Test Components

This document proposes test components for verifying that implementations of the CDDLM standards are consistent.

Assertion Checking Component(s)

There are three ways of verifying that a deployment has left the component graph in a particular state.

1. Declarative test documents that include a declaration of the final state of the system. These would be interpreted by a special test runner that would then verify that all assertions about the final state are valid. For example, one test could assert that a component c1 was terminated normally, c2 abnormally and c3 is running. Another test could verify that the lazy attribute "sum" of component c3 was "7".

2. Procedural assertions in a language such as Java. In this specific example, the assertions would be encoded into methods in JUnit tests, usually extending the assert() methods of the JUnit framework.
This is powerful, does not require up-front design of what is to be tested, but may need the deployment API extended to test better.

3. Declarative assertions inside the deployment descriptor. This can be achieve by having special components that make assertions on system state.

Behaviour Simulating components

To test failure handling we need components that

· Fail to initialise or deploy, as required.

· Raise a fault during termination.

· Can be programmed to fail after receiving a certain number of <ping/> messages.

· Respond badly to communications. E.g. Fail to reply within a given time, or reply with invalid responses. This tests the robustness of the SOAP stack and client code.

Test Running Components

This is only exploratory. The SmartFrog project is looking at how to host unit tests better inside the framework itself. There is a JUnit component that can run JUnit tests, feeding the results to a listener which can correlate results from different hosts. There is also some related work in GridUnit
, which runs unit test suites across multiple hosts, correlating the results.

We are considering writing an SFUnit component, which would run test cases declared as nested components. Two child components, setUp and tearDown, would be deployed before and after every deployment, then all child components with a test attribute set to true would be executed. A timeout attribute would define the maximum duration for a test before it was automatically terminated.

testSuite extends SFUnit {

 setUp extends JBoss { }

 testWebApp extends TestCase {

 test true;

 timeout 60;

 webapp extends WarFile {

 server LAZY setUP;

 warFile "../testwar.war";

 }

 testEnterpriseApp extends TestCase {

...

 }

}

This is still exploratory and experimental; nothing has been implemented yet. When progress has been made, then perhaps the design could be transferred to CDL and the component model. For now, the AntUnit test framework [AntUnit] is the best tangible implementation of such a design.

Note that for this testing to be useful, test components need to be written to provide extra assertions, including assertions that deployments fail for a specified reason, or with an expected message. The AntUnit tasks show the basic set of assertions that are likely to be needed.

References

[AntUnit] Bodewig, S. AntUnit Proposal.
http://svn.apache.org/viewcvs.cgi/*checkout*/ant/sandbox/antlibs/antunit/trunk/docs/index.html
[GridUnit] GridUnit
http://gridunit.sourceforge.net/menu.html

�

