Configuration Description, Deployment,
and Lifecycle Management

Component Model Specification

Draft 2005-01-12
Status of this Memo

This document provides information to the community regarding the specification of the Configuration Description, Deployment, and Lifecycle Management (CDDLM) Language. Distribution of this document is unlimited. This is a DRAFT document and continues to be revised.

Abstract

Successful realization of the Grid vision of a broadly applicable and adopted framework for distributed system integration, virtualization, and management requires the support for configuring Grid services, their deployment, and managing their lifecycle. A major part of this framework is a language in which to describe the components and systems that are required. This document, produced by the CDDLM working group within the Global Grid Forum (GGF), provides a definition of the CDDLM component model and the process whereby a Grid Resource is configured, instantiated, and destroyed.

[image: image9.png]ccccccc
ooooooooooo
ooooo

GLOBAL GRID FORUM

office@ggf.org
www.ggf.org
Full Copyright Notice

Copyright © Global Grid Forum (2004). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the GGF or other organizations, except as needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights defined in the GGF Document process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this recommendation. Please address the information to the GGF Executive Director (see contact information at GGF website).

Table of Contents
3Table of Contents

51
Introduction

51.1
Notational Conventions

62
CDDLM-WG and the Purpose of this Document

63
Component Model Architecture

63.1
Introduction

63.2
Core Concepts and Terminology

93.3
Deploying Components

103.4
CDDLM State Transition Model

113.4.1
Internal States

123.5
Component Model Design

123.5.1
Loose Coupling

133.5.2
Declarative Configuration rather than Direct Invocation

133.5.3
Minimal use of Distributed Object concepts

143.5.4
Do not rely on schema validation

143.5.5
Pass data in messages, not as references to resources

143.5.6
Make effective use of the proposed ImplementsMessageSet message

154
Component Model

164.1
Deployment Components

174.1.1
componentEPR

174.1.2
codeBase

174.1.3
fileName

184.1.4
delegate

184.2
Interfaces, Operations and Message Sets

184.2.1
Component Attributes

204.3
Basic Component Operations

224.4
Component-specific message sets and messages

224.4.1
ImplementsMessageSet

234.4.2
Component-specific headers

235
Deployment Templates

235.1
Deployment Structure

265.2
Deployment Controls

265.2.1
Sequence

275.2.2
Flow

275.2.3
Wait

285.2.4
Switch

285.3
Event Handlers

295.3.1
OnInitialized

295.3.2
OnRunning

295.3.3
OnFailed

295.3.4
OnTerminated

305.4
General Notifications

305.5
Reference Resolution

305.6
Faults

305.6.1
OnFault

316
Security Considerations

317
Editor Information

318
Acknowledgements

32References

33Appendix A – Component Object Definition

1 Introduction

Deploying a complex, distributed service presents many challenges related to service configuration and management. These range from how to describe the precise, desired configuration of the service, to how we automatically and repeatably deploy, manage and then remove the service. This document addresses the description challenges, while other challenges are addressed by the follow-up documents . Description challenges include how to represent the full range of service and resource elements, how to support service "templates", service composition, correctness checking, and so on. Addressing these challenges is highly relevant to Grid computing at a number of levels, including configuring and deploying individual Grid Services, as well as composite systems made up of many co-operating Grid Services.

1.1 Notational Conventions

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC 2119].
The following namespaces are used in this document:

	xsd
	http://www.w3.org/2000/10/XMLSchema

	wsp
	http://schemas.xmlsoap.org/ws/2002/12/policy

	wsa
	http://schemas.xmlsoap.org/ws/2003/02/addressing

	wsrp
	http://www.ibm.com/xmlns/stdwip/web-services/WSResourceProperties

	wsrl
	http://www.ibm.com/xmlns/stdwip/web-services/WSResourceLifetime

	wsnt
	http://www.ibm.com/xmlns/stdwip/web-services/WSBaseNotification

	wstop
	http://www.ibm.com/xmlns/stdwip/web-services/WSTopics

	muws-xs
	http://docs.oasis-open.org/wsdm/2004/07/muws-1.0/schema

	mows-xs
	http://docs.oasis-open.org/wsdm/2004/07/mows-1.0/schema

	cdl
	http://www.gridforum.org/2004/12/CDDLM/XML-CDL/1.0

	cmp
	http://www.gridforum.org/cddlm/components/model/2005/01/12

	cddlm-types
	http://www.gridforum.org/cddlm/serviceAPI/types/2004/10/11

	cddlm-api
	http://www.gridforum.org/cddlm/serviceAPI/2004/10/11

When defining operations, this specification uses pseudo-schema to describe the input and,if appropriate, output messages. A full WSDL description of all operations is available in Appendix A of this specification.

Section 3 and appendices D, E and F containing the XML Schema (XSD) of the component model and the WSDL component interface are normative specifications. All UML diagrams found are non‑normative, and meant to serve only as illustrations of the CDDLM concepts. The remainder of the document is non-normative as well, and is provided as background and explanatory material.

2 CDDLM-WG and the Purpose of this Document

The CDDLM WG addresses how to: describe configuration of services; deploy them on the Grid; and manage their deployment lifecycle (instantiate, initiate, start, stop, restart, etc.). The intent of the WG is to gather researchers, developers, practitioners, and theoreticians in the areas of services and application configuration, deployment, and deployment life-cycle management and to explore the community need for a broader effort in this area. The target of the CDDLM WG is to come up with the specifications for CDDML a) language, b) component model, and c) deployment API. This document represents the component model specification. This specification is derived from the SmartFrog framework developed at HP Labs, and other industry specifications.

This document describes the component model of the framework. It does not describe any required component libraries. The design of the system is loose to allow the binding of attributes to deployment objects to be handled by an individual implementation of the system. This document serves to outline the requirements for a software object to be deployable by the CDDLM framework.
3 Component Model Architecture
3.1 Introduction

A prerequisite for understanding this document is to have read the CDDLM language document(s), which introduce a tree-like representation of configurable components as a way of describing the pieces of a distributed application. Additionally, the reader should consult the CDDLM Deployment API document in order to understand the basic deployment capabilities of the CDDLM framework.
This section describes the model for deployment components within the CDDLM framework: what they are, how they work, and how they integrate with the framework. The CDDLM component model is not intended to be a general purpose model for systems or application management. It is limited in scope to address the problems of deploying and managing the deployed state of system resources. It is presumed that the functions of systems management can/will be applied as a superset of the functionality provided by CDDLM system, and further that the component model will be not be a proper subset of other models.
3.2 Core Concepts and Terminology

The CDDLM component model defines a means to loosely group a hierarchy of services within a deployment container. In this containment hierarchy there may be a many-to-many relationship among services and actual instantiated software resources. This hierarchy is not intended to reflect the organization of those managed resources. Its purpose is to capture the runtime deployment dependencies, workflow and state of those resources.

