Configuration Description, Deployment,
and L ifecycle M anagement

CDDLM Deployment API
Draft 2005-05-20

Satus of this Memo

This document provides information to the community regarding the specification of the
Configuration Description, Deployment, and Lifecycle Management (CDDLM)
Language. Distribution of this document is unlimited. Thisis a DRAFT document and
continues to be revised.

Abstract

Successful redlization of the Grid vision of a broadly applicable and adopted framework
for distributed system integration, virtualization, and management requires the support
for configuring Grid services, their deployment, and managing their lifecycle. A major
part of this framework is a language in which to describe the components and systems
that are required. This document, produced by the CDDLM working group within the
Globa Grid Forum (GGF), provides a definition of the service APl whereby a Grid
Resource is configured, instantiated, and destroyed.

GLOBAL GRID FORUM
office@ggf.org
www.ggf.org

LB B N B
a8 8B E SN

L]
L]
-

LB B I N NN

Full Copyright Notice
Copyright © Global Grid Forum (2004-2005). All Rights Reserved.

This document and trandations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its implementation
may be prepared, copied, published and distributed, in whole or in part, without
restriction of any kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to the
GGF or other organizations, except as needed for the purpose of developing Grid
Recommendations in which case the procedures for copyrights defined in the GGF
Document process must be followed, or as required to trandate it into languages other
than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF
Or its successors or assigns.

This document and the information contained herein is provided on an "AS|S" basis and
THE GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE
USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or
other rights that might be claimed to pertain to the implementation or use of the
technology described in this document or the extent to which any license under such
rights might or might not be available; neither does it represent that it has made any effort
to identify any such rights. Copies of claims of rights made available for publication and
any assurances of licenses to be made available, or the result of an attempt made to obtain
agenera license or permission for the use of such proprietary rights by implementers or
users of this specification can be obtained from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or

patent applications, or other proprietary rights which may cover technology that may be
required to practice this recommendation. Please address the information to the GGF
Executive Director (see contact information at GGF website).

1 Table of Contents

1 I o) L= o 00 a1 (= | £ SR 3
2 g Lu0o 8 Tox o) o ISP 4
2.1 CDDLM-WG and the Purpose of thiS DOCUMENL...........ceeiiriiiiieniie e 4
2.2 XML Namespaces used in thiS dOCUMENLcoiuiiiiiiiie e 5
3 Purpose of the DeploymMeNnt APL.........c.coiiiiiiie e 5
I B U L OSSP 6
3.2 FAUE TOIEIANCE.ttt et e e e e st e e e e e s et bre e e e e e e e ee s 6
G T = 1 TN U o] o= o USRS 6
4 ATCNITECIUNE. ...ttt ettt e et e e e et ee setbeeeeeabbeeeesaabaeeesasee seessnnnenrens 6
41 COreATCNITECIUNE.iitii ittt sttt e 6
S Y 1 0 TS = (PP PUPPPURPP 8
4.3 FAUIT TOIBIANCE. ... ittt ettt ettt e st e e e s e e 9
4.4 Other ArchiteCtural FEAIUIES.eii ittt 9
A5 WS-DM INEOraliON.cciiiiieeee i eciieee e st e st e e s s rtee e e e s et e e e s e s nntre e e e e s snnnneeeeans 12
5 DePlOYyMENt APl OVEIVIEW.....cccceieiieee e et e e e s sttee e e e e s st e e e e s ssntree e e e s snreeeeessnnnnneeaeaas 13
5.1 Architecture of the Deployment SyStEMcooviiviiiirie i 13
oI o = I =0T | o | P 14
TG TSV (= 1 =0T oo 1 o | A 16
6 0] - PR 18
20 R o = (0] 1= == 18
S @ o= - 1 [0] '~ 2
7 (< 1 TP PP PR PPRRR 2
7.1 SYStEM PrOPEITIES. ...ccoiieiieeiiteesee ettt n et 2
7.2 SYSIEM OPEIELIONS.c.eeeetieeiee ettt ettt et e et e s e e anneesan e e nnn e e anne e e 21
8 [N o) 1) {07 1 o o I P PRRRR)
8.1 NOUTICAION POICY ...oeiuvieiiieiiiesie et)
8.2 WS-NOtifiCation SUPPOIcouvieiiieiiie ittt)
8.3 Portal NOtITICAONS........ueeieeiiiiiiiee et e e e e s st re e e e e e snnees 2
8.4 SyStem NOTICAIONS.ceiueieiiiieiiie e 2
8.5 Fault-Tolerant NOtIfiCatioN...........coiiiiiiiiie e 2%
9 FAUIT POLICY ... e ettt e e e 2
0.1 FaAUIt CAlBOOMTES. .. .eiueeeiei ettt sttt ettt e bt e nb e e b e e enee nnes 2
0.2 FAUIT SECUNTY.....veee ettt ettt et e e et e e st e e e st e e e nte e e snaeaesnraeaens 28
0.3 INtErNAONATIZATION.eeieieeiieeiie ettt 28
0.4 FAUIES ..ottt e e sab e e enre e e 28
0.5 AUt EIrOr COOEBScoiiiiie ittt ettt st e s sabeeeean 2
10 Implementation REQUIFEMENEScoocuiiiie e e e e e 0
11 SECUNIEY .ttt sttt ekttt ettt e s st e e st e e s bt e bt e et e et e enbe e enbeeenbeeeneeennneeas 0
12 EdItor INfOMMELIONeeieiiiee e s e e e e e e 0
13 = = o= SR 31
13.1 NOrMELVE REFEIENCES ..o ueeiie ettt et e e st e e s e e e neeeeenee 3l
13.2 NON-NOrmMative REFEIENCESooiiiie e et e e 3l
APPENIX Az EVENE TOPICS .uvvriiiiiiieiieeiecitie e e e e settee e e s s st ee e e e e s snnreeeaessnbeeeeessssnteeeeesannseeseesannnns Y

2 Introduction

The CDDLM framework needs to provide a deployment API for programs submitting
jobsinto the system for deployment, terminating existing jobs, and probing the state
of the system.

This document defines the WS-Resource Framework-based deployment API for
performing such tasks. It is targeted at those who implement either end of the API.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
this document are to be interpreted as described in RFC 2119 [RFC2119].

2.1 CDDLM-WG and the Purpose of this Document

The CDDLM WG addresses how to: describe configuration of services, deploy them
on the Grid; and manage their deployment lifecycle (instantiate, initiate, start, stop,
restart, etc.). The intent of the WG isto gather researchers, developers, practitioners,
and theoreticians in the areas of services and application configuration, deployment,
and deployment life-cycle management and to explore the community need for a
broader effort in this area. The target of the CDDLM WG is to come up with the
specifications for CDDML a) language, b) component model, and c) basic services.

This document defines the WS-Resource Framework-based deployment API for
performing such tasks. A CDDLM deployment infrastructure must implement this
service in order for remote callers to create applications on the infrastructure.

This document is accompanied by an XML Schema (XSD) file and a WSDL service
declaration. The latter two documents are to be viewed as the normative definitions of
message elements and service operations. This document is the normative definition
of the semantics of the operations themsel ves.

1.1.1 Configuration Description Language

The CDDLM Configuration Description Language (CDL) is an XML-based language
for declarative description of system configuration that consists of components
(deployment objects) defined in the CDDLM Component Model. The Deployment
API uses a deployment descriptor in CDL in order to manage deployment lifecycle of
systems. The language provides ways to describe properties (names, values, and
types) of components including value references so that data can be assigned
dynamically with preserving specified data dependencies. A system is described as a
hierarchical structure of components. The language also provides prototype-based
template functionality (i.e. prototype references) so that the user can describe a system
by referring to component descriptions given by component providers.

The CDDLM Component Model outlines the requirements for creating a deployment
object responsible for the lifecycle of a deployed resource. Each deployment object is
defined using the CDL language and mapped to its implementation The deployment
object provides a WS-ResourceFramework (WSRF) compliant "Component
Endpoint” for lifecycle operations on the managed resource. The model also defines
the rules for managing the interaction of objects with the CDDLM Deployment API in
order to provide an aggregate, controllable lifecycle and the operations which enable
this process.

The Deployment APl is aWSRF-based API for deploying applications to one or more
target computers. Every set of computers to which systems can be deployed hosts one

or more “Portal Endpoints’, WSRF resources that provide a means to create new
“System Endpoints’. Each System Endpoint represents a deployed system. The caller
can upload files to it, then submit a CDL descriptor describing the system to deploy.
The CDDLM implementation will then instantiate the component model components
that constitute the system, according to the declarations in the CDL descriptor.

A System Endpoint is effectively a component in terms of the Component Model
specification —it implements the properties and operations defined in that document.
It also adds the ability to resolve references within the deployed system, enabling
remote callers to examine the state of components with it.

2.2 XML Namespaces used in this document
Throughout the document, the following prefixes refer to the listed namespaces:

prefix URI description
xsd http://www w3. or g/ 2000/ 10/ XM_Schema XML Schema
Types
wsa http://schemas. xnl soap. or g/ ws/ 2003/ 03/ addr essi ng WS-Addressing
types
api http://wav. gri df orum or g/ cddl nmf depl oyapi / 2005/ 02 Deployment API
cdl htt p: //waw. gri df or um or g/ nanespaces/ 2005/ 02/ cddl m CDL-1.0 XML CDL
cnp http://ww. gri df orum or g/ cddl ml conponent s/ 2005/ 02 Component Model
wsr f-bf http://docs. oasi s- open. or g/ wsr f / 2004/ 06/ & WS-BaseFaults
wsr f-Ws- BaseFaul ts-1. 2-draft -01. xsd
wsrf-rl http://docs. oasi s- open. or g/ wsr f/ 2004/ 06/ & W S-Resource
wsr f-Ws Resour ceLi fetime-1.2-draft-01. xsd Framework
wsrf-rp http://docs. oasi s- open. or g/ wsr f/ 2004/ 06/ & WS Resource
wsr f- WS- Resour ceProperties-1.2-draft-01. xsd Properties
wsr f - nt htt p: // docs. oasi s- open. or g/ wsn/ 2004/ 06/ & WS-
wsn-Ws-BaseNot i fication-1.2-draft-01. xsd BaseNotification
wsrf-top http://docs. oasi s- open. or g/ wsn/ 2004/ 06/ & WS-Topics
wsn-W5- Topi cs-1. 2-draft - 01. xsd
sl12 http://ww:. w3. or g/ 2003/ 05/ soap-envel ope SOAP1.2 Envelope
xm http://ww. w3. or g/ XM./ 1998/ nanespace XML attributes
muws-pl- http://docs. oasi s- open. or g/ wsdmi 2004/ 12/ & Management using
XS muws/ wsdm muws- part 1. xsd Web Services

Unprefixed types in the document and accompanying schema are in the namespace of
the deployment AP, that referenced to by the api : prefix

3 Purpose of the Deployment API

The deployment API is the SOAP/WS-ResourceFramework (WSRF) API for
deploying applications to one or more target computers, physical or virtual.

The API is written assuming that the end user is deploying through a console
program, a portal Ul or some automated process. This program will be something
written to facilitate deployment onto a grid fabric or other network infrastructure
which is running the relevant CDDLM services.

3.1 Use Cases
There are three different core use cases of the deployment API:

1 The deployment target is an OGSA-compliant Grid Fabric. Resource allocation
and Job submission (using the JSDL language [JSDL] or equivalent) is part of the
deployment process. In this use case, the deployment API must integrate with the
negotiation, and deploy a CDDLM-language described system over the machines
allocated by the resource manager.

2 The deployment target is a pre-allocated cluster set of machines. The resource
allocation processis bypassed —it can be presumed to have happened out of
band. The user needs to upload data files to the cluster as part of the deployment.

3 Oneinstance of aCDDLM runtime is delegating part of a deployment to another
host. There is no guarantee that the two runtimes are the same implementation of
CDDLM, or, if they are, that they are the same version.

3.2 Fault Tolerance

The architecture is intended to enable fault-tolerant implementations, to the extent that
afailure of the deployment endpoint may not terminate the application, and may not
render the application unreachable.

To achieve this goal, any set of nodes onto which a system is deployed, must be
visible to and manageable by more than one deployment endpoint. Furthermore, if the
failure of this endpoint is not to prevent access, any SOAP endpoints that provide
direct access to the system, must be hosted on the system nodes themselves.

3.3 File upload

Part of remote deployment often consists of providing files to the remote systems,
both code and data. The preferred solution to this is a remote asset store of some form,
with an efficient transport and secure, version-based access to assets. Thisis not
something that falls within the scope of this working group, and has not been
addressed here.

As an interim solution, pending the availability of such systems, the deployment AP
provides a means to submit files to the remote system. These files are submitted in the
request, and a URL of type (file:, http: or https:) is returned. The URL can be used
within the deployment descriptor, and passed to the applications.

Uploaded files remain present for the lifespan of the deployed application. Thereis no
sharing between deployed applications, no way to update afile, and no way to delete a
file. Clearly, therefore, it is a pale substitute for a full asset store —and that isits
deliberate intent. When deploying to an infrastructure that hosts a full asset store, that
store and its remote upload APl should be used instead of the file upload mechanism
described in this document.

4 Architecture

4.1 Core Architecture

The API comprises amodel for deployment, and a WS-ResourceFramework [WSRF]
based means of interacting with this model.

A deployment client is an application that wishes to use the deployment API to deploy
to ore more hosts that have been pre-allocated using a resource alocation system. A

deployment portal isa WSRF service endpoint that the deployment client
communicates to, in order to deploy applications, an endpoint addressed viaa WS-
Addressing Endpoint Reference (EPR) [WS-A]. This specific EPR is referred to as the
Portal EPR The actual process for obtaining a Portal EPR is not in the scope of this
document.

To deploy, the client first issues a request to the Portal Endpoint to create a system.
This request includes a deployment descriptor in one of the CDDLM supported
languages and potentially other information that describes and configures the
application. This creation request returns a new EPR, which provides accessto the
state and operations of the system, the System EPR.

The System EPR can be bound to a System Endpoint hosted on any node that the
Portal Endpoint chooses; there is no requirement that it is bound to the same node as
the portal. For maximum availability, hosting the system endpoint on the same node
that hosts the system may be the best approach. An example of thisis shown in Figure
1.

hostl host2 host3

% System Endpoint % System Endpoint % System Endpoint
1 2 1

\\>é

Portal1l

*
Portal Endpoint
1

-System EPR2

Client
-Portal EPR1

Figurel. Model of how Portal and System endpoints may be distributed..
Multiple Portals can manage the same set of deployment nodes.

The caller can then make a request to the System Endpoint to initialize the system. If
successful, the application asynchronously enters the next state in its lifecycle,

initialized. Once a system has been initialized, it can be requested to enter through
other stages of its lifecycle.

As a deployed system changes state, it sends lifecycle event notification messages to
registered listeners, using a mechanism such as WS-BaseNotification [WS-
BaseNotification]. The state of the system can also be determined by querying the
appropriate resource property of the system, according to the WS-Resource Properties
[WS-ResourceProperties] specification. There is also a synchronous, blocking call to
probe the health of a system; this must be routed to the system itself, so that it can
determine its own health. This will return its current state, and any custom status
information the system chooses to return. If the system has failed, or terminated after
afailure, the status information will include the fault information.

The Portal Endpoint supports other properties and operations. The list of currently
deployed systems can be determined, along with their system EPRs. There are also
static information and dynamic information documents which can be retrieved from
the server; again these are represented as properties following the WS-Resource
Properties specification.

The Portal Endpoint can raise events when new systems are created, using the WS-
BaseNotification protocol.

4.2 System State

CDDLM components have a uniform lifecycle, whichis normatively described in the
component model specification [Schaeffer05]. The state of a system mirrors that of
the lifecycle of the components within. Thisis essential to permit aggregation of
systems.

The first difference is the notion of a destroyed component. When a system is
destroyed, al record of it is lost, along with any allocated storage. A terminated
system, however, may still have state that is remotely accessible. In the deployment
API, aterminated system remains visible until the endpoint is destroyed through the
<wsr f : Dest roy/ > operation, or until the portal purges its set of terminated systems.
Once a System Endpoint is destroyed, the system and any associated resources are no
longer accessible.

The second difference is that state changing operations are asynchronous. A request to
initialize, start or terminate a deployed system is received by the System Endpoint,
validated, and, if valid, queued for execution. This makes communications somewhat
resilient to communication faults.

The states of a system are as follows:

instantiated The system hasjust been instantiated.
initialized The system has been initialized.
running The system isrunning

failed The system hasfailed

terminated The system has terminated

Instantiation and initialization represent the creation and configuration of a
component, and when it is moved into running then it is actually functional, The state
failed is entered automatically when afailure is detected; termination is the only exit

condition; terminated is the end state of a component and can be entered through a
termination request.

The Portal's create operation will create and instantiate a system a system which can
then be directly manipulated via requests to its System Endpoint. The run operation
will move the system to the running state, and terminate will move it to the terminated
state.

4.3 Fault Tolerance

As stated, the architecture must enable fault-tolerant implementations. Here is how
thisis accomplished:

Multiple Portal Endpoints can provide access to the same set of nodes.
The failure of a portal does not imply the failure of a system.

The failure of a node hosting a System Endpoint will result in the destruction
of that system.

Issuing a <wsr f : Dest roy> request to a System Endpoint will destroy the
system.

Every system instance must have a WSRF property muws- p1- xs: Resour cel d Of
type xsd: anyURI property that must be unique; this can be used for equality
tests through ssimple string comparison.

Portal Endpoints servicing a set of nodes should be discoverable by aclient in
some manner. Registration in a service group is one option [WS-
ServiceGroup].

Implementations may implement fault tolerant EPRs through the use of a
dynamic DNS service, one in which the DNS entries for the hostname(s) of
the portal are updated as portal instances appear and disappear. Client systems
should be written with the knowledge that the | P addresses of an EPR may
change, and not to cache resolved IP addresses indefinitely.

4.4 Other Architectural Features.

3.1.1 Named systems

Callers may provide a string name for a system. This system name, if provided, must
be unique amongst all systems that a Portal Endpoint can manage.

The system name must begin with one of the charactersintheset[A . za..z_.] and
continue with charactersin therange [A. . za. . z09_.]. Thisis a proper subset of the
XSD type nenane €lement names, and is also a subset of the valid charactersin a URL.
Thisisintentional, and while the specification does not itself take advantage of the
fact, languages may choose to do so.

3.1.2 Deployment Language Agnostic

The deployment AP is agnostic as to which particular language, or version thereof, is
used for a deployment descriptor. When a remote deployment is created, the language
and version of the descriptor must be supplied. The sole requirement of alanguage is
that it can either be nested inside an XML document, or that a URL to the descriptor
is remotely accessible to the destination. In the case of the latter, the URL to the
descriptor must be provide when initiaizing the system.

Every language is identified by a unique URI. This language URI must be supplied
with the deployment descriptor or URI. A list of supported languages can be obtained
from a Portal Endpoint.

3.1.3 Job Language Agnostic

Just as the API alows implementations to support deployment languages/versions, the
API aso permits multiple Job specification languages. For example, alongside JSDL,
an implementation may support the Globus Resource Specification Language
[GlobusRSL].

3.1.4 Deploy-time properties in the language and service API

Consider a deployment descriptor that wants to control onto which machine that it
wants different components deployed. When the descriptor is written, the actual hosts
are unknown. It is only during deployment that the mapping becomes apparent. Either
the descriptor is rewritten with the fixed values, or we provide away for subsidiary
information to be passed alongside the descriptor.

The SmartFrog language [Goldsack04] supports this with the PROPERTY and | PROPERTY
keywords, which bind keysin aJavaj ava. Syst em Properti es hashtable to string and
integer values. For example, a deployment descriptor could be bound to three
properties:
dat abase extends Database {

sf Host nane PROPERTY host s. dat abase;

password PROPERTY dat abase. passwor d;
| ocal host LAZY PROPERTY | ocal . host nane

At deployment time, each property string is looked up and assigned to the attribute, or
afault israised. The LAzy keyword indicates that the evaluation must not take place in
the context of the process interpreting the deployment descriptor, but instead the
system actually hosting it. While the XML language does not explicitly contain such a
feature [XML-CDL], a component could be designed to extract the values from the
name/value list.

To enable this functionality within the Service interface, one of the deployment
options declares a set of name/value pairs. How these tuples are exposed to a
deployment language/framework is a language-specific feature.

3.1.5 Extensibility

The deployment API is designed to support extensible implementations, and future
enhancements to the API over time.

3.1.5.1 Extra Operations
A service implementation may offer extra operations at any EPR.

1 Private extensions must not add new declarations to the XML namespaces used in
this document: they must be in their own, private, namespace.

2 Implementations should document these operations and provide updated WSDL
descriptions.

3 Thereisno requirement for the extra operations supported by an EPR to remain
constant over any period of time. They may even change during the period in
which an EPR remains valid.

10

1.1.1.1 Extra WSRF operations

This specification and the accompanying XSD/WSDL documents define the
minimum set of WSRF operations that an endpoint must implement. There are other
operations that the WSRF specification family and WSDM list as optional.

An implementation may choose to support these extra operations. If thisis done, the
messages and operations must match the relevant XSD and WSDL documents of the
appropriate specification, and the semantics of the operations must match that of the
specification itself.

1.1.1.2 Extra WS-Resource Properties

A service implementation may offer extra WS-Resource properties at any EPR.
Again, they must be in their own, private, namespace. | mplementations should
document these properties and provide updated WSDL descriptions.

1.1.1.3 Extra deployment options

It is possible that extra deployment options may be offered on different
implementations. The core of such customization should be in deployment descriptors
themselves, yet there may be a need to provide extra deployment metadata.

Thisisimplemented through an <opt i ons> element in the <i ni ti al i ze> message. This
(optional) element contains a list of zero or more deployment options. These are extra
parameters to the deployment request. Every option is named with a URI, and can
have a string or integer attribute value, or contain nested XML. A nust Under st and
atribute is used to indicate whether or not an option must be understood.

The option list is avery powerful aspect of the API, but potentially dangerous. Any
protocol standard which has optional aspects is harder to write clients against than one
which does not, as there is likely to be less consistency between different
implementations. To manage this risk, the deployment API has the following
reguirements on optional metadata parameters:

All options must be that: optional. It must not be an error to deploy a system
with no options declared.

Every option is named by a URI.

All URIs that begin with http: //gri df orum or g/ cddl m are reserved for
options defined by the CDDLM working group.

Options must contain either string, integer, Boolean or arbitrary XML values.
String and integer values are supported via attributes; XML is supported as
nested data.

An option must contain only one value type. Implementations must raise a
fault if multiple nested or attribute values are declared on the same option.

All options that an implementation supports must be enumerated in the server
information property of the Portal Endpoint.

It is an error to include multiple options of the same URI in a descriptor.
Implementations must raise a fault when this occurs.

Options may be processed in any order. Options must not require a specific
order of processing.

1

Service implementations must ignore any options that they do not recognize, if
nust Under st and="f al se" for that option.

Service implementations must understand all options which are supplied with
nust Under st and="t rue" for that option. If any such option is not understood, a
fault must be raised.

The processing rules for deployment are as follows:

1 Option processing must take place before the system is moved to the running
state.

2 Animplementation must be able to deploy a system when the entire options
portion of the request is empty or omitted.

3 Any option that is marked nust Under st and="t rue” MUST be understood. If not,
the Fault " not - under st ood” Must be raised, identifying the particular option by its
URI in the ext rabat a field of the fault.

4 Implementations must not raise this fault when they do not understand any
options that are marked nust Under st and="f al se", or for which there is no
nust Under st and attribute. These must be ignored.

5 Duplicate options must cause the operation to be rejected with a bad- ar gunent
fault, identifying the particular option by its URI in the ext r abat a field of the
fault.

4.5 WS-DM Integration

The deployment infrastructure is designed to integrate with a WS-DM management
framework. Both Portal and System endpoints support the MUWS Resour cel d and

Manageabi | i t yCapabi | i ty attributes, to uniquely identify each endpoint, and to
enumerate their management capabilities. All supported events are derived from the
MUWS event type, and the state model of a System Endpoint is derived from the
MUWS state types.

Implementations may add more management capabilities, as they see fit. For example,
a Portal endpoint may exports a MUWS property that describes the portal's
operational state, and provides an event notifying listeners of changesin that state.

5 Deployment API Overview

The service API consists of two endpoint types, Portal Endpoints, addressed by Portal
EPRs, and System Endpoints, addressed by System EPRs. Portal Endpointsreturn
System EPRs to callers, either in response to lookup/mapping messages, or when a
system is successfully created.

The two endpoint types are Resources within the terminology of the WS-Resource
Framework specifications.

5.1 Architecture of the Deployment System

Everything is implemented as a resource in the WSRF framework, everything is
manageable in the context of the MUWS infrastructure.

WSRF Resource

+GetResourceProperty()
+GetMultipleResourceProperties ()

«WSRF Resource» «WSRF Resource»
P «WSRF Resource»
Manageable Resource WS—}.?F Notifying Resource WS-RF Destroyable Resource

-Resourceld : xsd:anyURI +Topics

-ManageabilityCapability +FixedTopicSet
+TopicExpressionDialects +Destroy ()

N +Subscribe () AN

+GetCurrentMessage ()

I

li N r_l

«WSRF Resource»Portal «WSRF Resource»

- System
+StaticPortalStatus +SystemState
+DynamicPortalStatus +Statelnfo
+ActiveSystems +SystemExtendedState
+Create(in hostname, in name) : wsaEPR +CreatedTime
+Resolve (in path) : xsd:any +StartedTime
+LookupSystem(in ResourcelD) : wsaEPR +TerminatedTime

+TerminationRecord
+AddFile() : xsd:anyURI
+Initialize()

+Resolve()

+Ping()

+Run()

+Terminate()

Figure2. Endpoint architecture. Theitemsin grey are specified externally.

5.1.1 Sequence Diagram: a simple deployment

Figure 3 isaUML sequence diagram of an interaction with the deployment
infrastructure. A client application connects a portal that it has knowledge of, and
creates a system resource. It can then add files to the system, before moving the
system into the functiona state.

13

dlient «WSRF Resource» «WSRF Resource»
portal system

Create

Create
addFile -
addFile

Run

Ping
”\.

Destroy

|

|

Figure3. Sequencediagram of a simple deployment

During the life of the system, it will respond to pi ng and Resol ve operations.
Eventually it is terminated, and then finally the resource itself is destroyed.

5.1.2 Sequence Diagram: Subscribing to events from an existing system

Figure 4 shows a client connecting to a portal, and making a Lookupsyst emcal to get
the EPR of a system. One property of the portal, Acti veSyst ens, lists all active
systems that the portal is aware of and to which the user may be allowed access.

client «WSRF Resource» «WSRF Resource»
portal system

! LookupSystem i
—i—
GetResourceProperty\,
1
GetResourceProperty
1
T J\’
|
|
|
[

Figure4 . Subscription sequence diagram

The client issues a pi ng call to verify the health of the remote system, then two
Get Resour cePr oper t y IMmessages to access resource properties. Finaly, it sends a
Subscri be request to subscribe to the lifecycle event topic of the system.

Later, when lifecycle events take place, the system will send notifications to the EPR
provided in the subscription message.

5.2 Portal Endpoint

The portal endpoint is the endpoint that the caller initially locates and communicates
with. It can be used to create a new system within the set of nodes that it manages, it
can be used to locate an existing system, and it can be used as a source of system
creation events.

14

5.1.3 Portal Endpoint Properties

Name Type Meaning
nmuws- p1- xs: Resour cel d xsd: anyURl Unique identifier for the portal
muws- p1- xs: xsd: anyURl List of supported manageability

Manageabi | i t yCapabi ity

capabilities.

Stati cPortal Status

Stati cPortal StatusType

Static portal information;
constant for the lifetime of the
portal itself

Dynam cPort al St at us

Dynam cPort al St at usType

Dynamic server information;
may be different on every time it
isread

Act i veSyst ens

Syst enRef er enceli st Type

List of System EPRs

wsrf-nt: Topics

wsr f-nt: Topi cExpressi onType

List of supported notification
topics

wsr f-nt: Fi xedTopi cSet

xsd: bool ean

A Flag to indicate whether the
topic set isfixed

wsrf-nt:
Topi cExpressi onDi al ects

xsd: anyURI

Dialect of the topicset

5.1.4 Portal Endpoint Operations

Name In Out
Oreate host nane: xsd:string wsa: EPR
Create a system hostnane is optional
LookupSyst em resourcel D: xsd: anyUR| wsa: EPR

Look up asingle system returning its System EPR.

Resol ve

resourcel D. xsd: anyURl,
xsd: string

xsd: any

L ookup a system and resolve a path against it.

Get Resour ceProperti es

wsr f-rp:
Cet Resour cePr oper t yRequest

wsr f-rp:
Cet Resour cePropert yRespons
e

Get the value of aresource

Get Mul ti pl eResour cePropertie
s

wsrf-rp:
Get Mul ti pl eResour ced
Properti esRequest

wsrf-rp:
Get Mul ti pl eResour ced
Properti esResponse

Read multiple resources

Subscri be

wsr f-nt: Subscri be

wsr f - nt : Subscri beResponse

Subscribe to events

Get Current Message

wsrf-nt:
Cet Cur r ent MessageRequest

wsrf-nt:
Get Cur r ent MessageResponse

15

Name

In

Out

Get the current message for atopic

If aPortal Endpoint has a managed lifetime, then it may also extend the endpoint with
the WS-Resourcel ifetime properties and operations.

5.3 System Endpoint

This represents a system that has been created on the hosts managed by a portal.
System EPRs are obtainable by creating one at the Portal Endpoint, or through a
LookupSyst emoperation offered by the Portal.

5.1.5 System Endpoint Properties

Name Type Meaning
muws- p1- xs: Resour cel d xsd: anyUR unique identifier
muws- pl- xs: o xsd: anyUR! List of supported
Manageabi | i t yCapabi ity manageability capabilities.
Systentt at e cnp: Li fecycl eSt at eEnum current system state
Statelnfo xsd: string Text stateinfo
Syst enExt endedSt at e cnp: UnboundedXM.AnyNanespace | Component state
O eat edTi ne xsd: dat eTi e Time system was created
Start edTi ne xsd: dat eTi ne Time system was terminated
Ter m nat edTi me xsd: dat eTi me

end time (not present until
system is terminated)

Ter m nat i onRecord

cnp: Ter m nat i onRecor dType

termination record (present
after termination)

Topi cs

wsr f-nt: Topi cExpr essi onType

List of supported notification
topics

wsr f-nt: Fi xedTopi cSet

xsd: bool ean

A HFag to indicate whether
the topic set isfixed

wsr f-
nt : Topi cExpressi onDi al ects

xsd: anyURI

Dialect of the topicset

5.1.6 System Endpoint Operations

Name

In

Out

Initialize

j ob JobDescri pt or Type voi d
descri ptor

Depl oynent Descri pt or Type

Initialize a system; passin the job and component descriptors and

build up the component graph.

16

Name In Out

AddFi | e m net ype xsd: string xsd: anyURI
dat a xsd: base64Bi nary
Add afileto thisdocument so that it is accessible by a URI from
within the deployment descriptor.

Run voi d voi d
Start running an initialized system

Pi ng voi d St at usType
Probe a system's health.

Resol ve xsd: string path xsd: any
Resolve areference relative to this system. Can return EPRs to
components; string or other data

Term nat e xsd: string Message voi d

Terminate a system; pass in a message

wsr f-rp: Destroy

Destroy the System Endpoint, terminating the System if it is not yet

terminated

wsr f-
rp: Get Resour ceProperties

wsr f-rp:
Cet Resour cePr opert yReques
t

wsr f-rp:
Cet Resour cePr opert yResponse

Cet the val ue of a resource

wsr f-rp:
Get Mul ti pl eResour cePropertie
s

wsrf-rp:
Get Mul ti pl eResour ced
Properti esRequest

wsrf-rp:
Get Mul ti pl eResour ced
Properti esResponse

Read multiple resources

wsr f-nt: Subscri be

wsr f-nt: Subscri be

wsnt : Subscri beResponse

Subscribe to events

Get CQurrent Message

wsrf-nt: &
Cet Curr ent MessageRequest

wsrf-nt:
CGet Qur r ent MessageResponse

Get the current message for atopic

17

6 Portal
6.1 Portal Properties

6.1.1 muws-pl-xs:Resourceld

Thisisa MUWS-defined property. It contains a URI which uniquely identifies this
instance of aPortal Endpoint.

6.1.2 muws-pl-xs:ManageabilityCapability
Thisisa MUWS-defined (multiple) property that lists al MUWS-related management
features implemented in this endpoint.

The minimum set of properties that an endpoint must report are the Resour cel d and
Manageabi | i t yCapabi | i ty facilities themselves, as normatively described in the
MUWS specification(s), and non-normatively as

<muws- p1l- xs: Manageabi | i t yCapabi i t y>

htt p: // docs. oasi s- open. or g/ wsdn 2004/ 12/ nows/ capabi lities/ &

Manageabi | i t yRef er ences

</ muws- pl- xs: Manageabi | i t yCapabi | i ty>

<muws- p1l- xs: Manageabi | i t yCapabi |l i t y>

htt p: // docs. oasi s- open. or g/ wsdnm 2004/ 12/ nuws/ capabi lities/ &

Manageabi | i tyCharacteri stics
</ muws- pl- xs: Manageabi | i t yCapabi | i ty>

6.1.3 StaticPortalStatus:

This property cortains static portal information; information constant for the lifetime
of the portal instance. The elements contain static diagnostics information, such as
product name and time zone.

18

staticPortal StatusType

ortal Deta
ortal Detalls

nameUriListType

|
|
|
|
| I
 Higme i eny |
LTS '
|
|
|
|

______ BPR
| ;

nameUriListType |

joblanguages £ == |tem |

______ o
| j

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

The information lists are al lists of URIs that can be used to determine features.

6.1.4 DynamicPortalStatus

Thisis any dynamic status information. Implementations may include any information
that they wish.

It is recommended that implementations provide information which will aid with
diagnostics of any deployment problem, such as the versions of libraries used in the
application, and other state information —though not any information that could
expose security information.

6.1.5 ActiveSystems

Thisisalist of deployed systems which the portal is aware of. This may include
systems which the portal did not deploy, but which a peer portal has deployed. It may
also be restricted to those systems to which the caller has access rights. Network
partitioning and other events may cause systems to be temporarily invisible to thislist,
and return later. Callers must view the list not as complete and accurate, but as a
snapshot enumeration of all deployed systems that were visible at the time the request
was processed.

5.1.7 Topic, FixedTopicSet, TopicExpressionDialects

These three properties are published in adherence with the WS-BaseNotification
specification.

19

6.2 Operations

6.2.1 Create([hostname])
This requests the creation of a new system instance, ready for configuration.

The host name element specifies an optional hostname. If set, it nominates a hos onto
which the port should instantiate the system, and hence the System Endpoint. If unset,
or if the identified host is deemed unsuitable/unavailable, the portal can instantiate the
system on any host of its choosing. Thus, host nane is merely a hint, a hint to improve
availability and performance.

The successful response is a System EPR to the instantiated System, an EPR which
can be immediately used for direct communications. Creation of a System Endpoint is
therefore a synchronous operation.

If any entity is registered with the portal for creation events, then the portal must send
notification to that entity that new system has been created. The notification must not
be sent until the system is ready for direct communication. There is no specification
of the ordering of returning from the cr eat e Operation and the sending of any
notification mechanism. If there are multiple portals supporting deployment to a
cluster of nodes, notification events may be sent to listeners on one portal, even if the
deployment was requested on the other.

6.2.2 LookupSystem(Resourceld:uri)
This operation resolves a Resour cel d to a system, and returns a System EPR.

6.2.3 Resolve(Resourceld:uri, path:string)
This operation resolves a Resour cel d to a system, and then resolves a path against it. It

has the same semantics as using LookupSyst emto obtain an EPR, then invoking
Resol ve on that EPR.

6.2.4 GetResourceProperty/GetMultipleResourceProperties
These two operations are defined by the WS-ResourceProperties specification.

6.2.5 Subscribe/GetCurrentMessage
These two operations are defined by the WS-BaseNotification specification.

7 System

The System Endpoint represents the deployed system. After creation, it is till
undefined, and must be configured before it can be moved to a running state.

7.1 System Properties

7.1.1 muws-pl-xs:Resourceld

Thisisa MUWS-defined property. It contains a URI that is unique to a particular
instance of a system..

7.1.2 muws-pl-xs:ManageabilityCapability

Thisisa MUWS-defined (multiple) property that lists al MUWS-related management
features implemented in this endpoint.

7.1.3 CreatedTime/StartedTime/TerminatedTime

These are al xsd: dat eTi me timestamps of when a system entered a particular state.

7.1.4 SystemTerminationRecord

Thiscontainsa cnp: t er ni nati onRecor dType record. This It contains information
about the reason for the system's termination. It is only present after a system has been
terminated.

7.1.5 Topic, FixedTopicSet,TopicExpressionDialects

These three properties are published in adherence with the WS-BaseNotification
specification.

7.2 System Operations

7.2.1 AddFile

This request uploads afile to the infrastructure, such that it is visible by deployed
programs, and by the System Endpoint itself.

addFileRequest £ ==

The request can include the file as base-64 encoded data. Unless both ends of the
communication are specially written to stream large base-64 elements directly to and
from storage, the addFi | eRequest / dat a contents must be sent as using the MTOM
transmission mechanism. If DIME or Soap with Attachments is used then the
attachment must be assigned a URI, a URI that must then be declared in the

addFi | eRequest /uri element. Any or al of those mechanism may be implemented,
though of course DIME, is somewhat deprecated.

I mplementations should resolve remote URL references in the addFi | eRequest / uri
element, using the delegated identity of the created job to grant access rights. This
should be an asynchronous retrieval .

Thetofil esystemflag in the request indicates whether the request should result in a
URI of thefile: schema. Thisisonly possible if the deployment targets have a
shared, distributed file system. If thisis not the case, the request must result in an
error.

The request supports a metadata element that contains arbitrary XML. This could be
RDF metadata, file hash values for efficient re-use, or even file lifetime hints. All
such metadata is implementation-specific, and is not defined in this edition of the
deployment API specification.

21

Note that the WSDL accompanying this document does not declare how binary
attachments are to be sent with the document. If the MTOM transmission mechanism
is used [MTOM], then the addFi | eRequest / dat a €lement must contain the binary-
marshaled data.

The response returns a URL to the uploaded file, a URL of a schematypefile: or
http: . The URL must be visible to al programs deployed in this system. It may be
visible to other programs running with the same credentials, but this can not be
guaranteed. If exposed as a file, it must be visible, read-only to all processes of the
system, on any node in the network onto which it has been deployed.

The lifespan of the uploaded file is bound to that of the created system; when the
System Endpoint is destroyed, all uploaded files may be destroyed.

There is no guarantee of high-availability in deployment; failure of a single node may
render the URL unreachable.

It isan error to cal AddFi | e() with two files of the same URI within the same
deployment. The second request must fail with an appropriate fault.

7.2.2 Initialize
Thisis a complex request, as it configures the system and moves it into the initialized
state.

initializeRequest [

A deployment descriptor must be supplied; it consists of alanguage URI, and either
an inline deployment descriptor or a URL to a location where the descriptor can be
retrieved.

Anoptional <j ob> element contains the job description that was used when submitting
the job to the front-end portal. As with the <descri pt or >, it is Of type descri pt or Type;
it must have a language URI and either an inline body or a URL to the descriptor. The
interpretation of this data by the service implementation is undefined.

Theoptiona <opt i ons> element contains alist of zero or more configuration options.
These are late-binding parameters to the deployment request, or to the deployment
runtime.

When the request message is received, the System Endpoint must validate it
(synchronoudly) and initialize the system. For CDDLM implementations,
initialization implies that the deployment descriptor and job descriptor may be
retrieved (if needed) and parsed. The application is then configured, and resolution
begins. If successful, the system enters the initialized state. Thisis an asynchronous
operation.

The response to a successful request is an empty response, <initi al i zeReponse/ >. Its
presence implies that the initial validation was successful, and that initialization has
begun, or has at |east been scheduled.

If aninitialize request is received and the application isin any state other than created,
an error must be raised.

If the request is received while the application is already initializing itself, the
contents of the message should be compared to that received previoudly. If the
message is the same, then an <i ni ti al i zeReponse/ > message should be returned. If
they are different, that is, the caller is attempting to configure the System differently, a
fault indicating this fact must be raised.

5.1.7.1 The propertyMap schema type
To aid those options that take a map of name/value pairs, there is a predefined XML
Schema type that can represent the construct:

i_P opertyTupleType |

] |
___________ name

()2 propery - |
|

The proper t ymvap elements can be placed into the <dat a> child element of an option.
Both the name and value of apropertyTupl e within apropert yMap €element are of type
xsd: st ri ng; individual options are free to declare extra restrictions on the value of
properties, restrictions which can be validated when processing the option.

There is no requirement that the name/value pairs are unique within a pr oper t ymMap
element; that is also arestriction that can be declared in a specification of a particular
option.

7.2.3 Run

This request runs a system. This triggers an asynchronous action, as it may take some
time to enter the running state. It is only valid from a state in which the lifecycle
permits running to be reached; initialized and, implicitly, running. In the case of the
latter, the operation is a no-op. If the system isinitializing itself, as aresult of an

23

Initialize request, the request should be queued for processing after the state
trangition is completed.

The response is an empty element. A response means that the system has been queued
to enter the running state asynchronously, or that it now isin that state.

7.24 Ping
This is a synchronous request to the system, to query its health.
If the system is not running, the System Endpoint must return with the current state, as

defined in the component model. Inthese states, the System Endpoint is free to
provide whatever extended state information that it chooses.

If the system is running, the request must be forwarded to the deployed system, which
can return any extended state information, alongside the state “running”. This
effectively acts as aliveness test upon the system. A successful response to the call
implies that the system considers itself healthy.

7.25 Resolve

This operation resolves a path and returnsits value or an error. It must be avalid
operation when a system isinitialized or running. It may be valid in afailed or
terminated system.

resolveRequest £ == W

Path to resolve

The responseis arbitrary XML data, the contents of which depend upon what the path
resolved to.

7.2.6 Terminate

This request terminates the system. To be idempotent, this call must not raise a fault
when the system is aready terminated, or when termination isin progress.

|terminateRequest = == [reason

Upon receipt, the system must be terminated. Termination is asynchronous. The
response is an empty element.
7.2.7 Destroy

The WS-ResourceLifetime <wsr f-r 1 : Dest r oy/ > Operation destroys the System
endpoint itself. All files uploaded are destroyed, and the system is terminated if it is
not already terminated.

After sending this message and receiving a response, service consumers should not
make calls of the endpoint, as it may not be valid.

24

5.1.8 GetResourceProperty/GetMultipleResourceProperties
These two operations are defined by the WS-ResourceProperties specification.

5.1.9 Subscribe/GetCurrentMessage
These two operations are defined by the WS-BaseNotification specification.

8 Notification

Notification enables front-end applications to receive notification when a system
changes state. It aso enables management tools to track the number of running
systems.

All implementations of the deployment APl must support the WS-BaseNotification
notification mechanism. The implementations are free to implement alternate
mechanisms; that is beyond the scope of this document. What is covered, however, is
ameans of listing all notification mechanisms supported by an implementation. Every
server instance is required to enumerate all supported mechanismsin alist included in
its static server information property.

8.1 Notification Policy
Implementations must support WS-Notification version 1.2-draft-01.

Implementations may support alterrate notification mechanisms.

Implementations must list the URIs all supported notification mechanismsin
thestaticPortal Status/ notification lis.

The URI of the supported version WS-Notification is

http://docs. oasi s-open. or g/ wsn/ 2004/ 06/ wsn- W5- BaseNot i fi cati on-1. 2-
draft-01. xsd

Implementations must support the list of basic topics defined for each EPR
type.
Implementations may support any other notification topics.

Implementations may also support Terminate notification events of WS-
ResourceL ifetime, which are raised after a EPR is destroyed.

There is no requirement for fault-tolerant subscriptions. Implementations may
include policy metadata that informs callers how to renew subscriptions in the
event of system failure.

8.2 WS-Notification Support
As stated above, implementations must support WS-Noatification; this does not prevent

them also implementing supplementary mechanisms. There are specific topic spaces
[WS-Topics] defined:

Portal Endpoints must support a WS-TopicSpace that contains one topic:
system creation events. This notifies callers that a new system has been
created.

System Endpoints must support the WS-TopicSpace and notifications defined
in the Component Model specification. This includes a notification of changes
in asystem's lifecycle state.

