" includes="**/cddlm-cdl-*.xml"/>

 </validate-cddlm>

This operation formed the key to ensuring that the XSD files matched our expectations. If the XSD was invalid to the extent that our test documents could not be expressed, we would discover this at build time.

If there is a limitation to this approach, it is that there are no checks for invalid documents. An XSD containing an <xsd:any /> declaration could allow arbitrary XML, so all test documents would appear valid. We also need tests to verify that invalid documents are correctly rejected. This is the XML equivalent of unit tests designed to break an application.

We would need to implement a new Ant task for this, <schemainvalid>, to bulk check a set of files and require that all of them were invalid. We may also want to declare what error message we get to trigger the failure, although that would be exceedingly brittle.

Validating WSDL and SOAP

Our service APIs were validated by splitting the XML schemas out into their own XSD files, and writing test documents that represent expected sent and received messages, such as the following:

<?xml version="1.0"?>

<t:tests

 xmlns:t="http://www.gridforum.org/cddlm/test-helper/2005/02"

 xmlns:api="http://www.gridforum.org/cddlm/deployapi/2005/02"

 xmlns:cdl="http://www.gridforum.org/namespaces/2005/02/cddlm/CDL-1.0"

 xmlns:cmp="http://www.gridforum.org/cddlm/components/2005/02"

 >

 <t:test name="addFileRequest">

 <api:addFileRequest>

 <api:name>urn://45</api:name>

 <api:mimetype>application/x-pdf</api:mimetype>

 <api:scheme>file</api:scheme>

 <api:uri>http://example.org/files/source.pdf</api:uri>

 </api:addFileRequest>

 </t:test>

 <t:test name="addFileResponse">

 <api:addFileResponse>

 <api:item>file://nas1/temp/source.pdf</api:item>

 <api:item>file://nas2/4fgdbb.tmp</api:item>

 </api:addFileResponse>

 </t:test>

</t:tests>

The same <validate-cddlm> task as before can validate these documents, this one representing the <api:addFile /> request and response.

There's one further option for validating WSDL, one which we did not pursue. Given that interoperability is a goal of the project, and that interoperable WSDL must be consumable by the popular SOAP stacks, it would seem possible to actually hand off the WSDL to the popular .NET and Java SOAP stacks to see how they handle this. Every machine running the build would then need the .NET runtime, plus those popular Java SOAP stacks that support WSDL to Java code generation, and the build file would have to run the relevant <wsdltodotnet> and <wsdltojava> tasks, which adds a lot to the requirements. The best solution would be to implement these targets, but make them conditional on the stacks being present. The Continuous Integration server would have to host all the stacks, so test the checked in XSD and WSDL, even if individual developers did not have the ability to do so.

Validating CDL transformations

The CDL language is designed to build up a model of a deployed system through aggregating and extending smaller, simpler, component descriptions. The exact semantics of this process are strictly defined in the CDL language specification.

How can we be sure that different implementations all behave the same. The solution, as proposed and implemented by Jun Tatemura, is to have a set of XML files, each one containing the input to the resolution and the expected output after resolution

A simple example of this is the following test document, which demonstrates that when a reference is extended, extra elements are merged in:

<?xml version="1.0"?>

<t:tests

 xmlns:t="http://www.gridforum.org/cddlm/test-helper/2005/02"

 xmlns:ct="http://www.gridforum.org/cddlm/cdl-test/2005/02"

 xmlns:api="http://www.gridforum.org/cddlm/deployapi/2005/02"

 xmlns:cdl="http://www.gridforum.org/namespaces/2005/02/cddlm/CDL-1.0"