The CDDLM components are represented in the CDL language using an abstract object model that most closely resembles languages such as Scheme: any component can have new attributes added to it dynamically, while the type system is very loose. Furthermore, there is no split between classes and instances; everything is an instance that can be extended dynamically.

At deployment time, a service will be resolved by the CDDLM implementation to determine its composition and membership within the active Grid Fabric. The basic unit of deployment is a component. The service to be deployed will be a part of this component in some way. There is no restriction to what a component may contain. It is simply a unit of deployment, and will imply that there is a CDDLM object which bounds its contents.

A component has two analogues. A language component is a component in the language; it is a declaration of what the user wishes deployed, and how they want it configured. A deployment component is a code library that provides the implementation of language components. When the CDDLM infrastructure needs to deploy an application, it must locate and instantiate deployment components for every language component that it wishes to instantiate. These deployment components will be moved through their lifecycle, and so bring up the system.
There is no need for a mapping between every instance in this language-level component model and the implementation model. That would be neither sensible nor possible. Instead, any component in the language can be entirely abstract. When deploying a system, it is a requirement that the components being deployed are not abstract: that is possible to instantiate something in the runtime framework that handles the mapping from the language-level specification, to configured and running programs.

[image: image1.emf]System

Component

Component Component

Deployment

Relationship

Service

Service

Service Endpoint

Groups of components can be organized to form a deployable system. A system will be comprised of one or more components each implementing some portion of a complete Grid Service or prerequisite, or individually implementing one or more services. Each service will provide access to its implementation through one or more endpoints, either WS-RF endpoints or standard WS-I endpoints, as defined in the services own WSDL. The further relationships between services and components are modeled in the language and exposed in order to facilitate these compositions.

It must be presumed by CDDLM that not all services will be complete software applications. A service endpoint may exist within a larger set of an application server, for example. A dependent component of a service may also be a more fundamental portion of software such as an operating system or patch. Or a component may be a pre-existing service that does not implement the CDDLM interfaces. In this manner, the CDDLM component model must allow components to be “wrapped” within a container that is responsible for implementation of the defined interfaces.

In many cases, the services that are deployed do not meet the manageability requirements of its environment. The CDDLM component model allows a component to wrap an implemented service and provide a level of manageability that otherwise would not exist. These manageability functions implement CDDLM specific interfaces as well as those required by the WS-DM specifications. Other interfaces could be implemented as well.
Though the conceptual diagram above depicts a system as shown hierarchically, there is no requirement by CDDLM for components to be explicitly organized in this way. A system is just a loose confederation of components needed to deploy some set of endpoints. The following UML diagrams the conceptual relationship of these entities.

[image: image2.emf]service endpoint

1 *

system

deploymet

component

1

*

1 *

resource

deploys

is deployed on

language

component

0..1

1

manageable

interface

{OR}

wraps

implements

* 1

3.3 Deploying Components

In order to deploy, the CDDLM framework is sent a description of the system in a supported language through a node implementing the deployment API. This is most likely the result of a job submission through the JSDL interface. The run time parses the description to produce an internal representation of the system. This will be a (annotated) tree of language components -a deployment graph. This graph describes what must be deployed, and what the interdependencies are.
Each system to be deployed is instantiated through the creation of a WS-RF Endpoint Reference. This system EPR represents the aggregate state of the collection of deployed components, as well as the primary interface for management operations. The complete description of using the system EPR is described in the CDDLM Deployment API.

The deployment host responsible for the system EPR or portal EPR will parse the CDL definition to map language components to deployment components. For each deployment component identified, it will determine how to segment the deployment graph and assign component EPRs to each deployment component.
A component EPR is the primary interface to manage a deployment component. Component EPRs will resolve to the host responsible for the deployment component. This may or may not be the actual host on which a deployment action is taken. This relationship is shown in the diagram below.

[image: image3.emf]Deployment Nodes

System EPR

Component

EPR

Component

Portal EPR

Component

EPR

Component

Component

Component

EPR

Once deployed, the component EPRs are used internally for components to communicate with the system EPR and with each other. The node responsible for the system EPR is able to send lifecycle commands to component EPRs and receive lifecycle events As a node may contain more than one EPR, all communications to component EPRs should use the full WS-RF Implied Resource Pattern and include the resource identifier and reference properties in all communications.
3.4 CDDLM State Transition Model

The basic lifecycle of components is defined by a simple state machine that must be implemented by all component objects within CDDLM. The transitions in the state machine are associated with actions supplied by the component interfaces. The transition actions are implemented by the invocation of these interface methods, during which the component may take any appropriate action and alter its referenced state. If no action is to be taken, the component must at least guarantee transfer to the next state. In this state machine, there is no representation of transition, only of arrival at a new state.
The lifecycle is as follows:

	State
	Description

	Undefined
	This is a loosely defined state where the component is not instantiated or running on the system.

	Instantiated
	The component has been instantiated

	Initialized

	The component has been initialized

	Running
	The component is running

	Failed
	The component has failed during an active state

	Terminated
	The component has terminated

When a component is created, it will make the transition from undefined to instantiated. During this time, the component and its deployment package will be deployed to the appropriate system, the component instantiated and any operations will be performed that are part of the component’s instantiation process. As stated above, in this process when a transition action is invoked, the component will not enter its new state until the operations which define achievement of that state have been complete. In the interim, the component will remain in its prior state.

[image: image4.emf]Instantiated

Running

Terminated Initialized Failed

Undefined

In a system with multiple components, the lifecycle of the whole system is defined by the relationships between the individual component lifecycles. The system hierarchy defines relationships where related components lifecycles are linked. The component model and the CDL language help define explicit semantics for guiding lifecycle transitions. Where no relationship exists, the CDDLM framework is allowed to choose any means or order in which to accommodate its tasks. It is important to note that the specific state of the system can only be determined by querying the system EPR. Any use of component states by entities outside of the CDDLM framework or the system EPR are undefined.

The only semantic that is required by the system is that the CDDLM framework invoke actions in a coordinated fashion for dependent components. If two objects are dependent on each other than both must be initialized before they are started and so on. If the objects fail to transition to the same states, then CDDLM must coordinate their termination. Thus, if an object fails to initialize, all dependent objects must be failed as well. The CDDLM framework is free, however, to choose to reset and resume deployment for the failed portion of the task, or fail the entire deployment phase. In any case, it must report success or failure in the aggregate, not of a portion of the system.

Components within the CDDLM may be wrapping other objects in order to provide manageability. Many other management interfaces use different interfaces and different representations of lifecycle. The WS-DM lifecycle model is subtly different, in that it includes a degraded state, in which something is alive but operating at a degraded level. The WS-DM lifecycle model is intended to describe the operational state of a deployed component. The CDDLM lifecycle is more restricted, in that it models the deployment state of a system. Once a CDDLM component has entered the running state, CDDLM considers it to be available. In reality, the product that is being deployed can be operative but have suffered some set of internal failures. If the component implements the WS-DM interfaces it must interpolate between states or manage the additional state information alongside the CDDLM state.
3.4.1 Internal States

It is also desired for the lifecycle model to be extensible at the component object level. The core lifecycle described above is required for implementation of CDDLM. However, CDDLM will enable services to declare service specific lifecycle extensions that are declared for a particular component and operate within the basic deployment lifecycle model defined herein. In this way, a service can be deployed and managed simply, but also define internal states relevant to other services capable of consuming its extended information.

[image: image5.emf]Querying

Data Store

Applying

Policy

Creating

Components

Refresh Data

Running

In the example above, a service is currently known to CDDLM and has been created and is running. If it is sent a command such as “Refresh Data”, it may externally remain in the running state. However, internally it may go through several state transitions in order to execute the command. By declaring these states within the CDL description, its states can be tracked and understood through the basic component model interfaces.

This extension mechanism does not require the definition of the state machine or state transitions to the CDDLM framework. This would require implementation of a formal calculus within the CDL language, and a secondary state machine within the framework. Only the states themselves will be defined as allowable secondary states. This mechanism presumes that the external consumer will make relevant use of the extra state information.

.
3.5 Component Model Design

In translating these design concepts into a concrete model, there are several goals and guiding principles that are used. It is the desire of the CDDLM model to be simple, flexible, easy to implement, but provide a rich set of behaviors that are capable of even the most complex deployments.

3.5.1 Loose Coupling

Performing any task at Grid scale is difficult. In a deployment on a virtually unlimited number of nodes, there will be an extremely large set of operations, state changes and events occurring simultaneously and possibly asynchronously. This can potentially lead to ripples of side effects that can cause one component failure to bring down an entire deployed system or multiple systems. Additionally, in a large deployment any one change or maintenance operation on one component or node can have effect on the entire system.
Loose coupling is taken a meaning that software elements in a system are only very lazily joined to other parts in the system, so being resilient to changes in the implementation. Tight coupling is generally acknowledge as harmful in a distributed system, as it makes it hard to upgrade software elements in isolation. The Distributed Objects pattern (ANSA, CORBA, DCOM, RMI, EJB) has a reputation for excessively tight coupling. COM and CORBA require that the signature of an interface remain unchanged, while Java RMI allows new methods on an interface to be added, but requires existing ones to be retained. All of these systems require compile-time binding, creating a tight link between implementation and use.

The CDDLM Component Model is built on the WS Resource Framework and other WS-I defined standards. The WS-RF presents some risk of enabling tight coupling. We have employed several tactics to minimize that risk.
3.5.2 Declarative Configuration rather than Direct Invocation

The primary way for one component to configure and use a third party component should be pre-deployment configuration of the component via the Deployment API. That is, instead, of one component sending set() messages to another component, it should invoke the Deployment API and request that attributes of that component get set. When the remote component is deployed, it will read and use those attributes which it needs.

This is a lesson from Apache Ant [9]; the XML-level configuration has proved far more robust than the software API used between tasks. It is the risk that another task has used one of the attribute setters that prevents the development team from removing setter methods that are no longer used at the XML level. For example, a method setDest (String) may be replaced by the method setDest(File), the runtime automatically mapping the XML string to a project-relative File instance. Even with the new method used by the runtime, the old method needs to be retained purely for software that invoked the class directly. Nor can anything that uses the new method call an old version of the Task; that will raise an exception.

By having components set attributes on the deployment graph, rather than invoke the remote component directly, we can decouple the components more. There is still the problem of keeping the types of attributes consistent; with a limited set of types or a loose type system this ought to be relatively straightforward.
3.5.3 Minimal use of Distributed Object concepts

The CDDLM Component Model is not a distributed object system. Thus, there are no requirements that it implement Distributed Object patterns: factories, callbacks, leased lifetimes. We will use the minimum subset of WS-RF option as we need – no more, no less. Additionally, this model will avoid exporting the interfaces of the underlying object instance. There is no declared native interface such as Java or C++ objects. This will allow us to avoid requiring systems to implement the same underlying object systems or implementations.

An application developer choosing to develop to this model is free to make several choices. A specific component object does not need to be an object within some other object model such as J2EE, COM or .NET. It is allowed to be an executable application, or a component within a host. The only requirement is that the attribute assignment properties of the CDL language must be able to indicate the proper means of activation of the component object. As an example, the SmartFrog implementation chooses to map a language component to a SmartFrog class (which is the deployment component) through the sfClass attribute. The current component model includes basic bindings for SmartFrog, Java, Ant, and .NET components. Others can be created by extending the component model schema.

In the case of inherited behavior, a derived component may execute the methods of its parent or override its behavior completely. It is up to the implementer to choose and determine the methodology to be used. This is to say that the CDDLM Component Model imposes no constraints on component object inheritance.

3.5.4 Do not rely on schema validation

XML schemas that are provided can be used to ensure that valid documents are created. The schemas are a hint. There is no guarantee that a sender or recipient will produce compliant documents. If operations are unsuccessful for failure to pass schema validation, many unwanted problems may occur.

3.5.5 Pass data in messages, not as references to resources

A common pattern in in-process objects is for those objects to pass references to themselves or other objects around; the recipient calls getter and setter methods to complete the operation. This is a good information-hiding practice for local objects, but excessively chatty for remote connections. It also vastly increases the requirements of a caller of the service. Instead of being able to call a service with a message it constructs, it must instead provide an accessible endpoint to call back to, thus binding the two remote objects for the duration of the operation. Over time, the two objects end up holding many remote references to each other causing them to be excessively coupled.
3.5.6 Make effective use of the proposed ImplementsMessageSet message

The proposed ImplementsMessageSet message is intended to probe an endpoint to see if it has implemented a specific set of messages, similar to the instanceof test for interfaces. However, the Java language test merely verifies that the class implements an interface of a given name; it makes no guarantee that the interface behaves as expected.

The original introduction of the interface concept was by David .L. Parnas in his 1974 paper on information hiding [10]. In this paper, Parnas defined an interface as both signature and semantics. The interfaceof test only verifies the signature -for robust coupling we need to ensure that the semantics are consistent.

