Configuration Description, Deployment,
and Lifecycle Management

CDDLM Deployment API
Draft 2005-02-08

Satus of this Memo

This document provides information to the community regarding the specification of the
Configuration Description, Deployment, and Lifecycle Management (CDDLM)
Language. Distribution of this document is unlimited. Thisis a DRAFT document and
continues to be revised.

Abstract

Successful redlization of the Grid vision of a broadly applicable and adopted framework
for distributed system integration, virtualization, and management requires the support
for configuring Grid services, their deployment, and managing their lifecycle. A major
part of this framework is a language in which to describe the components and systems
that are required. This document, produced by the CDDLM working group within the
Globa Grid Forum (GGF), provides a definition of the service APl whereby a Grid
Resource is configured, instantiated, and destroyed.

GLOBAL GRID FORUM
office@ggf.org
www.ggf.org

L L
L]

LI O B B O N
-
-

LI B N N
(O O N B B OO

LB B

Full Copyright Notice
Copyright © Global Grid Forum (2004-2005). All Rights Reserved.

This document and trandations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its implementation
may be prepared, copied, published and distributed, in whole or in part, without
restriction of any kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to the
GGF or other organizations, except as needed for the purpose of developing Grid
Recommendations in which case the procedures for copyrights defined in the GGF
Document process must be followed, or as required to trandate it into languages other
than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF
Or itS SUCCESSOrs or assigns.

This document and the information contained herein is provided on an "AS|S" basisand
THE GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE
USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or
other rights that might be claimed to pertain to the implementation or use of the
technology described in this document or the extent to which any license under such
rights might or might not be available; neither does it represent that it has made any effort
to identify any such rights. Copies of claims of rights made available for publication and
any assurances of licenses to be made available, or the result of an attempt made to obtain
ageneral license or permission for the use of such proprietary rights by implementers or
users of this specification can be obtained from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or
patent applications, or other proprietary rights which may cover technology that may be
required to practice this recommendation. Please address the information to the GGF

Executive Director (see contact information at GGF website).

1 Table of Contents

N I o F<Y o O] 1= o[£ 3
A 4 1 (o (U Tox 1T] [4
21 CDDLM-WG and the Purpose of thisS DOCUMENTccocviereierieieiee e 4
3 Purpose of the DePlOYMENt APloouiiiieiiie et 4
3.1 LB SN 0r ST PPRRPRRRPIR 4
3.2 L o 1= =\ o R 5
R AN (e 011 (= o1 (U (=T 5
4.1 00T L = AN (@ oL (= o 11 (=T 5
4.2 = Yo [TSRS 8
4.3 = U L 0 [= <Y 8
4.4 Other ArchiteCtural FEAIUIES.ooiiiieeeeeeeceeee et 9
5 Deployment APL OVEIVIEWcccoiiiuiieieeeiiiiiee e e s siteee e s s snteee e e s esteae e e e ssssreeeeesssnnsnneesessanns 12
51 0Tz o oo 1 o | 12
5.2 Y = T =0T oo] | R 13
5.3 UML Visudization of the WS RF r&SOUICES.........cceevveeemeviiieieeiiee e eeeeeeevvsnanaaans 15
ST = o o - 17
6.1 O = I 1] = 1= USSR 17
6.2 (@07 1o = SR 18
A S Y (= 1 | OSSOSO OURTRPPTR 20
7.1 SYSIEM PrOPEITIES. ...ttt 21
7.2 SYSIEM OPEIBLIONS......eeeieeeiieeeiee ettt ettt e e 21
S T \\ o)1 1= (1o | PR 25
8.1 NOETICATON POIICY ...t 25
8.2 WS- NOLIfiCatiON SUPPOIT ..ottt sttt e 26
8.3 Fault-Tolerant NOtTICAiON.........cuuuueriiiiieee et e e e e s s e e e eeaaaaaaas 26
O AU POLICY ...t 26
9.1 FAUIT CalOOOMES ...ttt sttt sttt s 27
9.2 FUIT SECUNTY. ...ttt ettt nnre e s 28
9.3 TR IS0t (L0]aT= L= (] IO 28
9.4 [29
9.5 [L 0T O00 0 (= 30
O = ol) Y PR 31
O o [(o gl W01 0= 10 o T 31

D < < (< 0. 31

2 Introduction

The CDDLM framework needs to provide a deployment API for programs submitting
jobsinto the system for deployment, terminating existing jobs, and probing the state of
the system.

This document defines the WS-Resource Framework-based deployment API for
performing such tasks. It is targeted at those who implement either end of the API.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
this document are to be interpreted as described in RFC 2119 [RFC2119]

2.1 CDDLM-WG and the Purpose of this Document

The CDDLM WG addresses how to: describe configuration of services; deploy themon
the Grid; and manage their deployment lifecycle (instantiate, initiate, start, stop, restart,
etc.). Theintent of the WG is to gather researchers, developers, practitioners, and
theoreticians in the areas of services and application configuration, deployment, and
deployment life-cycle management and to explore the community need for a broader
effort in this area. The target of the CDDLM WG is to come up with the specifications
for CDDML a) language, b) component model, and c) basic services.

This document defines the WS- Resource Framework-based deployment API for

performing such tasks. A CDDLM deployment infrastructure must implement this
service in order for remote callers to create applications on the infrastructure.

This document is accompanied by an XML Schema (XSD) file and aWSDL service
declaration. The latter two documents are to be viewed as the normative definitions of
message el ements and service operations. This document is the normative definition of
the semantics of the operations themselves.

3 Purpose of the Deployment API

The deployment API is the SOAP/WS-ResourceFramework (WS-RF) API for deploying
applications to one or more target computers, physical or virtual.

The APl is written assuming that the end user is deploying through a console program, a
portal Ul or some automated process. This program will be something written by a third
party to facilitate deployment onto a grid fabric or other network infrastructure which is
running the relevant CDDLM services.

3.1 Use Cases
There are three different use cases that it is designed to support:

1 The deployment target is an OGSA-compliant Grid Fabric. Resource allocation and
Job submission (using the JSDL language [JSDL] or equivaent) is part of the
deployment process. In this use case, the deployment APl must integrate with the
negotiation, and deploy a CDDLM-language described system over the machines
alocated by the resource manager.

2 The deployment target is a pre-allocated cluster set of machines. The resource
allocation process is bypassed - it can be presumed to have happened out of band.

3 Oneinstance of a CDDLM runtime is delegating part of a deployment to another host.
There is no guarantee that the two runtimes are the same implementation of CDDLM,

or, if they are, that they are the same version.

3.2 Fault Tolerance
The architecture is intended to support fault tolerant implementations, to the extent that a

failure of the deployment endpoint may not terminate the application, and may not render
the application unreachable.

To be achieve this goal, any set of nodes onto which a system is deployed, must be
visible to and manageable by more than one deployment endpoint. Furthermore, if the
failure of this endpoint is not to prevent access, any SOAP endpoints that provide direct
access to the system, must be hosted on the system nodes themselves.

4 Architecture

4.1 Core Architecture

The API comprises a model for deployment, and a WS- ResourceFramework [WS-RF]
based means of interacting with this model.

A deployment client is an application that wishes to use the deployment API to deploy to
ore more hosts that have been pre-allocated using a resource allocation system. A
deployment portal isaWS-RF service endpoint that the deployment client communicates
to, in order to deploy applications, and endpoint addressed via a WS-Addressing
Endpoint Reference (EPR) [WS-A]. This specific EPR is referred to as the portal EPR

To deploy, the client first issues a request to the portal EPR to create a system. This
regquest includes a deployment descriptor in one of the CDDLM supported languages and
potentially other information that describes and configures the application. This creation
request returns a new EPR, which provides access to the state and operations of the
system, the system EPR.

The system EPR can be bound to any node that the portal EPR chooses; there is no
requirement that it is bound to the same portal node. For maximum availability, hosting
the system EPR on the same node of the system may be the best approach. An example of
thisisshown in Figure 1 .

SystemEFR SwstemEFR
2 1

FortalEFR PoralEPR

Client

Figurel. Mode of deployment and EPRs. Multiple Portal EPRs can manage the
same set of deployment nodes.

The caller can then make a request to the system EPRto initialize the system. If
successful, the application asynchronously enters the next state in its lifecycle, initialized.
Once a system has been initialized, it can be moved through other stages of its lifecycle.
The complete lifecycle is defined in section 4.2, and illustrated in figure 2.

instantiated erminate/>

<initialize/>

<terminate/> <destroy/>

initialized failed > terminated

<run/>

Figure2. Thelifecycle of a deployed application

As adeployed system moves through its stages of its lifecycle, it can send lifecycle event
notification messages to registered listeners, using a mechanism such as WS-Notification
[WS-Noatification]. The lifecycle state of the system can also be determined by querying
the appropriate resource property of the system, according to the WS-Resource Properties
[WS-ResourceProperties] specification. There is aso a synchronous, blocking call to
probe the hedlth of a system; this must be routed to the system itself, so that it can
determine its own health. This will return its current state, and any custom status
information the system chooses to return. If the system has failed, or terminated after a
failure, the status information will include the fault information.

The portal EPR supports other properties and operations. The list of currently deployed
systems can be determined, along with their system EPRs. There are also static
information and dynamic information documents which can be retrieved from the server;
again these are represented as properties following the WS-Resource Properties
specification.

The portal EPR can raise events when new systems are created, using the WS-
Notification protocol.

4.2 Lifecycle

CDDLM components have a uniform lifecycle, ore that is normatively described in the
component model specification [Schaeffer05]. The lifecycle of a deployment matches the
lifecycle of the components within. Thisis essential to permit aggregation of systems.
The main difference is the notion of adestroyed component. When a system is destroyed,
all record of itislost. A terminated system, may still have state that is remotely
accessible.

The states of a system are as follows:

instantiated The system has just been instantiated.
initialized The system has been initialized.
running The systemisrunning

failed The system hasfailed

terminated The system has terminated

destroyed The system is destroyed.

Instantiation and initialization represent the creation and configuration of a component,
and when it is moved into running then it is actually functional, The state failed is entered
automatically when afailure is detected; termination is the only exit condition;
terminated is the end state of a component and can be entered through a termination
request.

The lifecycle is exposed through the operations: of the service. The create operation is
will create and instantiate a system. The run operation will move the system to the
running state, and terminatewill move it to the terminated state.
4.3 Fault Tolerance
As dtated, the architecture must enable fault tolerant implementations. Here is how thisis
accomplished:

Multiple Portal EPRS can provide access to the same set of nodes.

The failure of a portal does not imply the failure of a system.

The failure of a node hosting a system EPR will result in the destruction of that
system.

Issuing a <wsr | : Dest r oy> request to a system EPR will destroy the system.

Every system instance must have a WS-RF property "ID" of type xsd: URI
property that must be unique; this can be used for equality tests through simple
string comparison.

Portal EPRs servicing a set of nodes should be discoverable by a client in some
manner. Registration in a service group is one option [WS-ServiceGroup].

Implementations may implement fault tolerant EPRs through the use of a dynamic
DNS service, one in which the DNS entries for the hostname(s) of the portal are
updated as portal instances appear and disappear. Client systems should to be

written with the knowledge that the IP addresses of an EPR may change, and not
to cache resolved | P addresses indefinitely.

4.4 Other Architectural Features.
4.4.1 Named systems

Callers may provide a string name for a system. This system name, if provided, must be
unique amongst all systems that a portal EPR can manage.

The system name must begin with one of the charactersintheset (A . za..z_.] and
continue with charactersin therange [A . za. . z09_.]. Thisis a proper subset of the XSD
type Noname element names, and is also a subset of the valid charactersin a URL. Thisis
intentional, and while the specification does not itself take advantage of the fact,
languages may choose to do so.

4.4.2 Deployment Language Agnostic

The deployment API is agnostic as to which particular language, or version thereof, is
used for a deployment descriptor. When a remote deployment is created, the language
and version of the descriptor must be supplied. The sole requirement of alanguage is that
it can either be nested inside an XML document, or that a URL to the descriptor is
remotely accessible to the destination. In the case of the latter, the URL to the descriptor
must be provide when initializing the system.

Every language is identified by a unique URI. This language URI must be supplied with
the deployment descriptor or URI.

4.4.3 Job Language Agnostic

Just as the API allows implementations to support deployment languages/versions, the
API also permits multiple Job specification languages. That is, alongside JSDL, an
implementation may sup port the Globus Resource Specification Language [GlobusRSL].

4.4.4 Deploy-time properties in the language and service API

Consider a deployment descriptor that wants to control onto which machine that it wants
different components deployed onto. When the descriptor is written, the actual hosts are
unknown. It is only during deployment that the mapping becomes apparent. Either the
descriptor is rewritten with the fixed values, or we provide a way for subsidiary
information to be passed alongside the descriptor.

The SmartFrog language [Goldsack04] supports this with the PROPERTY and | PROPERTY
keywords, which bind keysin aJavaj ava. System Properti es hashtable to string and
integer values. For example, a deployment descriptor could be bound to three properties:

dat abase extends Dat abase {
sf Host nane PROPERTY host s. dat abase;

passwor d PROPERTY dat abase. passwor d;
| ocal host LAZY PROPERTY | ocal . host nane

At deployment time, each property string is looked up and assigned to the attribute, or a
fault israised. The LAzy keyword indicates that the evaluation must not take place in the
context of the process interpreting the deployment descriptor, but instead the system

actually hosting it. The XML language does not explicitly contain such a feature [XML-

CDL], a standardized component could be designed to extract the values from the
name/value list.

To enable this functionality within the Service interface, one of the deployment options
declares a set of name/value pairs. How these tuples are exposed to a deployment

language/framework is a language-specific feature.
4.45 Extensibility

The deployment AP is designed to support extensible implementations, and future
enhancements to the APl over time.

4.45.1 Extra Operations

A service implementation may offer extra operations at any EPR. Such extensions must
not add new declarations to the XML namespaces used in this document: they must be in
their own, private, namespace. | mplementations should document these operations and
provide updated WSDL descriptions.

There is no requirement for the extra operations supported by an EPR to remain constant
over any period of time.

4.45.2 Extra WS-Resource Properties
A service implementation may offer extra WS-Resource properties at any EPR. Again,

they must be in their own, private, namespace. |mplementations should document these
properties and provide updated WSDL descriptions.

4.45.3 Extradeployment options
It is possible that extra deployment options will be desired on different implementations

or over time. The core of such customization should be in deployment descriptors
themselves, yet there may be a need to provide extra deployment metadata.

This isimplemented through an <opt i ons> element in the<i ni ti al i ze> message. This
(optional) element contains alist of zero or more deployment options. These are extra
parameters to the deployment request. Every option is named with a URI, and can have a
string or integer attribute value, or contain nested XML. A nust Under st and étribute is
used to indicate whether or not an option must be understood.

The option list is avery powerful aspect of the API, but potentially dangerous. Any
protocol standard which has optional aspects is harder to write clients against than one
which does not, as there is likely to be less consistency between different
implementations. To manage this risk, the deployment API has the following
reguirements on optional metadata parameters:

All options must be that: optional. It must not be an error to deploy a system with
no options declared.

Every option is named by a URI.

All URIs that begin withhtt p: // gri df orum or g/ cddl m are reserved for options
defined by the CDDLM working group.

Options must contain either string, integer, Boolean or arbitrary XML values.

String and integer values are supported via attributes; XML is supported as nested
data.

An option must contain only one vaue type. Implementations must raise a fault if
multiple nested or attribute values are declared on the same option.

All options that an implementation supports must be enumerated in the server
information property of the portal EPR.

It is an error to include multiple options of the same URI in a descriptor.
Implementations must raise a fault when this occurs.

Options may be processed in any order. Options must not require a specific order
of processing.

Service implementations must ignore any options that they do not recognize, if
nust Under st and="f al se" for that option.

Service implementations must understand all options which are supplied with
nust Under st and="t rue" for that option. If any such option is not understood, a
fault must be raised.

The processing rules for deployment are as follows:

1
2

Option processing must take place before the system is moved to the running state.

An implementation must be able to deploy a system when the entire options portion of
the request is empty or omitted.

Any option that is marked nust Under st and="t rue” MUST be understood. If not, the
Fault " not - under st ood" must be raised, identifying the particular option by its URI in
the ext r abat a field of the fault.

Implementations must not raise this fault when they do not understand any options that
are marked nust Under st and="f al se", or for which there is no nust Under st and
attribute. These must be ignored.

Duplicate options must cause the operation to be rejected with abad- ar gurent fault,
identifying the particular option by its URI in theext r abat a field of the fault.

5 Deployment API Overview
The service API consists of two endpoint types, portal endpoints, addressed by portal

EPRs, and system endpoints, addressed by system EPRs. Portal EPRS return system
EPRsto callers, either in response to |ookup/mapping messages, or when a system is

successfully created.

The two endpoint types are Resources within the terminology of the WS-Resource
Framework specifications.

In this section of the document, the following listed prefixes refer to the stated

namespaces.
prefix URI description
xsd htt p: //ww:. w3. or g/ 2000/ 10/ XM_Schenma XML Schema
Types
wsa http://schemas. xm soap. or g/ ws/ 2003/ 03/ addr essi ng WS-Addressing
types

api ht t p: // www. gri df orum or g/ cddl mi servi ceAPI / 2004/ 10/ 11 Deployment API

cdl http://wa. gri df orum or g/ 2004/ 12/ CDDLM XM.- CDL/ 1. O XML CDL

cnp http://ww. gri df orum or g/ cddl mi conponent s/ 2004/ 11/ 06 Component Model

wsr f -bf http://docs. oasi s- open. or g/ wsr f/ 2004/ 06/ wsr f - W& WS-BaseFaults
BaseFaul ts- 1. 2-draft- 01. xsd

wsrf-rl http://ww:. i bm coni xm ns/ st dwi p/ web- WS-Resource
servi ces/ WsResour celLi feti me T T T

wsrf-rp http://wav. i bm conf xm ns/ st dwi p/ web- WS Resource
servi ces/ WsResour ceProperti es Properties

wsrf -nt http://ww:. i bm coni xm ns/ st dwi p/ web- WS-Notification
servi ces/ WsBaseNot i fi cati on

wst op http://wav. i bm cont xni ns/ st dwi p/ web- ser vi ces/ WsTopi cs WS-Topics

s12 http://wwv. w3. or g/ 2003/ 05/ soap- envel ope SOAP1.2 Envelope

xmi http://www w3. or g/ XM/ 1998/ nanespace XML attributes

Unprefixed types in the document and accompanying schema are in the api hamespace.

5.1 Portal Endpoint
The portal endpoint is the endpoint that the caller initially locates and communicates
with. It can be used to create a new system within the set of nodes that it manages, it can
be used to locate an existing system, and it can be used as a source of system creation

events.

5.1.1 Portal EPR Properties

Name Type

Meaning

StaticPortal Status Stati cPortal StatusType

Static portal information; constant
for the lifetime of the portal itself

Name

Type

Meaning

Dynam cPort al St at us

Dynani cPor t al St at usType

Dynamic server information; may
be different on every read

Depl oyedSyst ens

Syst enRef er enceli st Type

List of system EPRs

Topi cs

wsr f - nt: Topi cExpr essi onType

List of topics

Fi xedTopi cSet

xsd: bool ean

flag to indicate whether topic set
isfixed

Topi cExpressi onDi al ects

xsd: anyURl

Dialect of topicset

5.1.2 Portal EPR Operations

Name

In

Out

Create

host name: xsd: string

wsa: EPR

Create a system; hostname is optional

LookupSyst em

xsd: string

wsa: EPR

Map from system name to asystem EPR

wsr f -
rp: Get Resour ceProperti es

wsr f-rp:
Cet Resour cePr opert yRequest

wsr f-rp:
Cet Resour cePr opert yResponse

Get the value of aresource

wsr f -
rp: Get Mul ti pl eResour ceProp
erties

wsrf-rp:
Get Mul ti pl eResour ceProperties
Request

wsrf-rp:
Get Mul ti pl eResour cePropertiesR
esponse

Read multiple resources

wsr f-nt: Subscri be

wsr f-nt : Subscri be

wsr f-nt: Subscri beResponse

Subscribe to events

If a portal has a managed lifetime, then it may aso implement WS-Resourcelifetime

properties and operations

5.2 System Endpoint

This represents a system that has been deployed. System EPRs are obtainable by creating
one at the portal EPR, or through lookup operation offers by a portal.

5.2.1 System EPR Properties

Name

Type

Meaning

Syst emNane

xsd: string

user-defined name

Name

Type

Meaning

System dentifier

xsd: anyUri

unique identifier

Systentt at e

cnp: Li f ecycl eSt at eEnum

current system state

Statelnfo

xsd: string

Text stateinfo

Syst enExt endedSt at e

UnboundedXM_AnyNarespace

Component state

Cr eat edTi e

xsd: dat eTi me

Time system was created

Start edTi ne

xsd: dat eTi me

Time system was terminated

Ter m nat edTi ne

xsd: dat eTi me

end time (not present until system
isterminated)

Ter mi nati onRecor d

Term nat i onRecor dType

termination record (present after
termination)

Topi cs

wsr f - nt: Topi cExpr essi onType

List of notification topics

Fi xedTopi cSet

xsd: bool ean

flag to indicate whether topic set
isfixed

Topi cExpressi onDi al ects

xsd: anyURl

Dialect of topicset

5.2.2 System EPR Operations

Name

In

Out

Initialize

j ob JobDescri pt or Type
descri ptor
Depl oyment Descri pt or Type

voi d

Initialize a system; passin the job and component descriptors and build

up the component graph.
AddFi | e m nmet ype xsd: string xsd: anyURl
dat a xsd: base64Bi nary
Add afileto this document so that it is accessible by a URI from within
the deployment descriptor.
Run voi d voi d
Start running an initialized system
Pi ng voi d St at usType
Probe a system's health.
Resol ve xsd:string path xsd: any

Resolve areference relative to this system. Can return EPRs to

Name

In

Out

components; string or other data

Ter m nat e

xsd: string Message

|void

Terminate a system; passin a message

wsr f -rp: Destroy

Destroy the System EPR, terminating the System if it is not yet

terminated

wsr f -
rp: Get Resour ceProperti es

wsr f-rp:
Cet Resour cePr oper t yRequest

wsrf-rp:
Cet Resour cePr opert yRespon se

Get the value of a resource

wsr f -
rp: Get Mul ti pl eResour ceProp
erties

wsr f-rp:
Get Mul ti pl eResour ceProperties
Request

wsr f-rp:
Get Mul ti pl eResour ceProperti esR
esponse

Read multiple resources

wsrf-nt: Subscri be

wsr f-nt: Subscri be

wsnt : Subscri beResponse

Subscribe to events

5.3 UML Visualization of the WS-RFresources

winterface
WSRF Resource

+Humr-miFetesourceFmoerties)

+uEt-mpiFetifuliole fe sowme Pope die =)

AN

WS- RF Motifying Resource

+ Topics
+F e dTopicSet

W5-RF Destroy=sble Resource

Hius rf-1p: [estroy)

+ TopicExpressionbialects
- «WESRF Resources
i rf- it Subes cribe) BaseComponent _ZA
froreate)
initialzel)
runi)
e rminated)
SystemEPR
+ SystemM ame
+ Systemnldentifier
FortzslEFPR 4+ SystemState
i StaticP otal Status 1.7 + Statelnfo
tDynamicF artal Status > + SystemExtended State
#Deployed Systeme o.r L>+I3reatedTime
+ StartedTime

it Createlin hostname, in name) : wsa:EPR
tLookupSystermniin name) ; wsa:EPR

Figure3. A UML representation of the endpoints, showing how they integrate

+Dreployed Systems

+ Terminated Time
+ Termination R ecard

[+ niti alize)
+AddFiled)
+RUM)
+ Fingil)
+Fesolve)

+ Terminate)

with the WS-RF framework, and the component model.

6 Portal
6.1 Portal Properties
6.1.1 StaticPortalStatus:

This property contains static portal information; information constant for the lifetime of
the portal instance The portal elements details contains static diagnostics information,
such as product name and timezone portal. The information lists are all lists of URIs that
can be used to determine features.

Portal Details

Listof — — — — — — —
languages

____________ o =
) | 0.0 |
(statianrtaIStatusType E:]—EE— List of -
supported Job
languages; each by
Static status should their own URI
be constant for the life of
this instance of the
r- = — —— —1

service, while

information is

! EoT H
transient. = == - item |

____________ .
| 0 = |
Listof @— — — — — — —
supported
notification
mechanisms
- - — — — |

oo &—G=p e)|
............ S
| 0= |
Listof — —— — — — —
options that are
understood

6.1.2 DynamicPortalStatus

This is any dynamic status information.

6.1.3 DeployedSystems

Thisisalist of deployed systems which the Portal is aware of. This may include systems
in the portal which the portal did not deploy, but which a peer portal deployed. It may
also be restricted to those systems to which the caller has access rights. Network
partitioning and other events may cause systems to be temporarily invisible to thislist,
and return later.

——— —

systemReferencelistType

_——— —

from namespace
"http://schemas.xml
soap.org/ws/2002/1
2/policy#policy" are
used, they must
appear first (before
any extensibility

elements)

|
|
|
|
: If "Policy" elements
|
|
|
|
|

6.2 Operations
6.2.1 Portal::Create(hostname ,name)
This requests the portal implementation to create a new system, ready for deployment.

The hostname element specifies an optiona hostname. If set, it nominates a host onto
which the port should instantiate the System and hence the system EPR. If unset, or if
the identified host is deemed unsuitable/unavailable, the portal can instantiate the system
on ahost of its choosing. Thus the hostname is merely a hint, a hint to improve
availability and performance.

The name is an optional name of the system. One will be generated if none is supplied.

,--1:=hustname
createRequest fﬁ—@}' _______________________

System names are constrained strings:

<xsd: si npl eType name="syst emNameType" >
<xsd: annot ati on>
<xsd: docunent ati on>
This is the policy for the nam ng of systens
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd:restriction base="xsd: NCNane" >
<xsd: pattern value="[a-zA-Z \-\.][azA-Z \-\.\P{Nd}]*"/>
</xsd:restriction>
</ xsd: si npl eType>
The response is an EPR to the instantiated system, an EPR which can beimmediately

used for direct communications. Creation of a system EPR is therefore a synchronous
operation.

= == systemReference & :

-~ any ##other
S ity i

If an entity is registered with the portal for creation events, then the portal must send
notification to that entity that new system has been created. The notification must not be
sent until the system is ready for direct communication. There is no specification of the
ordering of returning from the cr eat e Operation and the sending of any notification
mechanism. If there are multiple portals supporting deployment to a cluster of nodes,

notification events may be sent to listeners on one portal, even if the deployment was
requested on the other.

6.2.2 LookupSystem(name)
This maps from an system name to an EPR (or a fault)

lookup SystemRequest

Look up a system:
pass in the name and get a
reference back

(or an error, if there
is no such system or
security prevents

the caller seeing it)

lookup SystemResponse H ==

-w:EServiceName
any #other,
Ryl it xq; _"

0=

from namespace
"http://schemas.xml
soap.org/ws/2002/1
2/ policy#policy" are
used, they must
appear first (before
any extensibility
elements)

|
|
|
|
: If "Policy" elements
|
|
|
|
|

7 System

The System EPR represents the deployed system After creation, it is still undefined, and
must be configured before it can be moved to arunning state.

7.1 System Properties

AF Systemldentifier
tJ

SystemEndpointProperties @

7.1.1 SystemName

Thisis the name of the system.

7.1.2 CreatedTime/StartedTime/TerminatedTime

These are al xsd: dat eTi ne timestamps of when a system entered a particular state.
7.1.3 SystemTerminationRecord

This containsacnp: type, terni nati onRecor dType

- any ##other
SEC OV s

It contains information about the reason for the system's termination. It is only present
after a system has been terminated.

7.2 System Operations
7.2.1 System::Initialize

Thisis acomplex request, as it configures the system and moves it into the initialized
state.

A deployment descriptor must be supplied; it consists of alanguage URI, and either an
inline deployment descrip tor or a URL to alocation where the descriptor can be located.

oo 2

initializeRequest

The optiona <j sdl > element contains the job description that was used when submitting
the job to the front-end portal. As with the<descri pt or >, it iS Of type descri pt or Type; it
must have alanguage URI and either an inline body or a URL to the descriptor. The
interpretation of this data by the service implementation is undefined.

The optional <opt i ons> element contains alist of zero or more configuration options.
These are late-binding parameters to the deployment request, or to the deployment
runtime.

When the request message is received, the system EPR must validate it (synchronously)
and initialize the system. For CDDLM implementations, initialization impliesthat the
and deployment descriptor and JSDL descriptor may be retrieved (if needed) and parsed.
The application is configured, entering theinitialized state. This can be a time consuming
process, so must be an asynchronous operation.

The response to a successful request is an empty response, <i ni ti al i zeReponse>:

| initializeResponse |

It's presence implies that the initial validation was successful, and that initialization has
begun, or has at least been scheduled.

7.2.1.1 The propertyMap schematype

To aid those options that take a map of name/value pairs, there is a predefined XML
Schema type that can represent the construct:

propertyMapType [

proper t yMap €lements can be placed into the <xm > child element of an option. Both the
name and value of apropertyTupl e Within apropert yMap element are of type xsd: st ri ng;
individual options are free to declare extra restrictions on the value of properties,
restrictions which can be validated when processing the option.

There is no requirement that the name/value pairs are unique within a pr oper t ymap
element; that is also a restriction that can be declared in a specification of a particular
option.

7.2.2 System:.addFile(file)

This request uploads afile to the infrastructure, such that it is visible by deployed
programs, and by the System EPR itself.

addFileRequest [Mime f the

The response returns a URI to the uploaded file, a URI either of type file: or http:

EaddFiIP.Respunse

The file must be visible to programs deployed by this descriptor. They may be visible to
other programs running with the same credentials, but this can not be guarantees. If
exposed as afile: URL, the file should be read-only.

The lifespan of the uploaded file is bound to that of the created system; when the System
EPR is destroyed, all uploaded files are destroyed.

There is no guarantee of high-availability in deployment; failure of a single node may
render the URL unreachable.

7.2.3 System::Run

This request runs a system. This triggers an asynchronous action, as it may take some
time to enter the running state. It is only valid from a state in which the lifecycle permits
running to be reached; initialized and, implicitly, running. In the case of the latter, the
operation is a no-op. If the system isinitializing itself, asaresult of an i nitiali ze
request, the request should be queued for processing after the state transition is

compl eted.

The response is an empty element:

runResponse

A response means that the system has been queued to enter the running state
asynchronoudly, or that it now isin that state.

7.2.4 System::Ping
This is a synchronous request to the system, to query its health.

pingRequest
| system StatusType
" statelnfo

pingResponse [

| :
| -1 extendedState E}{ =2, Hany ;
|

------------------- f S e |

If the system is not running, the System EPR must return with the current state. If the
system is running, the request must be forwarded to the application, which can return any
extended state information.

This effectively acts as a liveness test upon the application.

7.25 System::Resolve

This operation resolves a path and returns its value or an error. It must be avalid
operation when a system is initialized or running. It may be valid in afailed or terminated
system.

resolveRequest [== w

rath to resolve

The response is arbitrary XML data, the contents of which depend upon what the path
resolved to.

7.2.6 System:.Terminate

This request terminates the system. To be idempotent, this call does not raise a fault when
the system is already terminated.

| terminateRequest £ == " reason

Upon receipt, system termination should commence. Termination is async hronous.

| terminateResponse |

The response is an empty element.
7.2.7 <wsrf-rp:Destroy/>

The <wsr f-rp: Dest roy/ > operation destroys the System EPR itself. All files uploaded are
destroyed, and the system is terminated if it is not already terminated.

After sending this message and receiving a response, service consumers should not make
cals of the EPR, as it may not be valid.

Implementations may continue to export System EPR valid until the system is
terminated. If thisis the case, receipt of a multiple Destroy request should not be an error.
However, receipt of all other requests on the endpoint from external callers may be
treated as faulting.

8 Notification

Notification enables front-end applications to receive notification when a system finishes.
It also enables management tools to track the number of running systems.

All implementations of the deployment APl must support WS-Noatification (WS-N), as
specified in the document. The implementations are free to implement aternate
mechanisms; that is beyond the scope of this document. What is covered, however, isa
means of listing all notification mechanisms supported by an implementation. Every
server instance is required to enumerate all supported mechanismsin alist included in its
static server information property.