 xmlns:cmp="http://www.gridforum.org/cddlm/components/2005/02" >

 <t:operation id="cddlm-cdl-2005-01-0001">

 <t:description>

 Test section 01, #0001: a basic inheritance test

 </t:description>

 <t:in>

 <ct:resolve>

 <cdl:cdl>

 <cdl:configuration>

 <WebServer>

 <hostname>localhost</hostname>

 <port>80</port>

 </WebServer>

 </cdl:configuration>

 <cdl:system>

 <MyServer cdl:extends="WebServer">

 <hostname>www.cddlm.org</hostname>

 </MyServer>

 </cdl:system>

 </cdl:cdl>

 </ct:resolve>

 </t:in>

 <t:out>

 <ct:resolved>

 <cdl:system>

 <MyServer>

 <hostname>www.cddlm.org</hostname>

 <port>80</port>

 </MyServer>

 </cdl:system>

 </ct:resolved>

 </t:out>

 </t:operation>

</t:tests>

It is up to each implementation to parse these files and verify that the actual output does indeed match the expected output, ignoring whitespace, comments and other undefined aspects of the specification. To aid the testing on the three Java-based implementations, a single JUnit3.8-based test suite was written to run all the documents through a CDL implementation. Each implementation is required to implement a CDLProcessorFactory, a class which is a factory for CDLProcessor instances, which must implement a common interface:

public interface CDLProcessor {

 public void put(URI id, Document doc);

 public Document resolve(Document doc);

 public void close();

 public void dump(PrintStream out,Document doc,String message)

 throws IOException;

 boolean isExpectedFault(String test, QName faultCode, Throwable thrown);

}

This is all that is needed for testing. A JVM property sets the classname of the factory, which is then instantiated and asked for a new processor before every test run. The processor is bound to test documents, then asked to resolve a file using the resolve() operation. If the operation fails, throwing a CDLException, then the test document must have declared that the test would fail, and the isExpectedFault() operation is called to let an implementation check that the failure was of the expected type. If the failure was unexpected, or the document returned did not match that expected, the processor would be expected to print the message to a string (using the dump() operation), then the test would fail, with the errant inputs and outputs included in the fault information.

This design allows a single set of JUnit tests to test CDL compliance against any of the Java implementations. This reduced the need for the separate teams to write their own test cases, and ensured that the naming and reporting of tests was consistent across the teams. It also allowed anyone to add new tests, tests that would immediately propagate to all the other projects. This enabled the test suite to become a way of discussing problems, and of comparing results.

To make this process even easier, we discovered that JUnit builds a list of tests to call by enumerating the classes' methods, and creating a class instance for every method, passing the method name in as a parameter. We were able to override this behaviour, and drive the test runner from XML test index files. The secret is that JUnit first looks for a static method suite(), which can return a TestSuite containing all test cases to run.

public class Suite_04_ImportTest extends TestCase {

 public static TestSuite suite() {

 return SingleDocumentTestCase.createSuite(Suite_04_ImportTest.class,

 "org/ggf/cddlm/files/cdl/valid/set_04_import",

 new CdlSmartFrogProcessorFactory());

 }

}

This class looks like a normal set of tests to JUnit, but in reality it is building up a list instances of SingleDocumentTestCase, each instance bound to one of the test documents from the named package, specifically those files named in the test-index.xml file in the package:

<index>

 <file name="cddlm-cdl-2005-04-0001.xml"/>

 <file name="cddlm-cdl-2005-04-0002.xml"/>

 <file name="cddlm-cdl-2005-04-0003.xml"/>

</index>

The result is that by editing an XML index file, any team member can add or remove new CDL transformation tests, tests that will then be run by all test runners that work off the manifest files. This is probably one of the most unusual ways to drive the JUnit framework. Certainly it managed to cause confusion in some of the IDEs, which appear more used to presenting class and method names, not those of XML files.

For any project in which the input and outputs of an operation can be be well defined in XML files, this file-driven test process makes it significantly easier to test implementations, as no code need be written to add new test files.

If there is one failing, it is in fault handling. In the absence of a list of which SOAPFault or WS-BaseFault to raise for every possible input, there is no way to specify across all implementations which fault a test should expect. Accordingly, there is no way to verify that an implementation is failing for the correct reason –"invalid reference", "recursive extension", or similar– a failure in any part of the CDL processing is treated as a success for the failing test. There is some support for post-failure test validation, but we are not aware of any implementation that uses it. Where this is dangerous is if a test fails for the correct reason for some time, and then some system change suddenly causes it to fail for a different reason. This may be a regression, but is not one we can catch.

Deploy API Interoperability testing

Testing interoperability was a harder problem than verifying the CDL parsers worked, as it moved from being a unit test to a system test. Furthermore, the need to verify interoperability across implementations meant that the different implementations needed to be visible over the network.