Only if an endpoint processes a set of messages in compliance with the specification of that interface, can it declare itself as implementing that particular message set. If a feature change means that the processing of those messages has changed such that they no longer match the interface specification, then the endpoint must not declare that it implements the interface.

This strongly resembles COM's QueryInterface() design in intent, although the general implementation of QueryInterface() fell somewhat short of the goal, as it has essentially devolved to declaring nothing but signature compatibility. Proof of this is the E_NOTIMPL return code, which allows any method in an interface to return saying "actually, we do not do anything".

Of these proposed tactics, the use of attributes for declarative coupling is the most CDDLM-specific, and promises the loosest coupling. The rules for processing our proposed ImplementsMessageSet message are similar to the ideals of COM, but not its reality. We should strive to do better.

4 Component Model

The CDDLM framework requires a concrete object that can be instantiated in order to perform a deployment action. This object’s purpose is to abstract the basic framework from the details of the composition of what is to be deployed and its specific, required deployment steps. We can represent the structure of the deployment to follow the diagram from above.

A CDDLM component object will correlate to a component within the system tied to one or more allocated resources. A component object will have one instance for each resource on which it is deployed. Each component instance will implement the basic interfaces defined herein.

A system is simply a bag of component objects. There may be a hierarchical, peer or other relationship between objects, if there exist deployment dependencies. If none exist, then the CDDLM runtime is free to deploy in any means it chooses. At this level, any component object not related to another is a peer of all other top level components. Other than the dependent relationship, there is no other implied constraint between component objects. The basic component model and relationships are characterized in the following diagram.

[image: image6.emf]«system»

CDDLM

Language Component

Deployment Component Component

Resource Resource Resource

Configuration

Lifecycle

Maintenance

Component Delegate

Component

Resource

Components may also be component delegates, components that manage a set of child components on behalf of the system or component EPR. These components aggregate the lifecycle and operations of components that are declared to be their children. A component delegate may manage transitions of its children in any way it sees fit. For example, a simple delegate could move every child component into a new state simultaneously, or one after the other in the order of declaration. A "sequential" delegate would only start one child running after the previous child component completed. In using delegates and other components, the component may simply exist as an object to assist with the deployment and have no actual internal objects to deploy.
The attribute inheritance model of CDL implies that components which derive their configurations from others must be able to override those attributes. Though this implies some derivative behavior, the component model does not require the objects to be in a parent-child relationship or have some inherited behavior in its implementation.

4.1 Deployment Components

In the CDDLM system, a CDL document will contain one or more language components. In order to turn this into a deployment, the framework will need to map these language components into deployment components. When a create() command is sent to the Deployment API, the system will parse the CDL document and create some mapping.

This data structure can be walked to identify deployment components and assemble a deployment graph and actions to perform in order to instantiate components. For each element that declares a component class name and a class resolution path, an object will be created. The runtime will deploy the code contained at the class path, and attempt to instantiate the object. An example of how this is done with CDL is shown below.

<cdl:cdl
targetNamespace=”http://example.org/webapp-template”>
<cdl:system>

<WebApplication>

 <cmp:codeBase>http://server/file.jar</cmp:codeBase>

 <cmp:fileName>ApacheDeployer</cmp:fileName>

 <port>80</port>

 <hostname>www.example.org</hostname>

</WebApplication>

</cdl:system>

</cdl:cdl>

In this case, the WebApplication corresponds to an ApacheDeployer component contained within the deployment container file.jar at the remote web server location.

From here, the processing is very platform specific. A Java component will activated within some JVM. An executable will be run on its host. A COM or other object will be created within some host specific to the platform. It is important that during the resolution and instantiation process that the CDDLM framework is able to bind the component to the correct runtime or host. Further parameterization of the host requirements should be given in the CDL for the component.
The base set of CDL component properties that define a deployment component are shown here.

4.1.1 componentEPR

The component code base is defined as any location of file assets at some URI. It is up to the Deployment API how to obtain and upload the file(s).

<xsd:simpleType name=”codeBase”>

<xsd:restriction base=”xsd:anyURI”/>

</xsd:simpleType>

4.1.2 codeBase
The component code base is defined as any location of file assets at some URI. It is up to the Deployment API how to obtain and upload the file(s).

<xsd:simpleType name=”codeBase”>

<xsd:restriction base=”xsd:anyURI”/>

</xsd:simpleType>
4.1.3 fileName
The file name is some referenceable path indicating to the Deployment API how and/or what to instantiate in order to realize this deployment component. This path is defined as an opaque string as it may be any one of a number of things such as a Java class path, an executable name, a COM object name or GUID, or any other platform specific instantiation name.

<xsd:simpleType name=”fileName”>

<xsd:restriction base=”xsd:string”/>

</xsd:simpleType>

If it is required by the host platform, there may be child properties of this element to assist in finding the appropriate instantiation mechanism.

4.1.4 delegate

In order to create a delegate component, you will simply declare that the component is a delegate. There are no properties or modifiers of this declaration.
<xsd:simpleType name=”delegate”>

<xsd:restriction base=”xsd:nil”/>

</xsd:simpleType>

4.2 Interfaces, Operations and Message Sets
Every deployment component managed by the CDDLM framework will support a common set of messages. There may also be optional sets of messages, for use between components that have explicit knowledge of each other's message support. Callers will be able to poll endpoints to verify that a set of messages is supported before sending one or more messages from that set.

Each service to be managed will implement external interfaces in three categories:
1) Configuration – This class of interfaces is responsible for enabling management of individual or groups of service description information allowing control of configuration at both deployment-time and run-time.

a. Creation

b. Change

c. Query

2) Lifecycle Management – This class of interfaces will provide basic access to and control of the operational state of a service.

a. State Query

b. Change State – Initialize, Terminate, Destroy

3) Maintenance – This class of interfaces enables external services to perform basic management tasks on a running service

a. Discovery – Query service on its composition

b. Automation – During runtime, perform regular cleanup and maintenance

c. Extended Error/Health Reporting

In addition to the core lifecycle functions, the components will be able to use the CDDLM framework to access their configuration information, locate other components defined in the configuration, and potentially alter the running configuration. These interfaces will be implemented using the WS-RF and SOAP v1.1 specifications where appropriate.

4.2.1 Component Attributes
When a component is defined, its CDL property list will define several attributes related to its configuration. In addition to the properties and actions associated with those defined in the CDL property list, every component EPR has properties and actions for managing its lifecycle. The component EPR will need to expose each of these attributes as a resource property of the component WS-Resource. This mandates that the component EPR must be able to present the resource properties document of the component EPR. Additionally, the component EPR will need to support the WS-ResourceProperties message exchanges.
4.2.1.1 State attributes

There is an enumeration for all the known lifecycles. Additionally, as defined in Section 3.4.1, a component may declare the use of additional states. These states are communicated as the stateInfo attribute. It is defined as an opaque quantity to allow processing by the consumer of the attribute.
<xs:element name="lifecycleStates">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="undefined"/>

 <xs:enumeration value="instantiated"/>

 <xs:enumeration value="initialized"/>

 <xs:enumeration value="running"/>

 <xs:enumeration value="terminated"/>

 <xs:enumeration value="failed"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

<xsd:simpleType name=”stateInfo”>

<xsd:restriction base=”xsd:any”/>

</xsd:simpleType>

4.2.1.2 Deployment attributes
In order to facilitate discovery operations, a deployment component needs to provide access to its WSDL and Resource Property documents. These documents can be dynamically generated by the component or returned from a file description.

Each deployment component will have a deploymentInfo attribute that represents its WSDL and WS-RF Resource Property documents as one single component information structure.

<xs:element name=”deploymentInfo">

 <xs:annotation>

 <xs:documentation>The WSDL representation of a component’s active interface.</xs:documentation>

 </xs:annotation>

 <xs:simpleType>

 <xs:restriction base=”xsd:string”>
 </xs:simpleType>

</xs:element>

4.2.1.3 Manageability attributes

Using a component, a developer could “wrap” an existing deployment object to make it a CDDLM component. At the same time, the developer SHOULD consider the addition of manageability capabilities such as those defined by WS-DM. Though not all components will represent manageable services, the addition of a few simple properties to the endpoint will allow it to be a manageable entity.
If a component is to be manageable as defined by WS-DM, it must export its MUWS Identity and State. All other aspects of WS-DM are optional. In order to provide a WS-DM Identity, a component must declare several properties.

<xs:complexType name="muws-xs:ResourceIdentityPropertiesType">

<xs:sequence>

<xs:element ref="muws-xs:ResourceId"/>

<xs:element ref="muws-xs:Name" minOccurs="0"/>

<xs:element ref="muws-xs:Version" minOccurs="0"/>

<xs:any minOccurs="0" maxOccurs="unbounded"

namespace="##other" processContents="lax"/>

</xs:sequence>

</xs:complexType>

These properties can be mapped from component definitions or declared directly in the CDL. If the muws-xs:Name property is not defined, a component should substitute the CDL identifier for the node.

The MUWS State definition is slightly more complicated. WS-DM uses a different operational model than CDDLM. The operational states defined by WS-DM are Available, Degraded and Unavailable. Thus, we must map the CDDLM lifecycle states to WS-DM equivalents to provide this property. This mapping is not declared within any schema document, and should be understood by all CDDLM components.
	CDDLM Lifecycle State
	WS-DM Operational State

	Undefined
	Unavailable

	Instantiated
	Unavailable

	Initialized

	Unavailable

	Running
	Available

	Failed
	Degraded

	Terminated
	Unavailable

4.3 Basic Component Operations

In order to access a component’s attributes and work with its management functions, a class of operations are exposed to enable these behaviors. These behaviors are expected to be used both internally by the CDDLM framework and with external systems.
4.3.1.1 GetResourceProperty

If a component is defined within a CDL document as shown in Section 4.1, the following body of a message exchange can be used with SOAP 1.1 encoding to retrieve the port attribute value.

<wsrp:GetResourceProperty xmlns:tns=”wsa:componentEPR”>

tns:port

</wsrp:GetResourceProperty>

Where the response would be:

<wsrp:GetResourcePropertyResponse xmlns:tns=”wsa:componentEPR”>

<tns:port>80</tns:port>
</wsrp:GetResourcePropertyResponse>

4.3.1.2 GetMultipleResourceProperties

The same encoding works for multiple properties in a single query. The response only is shown for brevity.
<wsrp:GetMultipleResourcePropertiesResponse xmlns:tns=”wsa:componentEPR”>

<tns:port>80</tns:port>

<tns:hostname>www.example.org</tns:hostname>

</wsrp:GetMultipleResourcePropertiesResponse>

4.3.1.3 SetResourceProperties

A component or the system EPR host may choose to alter the value of a component’s property. This is most likely as the result of some event or decision step in the deployment process. For completeness, the component should support each of the Insert, Update and Delete operations of the WS-Resource. For a complete description of the use of this message consult the Web Services Resource Properties specification.
4.3.1.4 QueryResourceProperties

In order to support enumeration and introspection type operations on the component’s attributes, a component MAY implement the QueryResourceProperties operation. It is recommended that this operation only support the XPath 1.0 language for query syntax.
Optionally, a component EPR or the system EPR may provide a means to retrieve the component’s current WSDL which can be dynamically generated to reflect the component’s current state. That operation is not normatively defined.
4.3.1.5 State query

Each component object will support a standard request interface for lifecycle state observation. This interface will use the property query ability shown in the prior section to retrieve either or both of the state or stateInfo properties of the component.

<wsrp:GetMultipleResourceProperties xmlns:cmp=””>

<wsrp:ResourceProperty>state</wsrp:ResourceProperty>

<wsrp:ResourceProperty>stateInfo</wsrp:ResourceProperty>

</wsrp:GetMultipleResourceProperties>

…

<wsrp:GetMultipleResourcePropertiesResponse xmlns:cmp=””>

<cmp:state>running</cmp:state>

<cmp:stateInfo>Pending Input</cmp:stateInfo>

</wsrp:GetMultipleResourcePropertiesResponse>

4.3.1.6 State transition operations

During the life of an object, the CDDLM framework will invoke state transition actions on the object. In order to follow the WS-RF recommendations, each object will provide a separate interface for each state transition request: initialize, run, terminate, and destroy. The instantiate message is unnecessary, as the create() operation handled by the Deployment API will have instantiated each component object.
Note that the destroy operation is a WS-ResourceLifetime operation, not a CDDLM specific implementation. Also, it is not recommended to implement scheduled termination as part of the WS-RF implementation for components.
<portType name=”ResourceInitialization”>

<operation name=”Initialize”>

<input message=”cmp:InitializeRequest”>

<output message=”cmp:InitializeResponse”>

</operation>
</portType>

<portType name=”ResourceExecution”>

<operation name=”Run”>

<input message=”cmp:RunRequest”>

<output message=”cmp:RunResponse”>

</operation>

</portType>

<portType name=”ImmediateResourceTermination”>

<operation name=”Destroy”>

<input message=”wsrl:DestroyRequest”>

<output message=”wsrl:DestroyResponse”>

</operation>

</portType>

In this model, a simple action request only returns basic success or failure information. If CDDLM consumers wish to find out more about the state transition, it must issue a state query request. When a transition failed to occur as intended, the component should respond by throwing an appropriate fault.
4.3.1.7 Maintenance operations

It is often the case that simple maintenance activities can prolong the healthy lifespan of a long-running service. It is desired to allow CDDLM objects to provide a command execution infrastructure to enable period maintenance or cleanup of these services. This interface will presume that the object is knowledgeable in means to execute the command. The CDDLM framework will make no interpretation of the commands contained in the task.

<message name=”taskActionInput”/>

<part name=”taskName” type=”xsd:string”/>

<part name=”taskContents” type=”xsd:uri”/>

</message>

<message name=”taskActionOutput”>

<part name=”taskName” type=”xsd:string”/>

<part name=”taskStatusCode” type=”xsd:integer”/>

<part name=”taskOutput” type=”xsd:string”/>

</message>

<portType name=”Maintenance”>

<operation name=”taskAction”>

<input name=”taskActionRequest” message=”tns:taskActionInput”>

<output name=”taskActionResponse” message=”tns:taskActionOutput”>

</operation>

</portType>

4.4 Component-specific message sets and messages

Any other message can also be processed by the same endpoint. When the extra messages are to be used between component instances, it is prudent to probe for the class of the destination endpoint before sending messages, particularly a long set of messages.

4.4.1 ImplementsMessageSet

This message asks the endpoint if a message set is supported, where supported means: the messages are processed in a way compliant with the specifications of that message set.

<message name=”MessageSetInput”>

<part name=”MessageId” type-“xsd:URI”/>

</message>

<message name=”MessageSetResponse”/>

<part name=”response” type=”xsd:boolean”/>

</message>

<portType name=”MessageSet”>

<operation name=”ImplementsMessageSet”>

<input name=”ImplementsRequest” message=”tns:MessageSetInput”>

<output name=”ImplementsResponse” message=”tns:MessageSetResponse”>

</operation>

</portType>

Note that the notion of change is different in an XML based infrastructure than classic compile-time binding. Changes to existing messages may not be significant from a backwards compatibility perspective, if the recipient can still provide the semantics that a caller expects. However, a caller built against a recent version of a component may encounter problems when calling an older version. For this reason, it is critical to add new URIs for message sets whenever the WSDL or supported payload of a message changes in a way that could break systems in such a way.

Components may not change their set of supported interfaces during their life, as this prevents users of a component relying on the results of this call for any period of time.

4.4.2 Component-specific headers

Other headers (such as a transaction/reliable messaging) headers can be sent between components, even on standard CDDLM messages. In this case, it is up to the communicating parties to understand or discard the headers.

It is explicit in the SOAP1.1 specification that any header with the mustUnderstand attribute set must be processed by the destination. Implementation experience shows that there is no standardization on when a failure to process such a header raises a fault.

Callers must not assume that a mustUnderstand header will be rejected prior to the body of the message being processed.

5 Deployment Templates

As described in the XML CDL Specification, a deployment author will create one or more documents describing the scope of a system to be deployed. Those documents describe a set of property lists concerning the specific configuration of a template set of deployment objects. At deployment time, many properties will be filled in by the steps of resource allocation, CDL parsing, and reference resolution.
The CDL language provides the mechanisms for all of the above operations, but does not specify how to control the deployment or respond to changes in the state of some or all of the deployed components. This section focuses on extensions to the CDL by this component model used to describe and control the operational flow of a deployment.

5.1 Deployment Structure

Within the configuration descriptions provided by the CDL, a basic configuration implies very little about the form of a deployment. It normally contains mostly properties of elements to deploy. As described in the prior section, once CDL is parsed, deployment components can be sifted from the document. If a component is a delegate, then some structure begins to form as a delegate implies a parent-child relationship among subcomponents. In the diagram below, the independent components, Components A and B, and the delegate component, Component C, are at the top level of the graph. Components D and E in the diagram are children of Component C.

When a component is declared as a delegate, its children are removed from scope of other components not declared as children of the delegate. This restricts further dependencies that are created within the graph to only exist between components in the same relative scopes. If Component B in the diagram below had a dependency on Component E, it would have to declare the dependency on Component C and trust that the delegate would enforce the desired behavior. In this sense, Component C becomes responsible for the aggregate lifecycles and dependencies of the objects it is a delegate for.

[image: image7.emf]System

Component

B

Delegate

Component

C

Component

A

Component

D

Component

E

Component

B

Delegate

Component

C

Component

A

Component

D

Component

E

Using delegation, one could create a complete structure for a deployment. However, in a large deployment, this will tightly couple components’ behavior. Further, much of the rules describing how to react to deployment events will be lost within the components themselves. By creating a chain of parents and children, there is a potential for the relationships to restrict the form of the deployment and cause unwanted side effects. It is recommended to use delegation sparingly. There are many cases, though, in which the delegation model will help with deployment.
The deployment can be further described by declaring deployment events and event handlers. Using events, one can declare that once Component A is running, it should instruct Component B to begin running. This can allow a deployment to be ordered and walked through its transitions in a simple and declarative manner. One could also instruct Component B that in the event it fails, it should notify Component A of this state transition. Then Component A could invoke some behavior such as a restart of Component B, or termination of itself and/or Component B.
Using this approach, we can create a deployment graph that is not singly linked, such as in a parent-child relationship like delegation. Each deployment action and event can independently link one component to one or more dependent components. If we were to expand the diagram from above to include this event example, it would appear as follows. This diagram is simple, but shows that the evolving graph has a chance to exhibit cyclic behaviors. An implementer of CDL needs to be very careful when crafting a deployment such that declared operations do not cause infinite loops.

[image: image8.emf]Component

B

Delegate

Component

C

Component

A

Component

D

Component

E

O

n

R

u

n

n

i

n

g

:

R

u

n

(

B

)

O

n

F

a

i

l

e

d

:

N

o

t

i

f

y

(

A

)

T

e

r

m

i

n

a

t

e

(

B

)

O

n

I

n

i

t

i

a

l

i

z

e

d

:

I

n

i

t

(

C

)

With effective use of just events and delegation, many complex deployment scenarios could be accommodated. But, as described earlier, the goal of the component model is to enable loosely coupled, scalable patterns for deployment. Events are an important tool for deployment, but may lead to significant extra effort to manage and maintain. For example, if we wanted to deploy our example system by deploying Component A then B then C, we would need to declare two events. That is, one less than the number of components to deploy. If we had a deployment with hundreds of components, the event system would be unwieldy at best.

In order to simplify the syntax, and use declarative means of creating our deployment description, we will add a few basic process elements. Many deployments follow simple rules, such as deploy these components in order. Or, deploy these components in any order you see fit. Additionally, basic flow control would allow us to make simple decisions based on the state of deployment components or attributes. We will choose to use a very small subset of standard control primitives to aid in this task
The following sections describe in detail the definition and syntax of these introduced constructs. The syntax borrows heavily from WS-BPEL and other languages for process control. It is not a complete calculus, nor does it need to be. It is minimally defined with only the operations necessary for simple control of deployment. Complex behaviors can be handled by delegates or careful system design.
Within a CDL document, all of the defined elements will be applied as part of normal property lists, as children of CDL configuration or system elements. This is done to keep the deployment process description within the declaration of the deployment components themselves. This will allow us to use the standard parsing features of the CDL language to our benefit.
5.2 Deployment Controls

As stated above, we have enabled the use of several primitives for flow of control. As a result of the need to handle multiple paths of execution within the deployment graph -- one for each of initialization, execution and termination -- we will apply these primitives as attributes of nodes in the deployment graph.
When a system is defined, all top level objects are implicit children of a root system node in the graph, which can be equated to the system EPR. When a flow control element is applied, it will be done as a child of a property node or the cdl:system declaration which will make this a child of the root system object. When applied, a flow control element will apply to all children of the node applied to.
As an example, if we wish to have several components deployed in order, we can use the <cmp:sequence> element defined below. As this node is declared at the root of the cdl:system structure, it will encapsulate the other declared elements within its control body.

<cdl:cdl
targetNamespace=”http://example.org/webapp-template”>
<cdl:system>

<cmp:sequence lifecycle=”initialization”>

<WebApplication>

 <cmp:codeBase>http://server/file.jar</cmp:codeBase>

 <cmp:fileName>ApacheDeployer</cmp:fileName>

 <port>80</port>

 <hostname>www.example.org</hostname>

</WebApplication>

<Database>

…

</Database>

<TransactionMonitor>

…

</TransactionMonitor>

</cdl:system>

</cdl:cdl>

All flow control elements depend on lexical order and hierarchy of the declared cdl:system to apply their control functions. A <cmp:sequence> element as used above uses the lexical order of the declaration to order the deployment. By default, and implementer of CDDLM is free to apply any policy to ordering component operations. Once a flow declaration has been made, it applies to all nodes in the graph that are peers or children of the element in which it is declared, effectively setting a scope of policy. That policy can be changed on more restrictive scopes, such as through redeclaration on one of a nodes children, but cannot be redeclared at the same level. An implementer of CDL should ignore any redeclaration.
5.2.1 Sequence

The sequence operator defines a structure for a deployment operation to be done in sequential order. As elements are defined in the CDL document, their lexical order will be used to define this deployment order. A sequential operation must be done as a synchronous, blocking operation. As one element is being initialized, the system must wait for initialization to complete before initialization of the next element.
<xs:element name="lifecycleProcess">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="initialization"/>

 <xs:enumeration value="execution"/>

 <xs:enumeration value="termination"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

<cmp:sequence lifecycle=”cmp:lifecycleProcess”>
</xsd:complexType>

This operation is functionally equivalent to declaring an event handler chain among the processes involved in the sequence. It is not required in an implementation of the component model to realize this structure in that fashion. However, one must recognize that if a sequence operation is declared and a CDL declaration inserts its own event handler within the sequence, the sequence must continue in its own manner. If the external event handler causes other parts of the graph to change state, the implementer must recognize that state change events may not fire on those portions of the graph. Thus, the implementation of the sequence should be made resilient to this case.
Note also, that many flow control elements such as the sequence operator provide implicit synchronization points and search patterns. All components that are peers would be controlled by the flow control operation applied to them. As a result of policy scope resolution, a component with children will block transfer of control to the next peer component until its children have been processed if it is a member of a sequence. This implies a depth first application of the process within the deployment graph.

5.2.2 Flow

It is often not important what order operations are taken. The flow operator allows the deployment process to be executed concurrently, irrespective of order of declaration. It also allows execution of a deployment process to occur in a breadth-first fashion across a subset of component nodes in the graph. A flow operator, as all other flow control elements, implies a synchronization point at the end of its scope. If a node has children that are declared with the flow operator, the node will still synchronize to its peers if necessary even if its children are executing concurrently. Thus, the completion of a deployment command is a guarantee of synchronization.
<cmp:flow lifecycle=”cmp:lifecycleProcess” />
5.2.3 Wait

Many times it is important to have some portion of a deployment delay while another continues. The wait operator allows a portion of the deployment process to be paused for a fixed period of time, or until some absolute time. Within the scope of a sequence, it will delay all pending elements of the sequence. Within a flow, it will pause the execution of all elements lexically declared after the flow element.
<cmp:wait lifecycle = “cmp:lifecycleProcess”

(duration=”xsd:integer” | until=”xsd:time”)/>
5.2.4 Switch

The switch operator is designed to be used to control branches of execution. The switch operator allows a choice to be made based on some property of the deployment graph. The condition element must be a valid XPath calculation on declared properties returning some boolean value.
<cmp:switch lifecycle=”cmp:lifecycleProcess”>

<cmp:case condition=”bool-expr”>+

<cdl:ref ref=”cdl:ref”/>

</cmp:case>

<cmp:otherwise>

<cdl:ref ref=”cdl:ref”/>

</cmp:otherwise>

</cmp:switch>

The switch operation transfers execution of the deployment process to the node referred in the matching case. It also will create a synchronization point at the node which it is declared.
5.3 Event Handlers

During the course of a deployment, many different lifecycle events will occur. If a component node fails, it may not be necessary to fail the entire deployment. Instead, you may want another component to be notified of this situation so that it may take appropriate action. Any component in the deployment graph is a candidate for receiving events. If the root of the deployment graph is specified as the recipient, the system EPR will be notified.
In order to handle more complex behaviors, components can be defined whose sole purpose is to handle events. These components should either be defined outside of the scope of a deployment process flow, or have simple internal state transitions of its own. These globally scoped event handlers can then be used as utilities to handle more complex operations such as restart on failure, or immediate termination on failure.
The implementation of the following events MUST be done using WS-Notifications. The system will create a notification subscription for each event defined. The WS-TopicSpace will contain one single topic, lifecycle events. This topic is the same used by the Deployment API.