8.1 Notification Policy
Implementations MUST support WS-Noatification.

Implementations MAY support alternate notification mechanisms.

Implementations MUST list all supported notification mechanisms in the
stati cl nfo information.

Implementations MUST support the topics defined below, on the relevant EPR
types.

Implementations MAY aso support Terminate notification events of WS-
ResourceL ifetime, which are raised after an EPR is destroyed.

There will be one notification for system lifecycle events.

There will be one notification for the portal EPRS, which is raised when a system
is created.

There is no guarantee of fault tolerant subscriptions. Implementations MAY
include WS-Policy metadata that informs callers how to renew subscriptions in
the event of system failure.

8.2 WS-Notification Support

As stated above, implementations MUST support WS-Notification; this does not prevent
them also implementing supplementary mechanisms. There are specific topic spaces
[WS-Topics] defined:

Portal EPRs must support a WS- TopicSpace that contains one topic: system
creation events. This notifies callers that a new system has been created.

System EPRs must support a WS- TopicSpace that contains one topic: lifecycle
events. This notifies callers of changes in a system's lifecycle state.

8.3 Fault-Tolerant Notification

Implementations are not required to provide fault-tolerant notification. The failure of
portal may result in the loss of portal event subscriptions, and the failure of a system may
result in the loss of system event subscriptions.

9 Fault Policy
Faults are based upon the WS-BaseFault model [WS-BF], taking on some of the lessons

of [Loughran02], namely that extra information such as hostname and process is essential
for locating which process among many has failed on a clustered system.

Faults are raised in response to errors either at the remote endpoint, in the local
framework, or between the remote endpoint and other parts of the distributed system.
They can be returned to callers in response to a an operation on an endpoint, or sent as
part of a notification event.

All faults that will be explicitly sent are derived from WS-BaseFault faults. Service
implementations may implicitly raise SOAPFault faults, as that is inherent in most
implementations.

9.1 Fault Categories
9.1.1 Service Faults

These are the faults that are raised by the service. They are grouped into a hierarchy of
WS-BaseFault faults. There is a base fault class bepl oynent Faul t, from which all others
are derived.

All Service interfaces must declare that they raise these Depl oyrent Faul t instances, rather
than list the specific faults. Thisis to provide forward extensibility.

The API lists specific subclassed faults of Depl oyrent Faul t that may be generated by a
service or received by a client. These faults represent some of the faults that a service
implementation may send.

If an implementation has a fault state whose meaning matches that of the predefined
fault, the predefined fault must be thrown. If this predefined fault has standard elements
for embedded fault information, the implementation should fill them in. The
implementation may add implementation specific data within the ext r a- dat a element of
the fault, to supplement this information. This extra data must not add new types to the
XML namespaces of this deployment data. The XML schema and semantics of this extra
data should be documented.

If an existing fault type is not suitable, implementations may create new fault types.

If an implementation creates new fault types, these must extend the existing fault types
which operations are declared as throwing, which effectively means that they must

extend Depl oynent Faul t . These new faults must not change the XML schemas of the
deployment API, and they must be in a new namespace. The new faults and XML content
should be publicly documerted.

If an implementation adds new operations or properties at the existing endpoints, these
new operations may raise whatever faults they see fit, within the constraints of the WS-
BaseFault specification. Again, the implementation must not add new types to the
deployment API namespace.

9.1.2 Transport faults

Transport faults will inevitably be raised as the appropriate fault for the system. For
example, the Apache Axis SOAP client raises Axi sFaul t faults for all SOAP events,
wrapping stack trace and even HTTP Fault data within the fault as DOM elements.
Microsoft .NET WSE has a similar fault class.

9.1.3 Relayed Faults

Relayed faults are those received by the far end and passed on. They may be WS-
BaseFault Faults; HTTP error codes, SOAP faults, native language faultswrapped as
SOAPFaults, or predefined deployment faults.

WS-BaseFault uses fault nesting for relaying faults, however, al faults must be a
derivative of WS-BaseFault. Thisis addressed by defining a new WS-BaseFault
derivative, aw appedsoAPFaul t . Thistype is actually an extension of Depl oynent Faul t.
This fault can nest any received SOAPFault, with an element containing the received
XML data. Well-known elements in this fault data (such as the Apache Axis stack trace

and HTTP fault code) should be copied into any fields in the main fault that fill the same
role.

9.1.4 Fault Hierarchy
The UML representation of the fault hierarchy is as follows:

wshf: Baselaulf

+Timestamp : x=sd:date Time
+OriginatorFeference : wsa:EFPR
+Errorc ode (xsd=tring

+ [es cription @ x=sdistring

+F aultC ause : nsbf:BaseF auk

[

Deploy et Fault

tHuost ;s distring
tProcess xs dstring
tE«frabata: ==d:amy
HCompanent :x=sd:=tring

HStack Trace
Wirsp ped S0AF Fault LanguageFault
- SOAPF ault © =sd:any tFile : ==d:=tring
tLine :xsdinteger

Figure4. Fault Hierarchy

9.2 Fault Security
Sites offering deployment services, may, for security reasons, wish to strip out some

information, such as stack trace data. |mplementations should provide a means to enable
such an action prior to transmitting faults to callers.

Host name and process information may be viewed as sensitive, yet again, thisis
exceedingly useful to operatio ns. Implementations may provide a means to disguise this
information, so that it does not describe the real hostname or process ID of a process, but
instead pseudonyms that can till be used in communications with any operations team.

9.3 Internationalization

The WS-BaseFault specification makes no statement upon which language error
descriptions are described..

If an implementation can return descriptions in one language, it must use xm : | ang
attributes to indicate the language of a description. Multiple descriptions, in different
languages may be included. The client application should extract the description(s) whose
language is the nearest match to that of the client.

9.4 Faults
9.4.1 DeploymentFault

This type represents any fault thrown by the deployment infrastructure. All endpoint
operations must declare that they throw this fault, and must not explicitly declare any
derivative faults that they may throw.

Element Type Meaning
Host xsd: string Hostname or pseudonym
Process xsd: string Any process identifier suitable for diagnostics
Ext r aDat a unboundedXM_AnyNanespace Extrafault data
Conponent xsd:string Path to component raising the fault
St ack stringLi st Type Optional stack trace

Implementations must include a component reference if it is known. Implementations

should include hostname and process information. Process information may be a low-
level identifier (such as an operating system process ID), or it may be some application

specific identifier. Its role is merely to distinguish which process amongst many ina
load-balanced implementation raised the faullt.

9.4.2 LanguageFault

A language fault represents any fault in language processing for which afile and line
number are relevant.

Element Type Meaning
File xsd:string Filename/URI of file at fault
Line xsd: i nt eger Line number within thefile

If the error isin the inline deployment descriptor, the Fi | e element must be empty " or
omitted. Furthermore, the Li ne element must be relative not to the deployment request,

but to the inline descriptor. Recipients of faults can then infer from the empty/absent file
element that the fault was in the inline request.

Note that a consequence of this design is that implementations should preserve white
space in the deployment descriptor when saving them to file.
9.4.3 WrappedSOAPFault

This type represents a mapping of a classic W3C SOAPFault [SOAPL.2] to aWS-

BaseFault, as an extension of Depl oynent Faul t . It adds two new elements to contain data
unique to SOAPFaults.

Element Type Meaning

SoapFaul t s12: Faul t Fault code information

The normative mapping of SOAPFault elements to w appedSOAPFaul t elementsis as
follows:

SOAP1.2 WrappedSOAPFault
/s12: Faul t W appedSQOAPFaul t / api : SoapFaul t
SOAP endpoi nt W appedSQOAPFaul t /wsr f -bf : ori gi nat or

The SOAP endpoint must be trandated into a wsa: Endpoi nt Ref er ence if it isasmple
URL/SOAPAction tuple.

Detail from SOAP stacks with well-known fault fields, such as the Apache Axis stack
trace, may be imported into appropriate fields in the pepl oynent Faul t .

9.5 Fault Error Codes

Specific fault error codes, and their meaning, are covered in a separate informative
document.

10 Security

The deployment requests must only be granted by suitably authorized individuals, or their
suitably authorized agents. For deployment to a Grid infrastructure, that means that the
standardized security model of the infrastructure must be used to authenticate callers.
Only callers with the relevant rights may deploy systems.

When delegating deployments across nodes, the node issuing the deployments needs to
have the rights to do so, and the deployment itself still needs to be authenticated as a
legitimate request of the sender.

Along with deployment, the ability of a caller to list and manipulate running systems,
introduces another security issue: that of who has access to the set of deployed systems.

Files uploaded via syst em : addFi | e must only be visible to the deployed application, and
potentially other applications deployed under the same credentials.

11 Editor Information
Steve Loughran, HP Laboratories

steve_|loughran@hpl.hp.com

12 References

[Axig] Apache Software Foundation, Apache Axis,

[Foster04] Foster et al., Modeling Stateful Resources with Web Services, 2004.

[Goldsack04] Goldsack, SmartFrog Language, 2004

[GlobusRSL] Globus, Resource Specification Language, 2004

[JSDL] Job Service Description Language, 2004.

[Loughran02] Loughran, Making Web Services that Work, HP Laboratories,
TR-HPL-2002-274, 2002.

[ParastatidisO3] Parastatidis et al., A Grid Application Framework based on Web
Services Specifications and Practises, University of Newcastle, 2003.

[RFC2119] S. Bradner, RFC 2119 - Key words for use in RFCs to Indicate
Requirement Levels, 1997

[Schaeffer05] Schaeffer., CDDLM Component Model Specification, 2005

[SOAPL.2] W3C, SOAP Version 1.2, 2003.

[XML-CDL] CDDLM XML Configuration Description Language Specification
version 1.0 draft 2004-12-10.

[WS-A] Gudgin, M. and Hadley S., Web Services Addressing -Core, 2004.
[WS-BF] Tuecke et al., Web Services Base Faults (WS-BaseFaults), 2004.
[WS-BaseNotification] Graham et a., Web Services Base Notification 1.0 (WS-

BaseNotification), 2004.

[WS-BrokeredNotification] Graham et al., Web Services Brokered Notification 1.0
(WS-BrokeredNotification), 2004.

[WS-Policy] Schlimmer et al., Web Services Policy Framework (WS-Policy), 2004

[WS-ResourceL ifetime] Frey et a., Web Services ResourceLifetime 1.1 (WS-
ResourcelL ifetime), 2004.

[WS-RF] Tuecke et a., Web Services Resource Framework (WS-RF), 2004.

[WS-ResourceProperties] Graham et al., Web Services Resource Properties 1.1 (WS
ResourceProperties), 2004.

[WS-ServiceGroups] Graham et a., Web Services Service Group Specfication 1.0 (WS
ServiceGroups), 2004.

[WS-Topics| Graham et al., Web Services Topics (WS Topics), 2004.