The solution to this was based on the original SOAPBuilder's process, the means by which the first SOAP stacks were debugged. Each implementor of the deployment API had to provide a publicly visible implementation. The other implementors could run their own clients against these endpoints, from their own desktops. This permits developers to run and debug the clients at their own leisure, stepping through code when needed, changing code and retrying it. It also enabled automated building testing of clients against the other implementations, so any regressions of behaviour could be picked up immediately.

Because the remote endpoints were hosted by the individual development teams, they themselves could be updated on a regular basis. During the peak development period, this could be done on a daily basis.

We chose this approach rather than a plugfest style everyone-in-a-room interoperability test for the following reasons:

1. As we were developing network services, there was no need for them to be in the same room. This is not USB-device testing, after all.

2. It enabled regression testing and bulk test runs.

3. It allowed developers to bring up their clients in a more controlled manner.

4. The test approach was less confrontational and time pressured. There was no “we don't interoperate, there is eight hours left and it is your fault” style arguments. Instead if something didn't work, we could post traces on emails and diagnose it together.

5. Remote network hosting forced us to deal with networking problems, such as proxy configuration, from the outset, as well as timeouts for unresponsive hosts.

Some implications of this approach are less positive:-

· Networks have side effects. Proxies do interfere. Clients need to time out and fail gracefully if the remote endpoint is not visible.

· The security issues were quite serious. This is covered below.

· Remote systems need to be remotely updateable. While a remote deployment API is the goal of the project, it is hard to bring up a remote endpoint until it is completed. The HP implementation used SCP and SSH under Ant to upload the files and restart the server.

· When a remote system is not available, the other clients cannot test their system.

The biggest limitation is that it hard to debug problems over the network. Debugging proxy servers do not work through firewalls. You do not have access to the remote system, and any email-based collaborative debugging was often an overnight job. Usually the problems were one team member or another misinterpreting part of a specification, but it was slow to indentify where the problem lay. As more endpoints came up it was easier, because if all the endpoints were failing, it was inevitably a fault in the specific client.

One of the servers set up their Log4J logging framework to generate HTML output, and served this log up online as a web page. This aided diagnostics significantly. By logging incoming and outgoing messages it compensated for the lack of logging proxy servers, and by printing out system events it could show what was going on. Provided a single client was working with the server at a time, the happened before relationship between two systems could be inferred from received and sent messages, so the total behaviour of the system diagnosed.

Cross-system logging for debugging appears to be an area that has not yet been addressed in the Web Services and Grid problem domains, and is one where substantial improvements could be made.

If hosts could output their system logs as Atom feeds, remote applications could subscribe to log events. A subscribing program could even regenerate log events on the client system, for integration with other tools. The Log4J reporting system could be a good foundation for this.

Security

The purpose of the deployment API was to enable remote callers to deploy arbitrary applications on to the target systems. One cannot easily persuade a corporate IT department to host such a service on their infrastructure, especially when the same subnet hosts high-visibility public systems.

The university team managed to bring up their system, as did one of the other implementors. The HP endpoint was hosted at one of the developer's houses on a spare laptop, as that proved the easiest way to address HP IT security restrictions. One team did not bring up a public endpoint, and only tested their client against the other implementations.

We would have liked to run with extra security on the endpoints, such as HTTPS links with basic authentication. However, this was not implemented on all the client stacks. This is unfortunate, not just for security reasons, but because it would have stopped proxies caching pages and confusing the clients. At the same time: HTTPS links are not easily debugged using logging proxy servers, so perhaps there is a benefit insecurity.

Having an emphasis on security from the outset would guarantee the implementations can be secured, and can interoperate in secure mode. As it is, we can make no statements about that. Furthermore, requiring HTTPS with full client certificate authentication may have been more acceptable to those IT departments that could not countenance offering unsecured deployment to random callers.

Testing External Standards

WS-Addressing

We know that some of the WS-Addressing implementations are incomplete, as we have access to the source of two of the stacks. We also know that at the time WS-A reached its 1.0 release, there were no tests whatsoever. Therefore, there is no easy way to declare that a WS-A implementation is both complete and correct.