<wstop:TopicSpace name=”lifecycleEvents” targetNamespace=”http://www.gridforum.org/cddlm/components/events/2005/01/12”>

<wstop:Topic name=”lifecycleEvent” messageTypes=”cmp:lifecycleEventNotification”/>

</wstop:TopicSpace>

All notifications will take the following form.
<soap:envelope>

<soap:Header>

<wsa:Action>

http://www.ibm.com/xmlns/stdwip/web-services/WS-BaseNotification/Notify

</wsa:Action>

…

</soap:Header>

<soap:Body>

<wsnt:Notify>

<wsnt:NotificationMessage>

<wsnt:Topic>cmp:lifecycleEvent</wsnt:Topic>

…

<wsnt:Message>

<cmp:enteredState>cmp:lifecycleStates</enteredState>

<cmp:previousState>cmp:lifecycleStates</previousState>

</wsnt:Message>
</wsnt:NotificationMessage>

</wsnt:Notify>

</soap:Body>
</soap:Envelope>

5.3.1 OnInitialized

When a component transitions to the initialized state, it can notify one or more components that this has occurred. In order to notify more than one component, simply declare this property for each notification desired.
<cmp:OnIntialized notify=”cdl:ref”>

5.3.2 OnRunning

When a component has begun the running state, it can notify one or more components that this has occurred.
<cmp:OnRunning notify=”cdl:ref”>

5.3.3 OnFailed

When a component has failed, it can notify one or more components that this has occurred.

<cmp:OnFailed notify=”cdl:ref”>

5.3.4 OnTerminated

When a component has terminated, it can notify one or more components that this has occurred.

<cmp:OnTerminated notify=”cdl:ref”>

5.4 General Notifications

During the lifecycle of a component, it may be necessary to respond to other changes in the deployment, outside of lifecycle events. The WS-RF structure allows consumers to register for notifications of changes in the properties of a stateful resource. We will enable this notification to be setup using the following syntax.
<cmp:OnChange ref=”cdl:ref”>

This will enable a component to be notified of the property change of the element at the cdl:ref destination.
5.5 Reference Resolution

All of the paths described thus far have used the cdl:ref attribute to define their location. Once a component is deployed, this reference must be translated into an actual resource identifier. A component reference will translate into a component EPR. A property reference will translate into its component owner’s EPR and the attribute resource name under that EPR.
Currently, the only available means to perform this translation is for a component to execute the resolve() function of the system EPR. Once a component retrieves the EPR of the destination, it can make a WS-RF request to that EPR.

This requires that the system EPR is able to handle the scale of potential resolution requests. Also, each component must know the system EPR. We have not defined that mechanism here.

5.6 Faults

All of the operations defined in this section and the prior section on the component model may return faults as an indication that an error has occurred. The form of these faults will follow that of the normative definition within the Deployment API [CITE]. All faults will be based on WS-BaseFaults with the additions defined therein.
The complete list of faults is available in Appendix A.3 – Component Faults.

5.6.1 OnFault

A component may wish to be notified that a fault was thrown by another component or deployment operation. It may subscribe for this notification by using the following syntax.

<cmp:OnFault ref=”cdl:ref” faultName=”xsd:QName” faultType=”xsd:QName”>

The fault handling can optionally be scoped by including the fault name or the fault type in the handlers declaration
6 Security Considerations
For security, the CDDLM Component Model relies on the security provided by the CDL specification for securing the description of a deployment. Web Services security mechanisms, including transport‑level security and SOAP Message Security are presumed to be used in order to secure the connections between components and EPRs.
The components themselves are responsible for performing actions within a trusted host. It is important that proper trust is established between host nodes in the deployment. Operations may require elevated permissions in order to perform. The component nodes must ensure that those rights cannot be usurped or delegated. The maintenance action task listed in section 4.3.1.7 is most susceptible to security issues, as it may be possible to use this command to run arbitrary programs on remote nodes.

7 Editor Information
Stuart Schaefer
Softricity, Inc.

27 Melcher Street

Boston, MA 02210

Email: sschaefer@softricity.com
Steve Loughran

Internet Systems and Storage Laboratory

Hewlett-Packard Laboratories

Filton Road
Stoke Gifford

Bristol BS34 8QZ

United Kingdom

Email: steve_loughran@hpl.hp.com
8 Acknowledgements

The authors of this document would like to acknowledge the contributions, assistance and support of the following people and their respective companies: Dejan Milojicic, Takashi Kojo, Jun Tatemura, Peter Toft, Julio Guijarro and Vanish Talwar.
References
1. www.globus.org/research/papers/ogsa.pdfFoster, I., Kesselman, C., Nick, J. and Tuecke, S. The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration. Globus Project, 2002. .

2. Foster, I., Kesselman, C. and Tuecke, S. The Anatomy of the Grid: Enabling Scalable Virtual Organizations. International Journal of Supercomputer Applications, 15 (3). 200-222. 2001.

3. Tuecke, S., Czajkowski, K., Foster, I., Frey, J., Graham, S. and Kesselman, C. Grid Service Specification, 2002. www.globus.org/research/papers/gsspec.pdf.

4.
Loughran, S. WS-RF and CDDLM , 2004

5. Tatemura, J. XML Configuration Description Language Specification , 2004.

6. Loughran, S. Deployment API Draft, 2004.

7. Tuecke, S. et al., Web Services Base Faults WS-BaseFaults

8. Graham, S. et al., Web Services Resource Properties (WS-ResourceProperties)

9. Duncan-Davidson, J., Apache Ant.

10. Parnas, D. L. On the Criteria to Be Used in Decomposing Systems into Modules, Communications of the ACM, Vol. 15, No. 12, pp.1053-1058, 1972.

11. Bradner, S. Key words for use in RFCs to Indicate Requirement Levels. RFC 2119.

Appendix A – Component Object Definitions
A.1 XML Schema

[TODO]

A.2 WSDL 1.1

[TODO]

A.3 Component Faults

[TODO]

A.4 Topic Space

�Adjust these refernces at the end.

_1167042648.vsd
service

endpoint

1

*

system

deploymet
component

1

*

1

*

resource

*

1

deploys

is deployed on

language
component

0..1

1

manageable
interface

{OR}

wraps

implements

_1167807988.vsd
Instantiated

Running

Terminated

Initialized

Failed

Undefined

_1167920857.vsd

_1167927240.vsd

_1167894041.vsd
«system»
CDDLM

Language Component

Deployment Component

Component

Resource

Resource

Resource

Configuration

Lifecycle

Maintenance

Component Delegate

Component

Resource

1

*

1

*

_1167807195.vsd
text

text

Deployment Nodes

Component EPR

System EPR

Component

Component

Component EPR

Portal EPR

Component EPR

Component

_1166984848.vsd
Service

_1144767120.vsd
Querying Data Store

Applying Policy

Creating Components

Refresh Data

Running