We need tests which explore the full gamut of WS-A options, from simple URLs to complex reference parameters. These need to be included in not just synchronous SOAP calls, but ones which expect asynchronous responses, including faults to the <wsa:FaultTo> address.

It should not be the job of the higher level specifications to test and debug WS-A support, any more than we are expected to test the SOAP stack's handling of mustUnderstand headers.

WS-Notification

It is surprisingly hard to test WS-Notification support, because firewalls interfere with the process; servers cannot see the endpoints of the clients. It also showed up incomplete and inconsistent implementations of the WSRF specification.

Here are some proposals which would simplify the process, which come down to having a way to verify that the underlying WS-Notification implementations work, and to have public relay endpoints to permit behind-the-firewall testing of WS-Notification.

1. All resources in the application should provide a list of valid subscriptions to that resource. The success of subscribe and unsubscribe/<wsrf:Destroy> operations should be tangible from the state of the lists.

2. There must be a standard set of WS-Notification tests, which all WS-N implementations can be assumed to have passed. We should be able to rerun these tests against our own endpoints, to verify this assumption. The test suite should include the following tests

· Subscribing with callback endpoints that block and throw faults during notification posts.

· Subscription pause/resume.

· Callback endpoint is robust when receiving a notification of very large size, such as a multi-MB XML document with complex nesting inside it.

· Badly formed subscription requests are rejected.

· Subscriptions that are set to expire, do, eventually.

· Subscribing to a non-existent topic raises an error

· Subscribing in an unknown language raises an error

3. Someone must provide a public notification relay, that turns WS-N events into events of a form that test runners behind firewalls can evaluate. Rather than propose a new through-firewall protocol, or even XMPP-based notification, we note that polling is very effective. A subscription EPR could record the number of times it was invoked, and the last few messages. Such endpoints could be created by requests from a test callback factory, and then destroyed as any other WSRF resource.
The endpoints should also be configurable to fail in ways that the WS-Notification tests require -such as with a 404 or 500 error, or to keep the connection open for ten minutes to see if the server locked up.

WS-Notification is surprisingly hard to test.

MUWS

MUWS support follows on from WS-Notification. Although we have interoperable endpoints, we have no knowledge as to whether or not these implementations are compliant with the MUWS specifications, or are merely consistent across teams. Given that we have brought up public endpoints for our interoperability testing, and that those endpoints are also MUWS manageable EPRs, MUWS interoperability testing could be enabled if there were a MUWS web site which could be used to examine the EPRs of our service implementations.

Other Issues

Happy Pages

Apache Axis 1 and 2 has a page, happyaxis.jsp
, which performs a full health test of the system and returns an error if it is not happy. We used this as a page on which to wait before running our unit tests. Sometimes the happy page would be happy, even when the SOAP stack was not running. This was tracked down to a simple problem: the result of the GET of the happyaxis.jsp page was being cached in the site's proxy server, and returning a happy page even when the site was absent. We had to modify our code to generate a spurious ?name=value parameter on the URL to bypass the cache. A better solution would be for happyaxis.jsp to set the relevant HTTP response headers to instruct the the server not to cache the response:

Cache-Control:no-cache

Pragma:no-cache

We would also recommend that users of Axis extend the page with tests for the complete health of their system, looking for extra libraries and other aspects of system state which are considered essential to the health of the system, as described in [Neward04].

The limitations of well-written clients

Some of the tests we had envisaged and included on the test plan cannot be executed from a good SOAP client.

· Subscriptions using invalid WS-A addresses, such as return addresses that are not well-formed URLs.

· SOAP requests that are ill-formed XML, or have the wrong content type.

· SOAP requests with XML includes (not recommended for security reasons) and processing instructions (forbidden by the SOAP specification).

We would like to think that such tests are not needed, that the SOAP stacks themselves are tested using code other than the common SOAP stacks, code deliberately designed to break the stack by sending up out-of-band payloads. However, we can see from examining the source of the popular open source stacks that this is not the case.

Clearly, these tests are at the SOAP stack level, rather than that of the deployment API or component model, and so we can omit them, delegating the problem of dealing with invalid SOAP/WS-A/WS-Notification messages to the implementors of those libraries. By doing so we are opting to ignore the likelihood that there are many aspects of the underlying stacks that are not what we consider up to production use, particularly in an environment where untrusted callers may be making malicious calls on our application.

The CDDLM test suite is therefore not a complete is this system ready for production?, kind of test suite, it is a does this system comply with our specification to the extent that interoperability can be expected? test suite. Users of the the implementations need to be aware of this fact.

We believe that someone should take on the role of defining rigorous tests for what production-ready grid systems should handle in terms of SOAP messages and other communications. Unfortunately, nobody on the team is volunteering for the role.

Continuous Integration

We believe that the test process could be improved by making more use of continuous integration servers the following ways/

1. Test results could be published for all to see, automatically.

2. A luntbuild or CruiseControl server could be set up with access from all WG members, and email notifications if ever a change broke something.

3. Automated rebuild and redeployment of the interoperability endpoints.

We did use Apache Gump (http://gump.apache.org/) as a nightly build and test of the CVS-hosted specification documents. The XML specifications would be verified against their schemas, the test documents against the specifications, and the CDL test case classes recompiled. This was sufficient to catch errors in XSD files.

Barriers to Adoption

One of the biggest barriers to adoption was lack of support higher up the organisation. With group members viewing testing as low-priority action compared to the “1.0” piece of paper, and without strict requirements coming down from the GGF, there was a lot of pressure to abandon a test-centric process and revert to the widely discredited waterfall methodology.

The problem here is that yes, a specification can be written written faster if you omit the tests, just as software can be written faster without tests. The purpose of tests is not to bring forward the time at which the output, be it specification or implementation, is declared written. Given that tests require extra effort, it is implicit that extra effort is required, with the corresponding impact on schedule. Empirical studies estimate a 15%-30% impact on up front schedule.

The purpose of the tests is to bring forward the time at which the final product, is considered ready for use. For a software artifact, that means that the product is ready for deployment, distribution and use by end users. For a specification, ready for use is more abstract, but it should at least mean:

· Stable enough to reference in other specifications.

· Suitable for use in production applications.

Without tests there is no formal way to define interoperability, and no guarantee that implementations are stable or consistent. As the deploy-api interoperability tests note, we encountered areas where all the underlying implementations of SOAP, WS-Addressing, WS-RF and WS-Notifications clearly lacked adequate tests. It should not have been the job of the team to write tests to verify those aspects of the system, and yet it proved necessary, if only to track down where interoperability problems were arising.

Limitations of the process

What are the limitations of this process? One of main ones is that it is fundamentally impossible to declare a set of tests complete. As new corner-cases of a system get found, new corner-cases arise, ones that need to be reflected in the test suite. Many of the problems come while the implementation is written. All implementors need the right to add new tests to the different test suite. There is a problem here if one team is behind the others; when they come to implement the application, they may add new tests, even though the others consider their tests complete. We all have to view the application and tests as an ongoing process.

Tools

· SourceForge CVS repository. This was a bit unreliable, and was completely off-line for a month.

· Apache Ant 1.7Alpha. This contained the <schemavalidate> task used to verify test documents against the XSD documents produced by the team.

· Apache Gump. This publicly hosted continuous integration tool would automatically rerun our build file every night, catching problems and notifying the team.

· Apache Axis Proxy and PocketSOAP proxy. Both are good for debugging SOAP requests. Neither can relay the requests on to a second proxy server, which makes them unusable for debugging interop problems from behind a corporate firewall.

· Luntbuild. This was used on the HP implementation for near-instant checkouts and rebuilds. When active, this tool polls the CVS repository every half-hour. If anything had changed, a complete rebuild was triggered, which would then trigger a rebuild of the implementation itself.

References

· [Bhat06] Bhat T., Nagappan, N., Evaluating the Efficacy of Test-Driven Development, Microsoft Corporation, 2006.

· [Loughran07] Loughran and Hatcher, Ant in Action, Manning Press, 2007

· [Neward04] Neward, T. Effective Enterprise Java, Addison-Wesley, 2004

· [Tatemura06] Tatemura, J. CDL Language., Global Grid Foundation, 2006

�	happyaxis.jsp was written by Steve Loughran in 2001/2002. His own error in not disabling caching is coming back to haunt him in embedded derivatives of his original JSP page.