25

8.3 Portal Notifications
The naotification to be sent to listeners of anew System Endpoint is the following:

<xsd: conpl exType nane="Syst enCr eat edEvent Type" >
<xsd: annot at i on>
<xsd: docunent ati on>Not i fi cati on that a new
Syst em Endpoi nt has been creat ed</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="muws- pl- xs: Managenment Event Type" >
<xsd: sequence>
<xsd: el ement nanme="Resourcel d" type="xsd:anyURl" />
<xsd: el ement name="Ref erence"
t ype="wsa: Endpoi nt Ref er enceType"/ >
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

This notification supplies a System EPR referring to the created System, and identifies
when the event occurred.

The normative declaration of the notification topic space is Appendix A.

8.4 System Notifications
System endpoints must support the lifecycle event notifications of the component

model, <cnp: Li f ecycl eEvent / >. The normative declaration of the notification topic
space is Appendix A.

8.5 Fault-Tolerant Notification
Implementations are not required to provide fault-tolerant notification. The failure of

portal may result in the loss of portal event subscriptions, and the failure of a system
may result in the loss of system event subscriptions.

9 Fault Policy

Faults are based upon the WS-BaseFault model [WS-BF], taking on some of the
lessons of [Loughran02], namely that extra information such as hostname and process
is essential for locating which process among many has failed on a clustered system.

Faults are raised in response to errors either at the remote endpoint, in the local
framework, or between the remote endpoint and other parts of the distributed system.
They can be returned to callers in response to an operation on an endpoint, or sent as
part of a notification event.

All faults that will be explicitly sent are derived from WS-BaseFault faults. Service
implementations may implicitly raise SOAPFault faults, as that is inherent in most
implementations.

9.1 Fault Categories

5.1.10 Service Faults

These are the faults that are raised by the service. They are grouped into a hierarchy of
WS-BaseFault faults. There is a base fault class bepl oynent Faul t, from which all
others are derived.

All Service interfaces must declare that they raise these Depl oynent Faul t instances,
rather than list the specific faults. Thisis to provide forward extensibility.

26

The API lists specific subclassed faults of Depl oynent Faul t that may be generated by
aservice or received by a client. These faults represent some of the faults that a
service implementation may send.

If an implementation has a fault state whose meaning matches that of the predefined
fault, the predefined fault must be thrown. If this predefined fault has standard
elements for embedded fault information, they must be initialized with all the
appropriate information, unless that information is unavailable. The implementation
may add implementation-specific data within the ext ra- dat a element of the fault, to
supplement this information. This extra data must not declare new types within the
XML namespaces of the CDDLM specifications. The XML schema and semantics of
this extra data should be documented.

If an existing fault type is not suitable, implementations may create new fault types.
New fault types must extend the existing fault types which operations are declared as
throwing. This effectively means that they must extend Depl oyrent Faul t . These new
faults must not change the XML schemas of the deployment API, and they must be in
a new namespace. The new faults and XML content should be publicly documented.

If an implementation adds new operations or properties at the existing endpoints,
these new operations may raise whatever faults they see fit, within the congtraints of
the WS-BaseFault specification. Again, the implementation must not add new types to
the deployment APl namespace.

5.1.11 Transport faults

Transport faults will inevitably be raised as the appropriate fault for the system. For
example, the Apache Axis SOAP client raises Axi sFaul t faults for all SOAP events,
wrapping stack trace and even HTTP Fault data within the fault as DOM elements.
Microsoft .NET WSE has a similar fault class.

5.1.12 Relayed Faults

Relayed faults are those received by the far end and passed on. They may be WS-
BaseFault Faults, HTTP error codes, SOAP faults, native language faults wrapped as
SOA PFaults, or predefined deployment faults.

WS-BaseFault uses fault nesting for relaying faults; however, al faults must be a
derivative of WS-BaseFault. Thisis addressed by defining a new WS-BaseFault
derivative, aw appedSoaPFaul t Type. Thistypeis actually an extension of

addl nFaul t Type. This fault can nest any received SOAPFault, with an element
containing the received XML data. Well-known elementsin this fault data (such as
the Apache Axis stack trace and HTTP fault code) should be copied into any fieldsin
the main fault that fill the samerole.

5.1.13 Fault Hierarchy
The UML representation of the fault hierarchy is shown in Figure 5.

27

wsbf:BaseFaultType

+Timestamp : xsd:dateTime
+OriginatorReference : wsa:EPR
+ErrorCode : xsd:string
+Description : xsd:string
+FaultCause : wsbhf:BaseFaultType

|

cmp: CddIimFaultType

+Host : xsd:string
+Process : xsd:string
+ExtraData : xsd:any
+Component : xsd:string
+StackTrace

i

cmp:WrappedSOAPFaultType| |cmp:StateActionFaultType api:LanguageFaultType

-SOAPFault : xsd:any -ExtendedState : xsd:any +File : xsdstring
+Line : xsd:integer

Figure5. Hierarchy of XSD datatypesused to describe faults

9.2 Fault Security
Sites offering deployment services, may, for security reasons, wish to strip out some

information, such as stack trace data. Implementations should provide a meansto
enable such an action prior to transmitting faults to callers.

Host name and process information may be viewed as sensitive, yet again, thisis
exceedingly useful to operations. Implementations may provide a means to disguise
this information, so that it does not describe the real hostname or process ID of a
process, but instead pseudonyms that can still be used in communications with any
operations team.

9.3 Internationalization

The WS-BaseFault specification makes no statement upon which language error
descriptions are described.

If an implementation can return descriptions in one language, it must use xm : | ang
attributes to indicate the language of a description. Multiple descriptions, in different
languages may be included. The client application should extract the description(s)
whose language is the nearest match to that of the client.

9.4 Faults

9.4.1 CddimFaultType

This type represents any fault thrown by the deployment infrastructure. All endpoint
operations must declare that they throw this fault, and must not explicitly declare any
derivative faults that they may throw.

Element Type Meaning

Host xsd: string Hostname or pseudonym

28

Process xsd: string Any process identifier suitable for

diagnostics
Ext r aDat a cnp: unboundedXM_AnyNarmespace Extrafault data
Conponent xsd: string Path to component raising the fault
St ack stringLi st Type Optional stack trace

Implementations must include a component reference if it is known. Implementations
should include hostname and process information. Process information may be a low-
level identifier (such as an operating system process ID), or it may be some
application specific identifier. Itsrole is merely to distinguish which process amongst
many in a load-balanced implementation raised the fault.

9.4.2 LanguageFaultType
A language fault represents any fault in language processing for which afile and line
number are relevant.

Element Type Meaning
File xsd: string Filename/URI of file at fault
Li ne xsd: i nt eger Line number within thefile

If the error isin the inline deployment descriptor, the Fi | e element must be empty
or omitted. Furthermore, the Li ne element must be relative not to the deployment
request, but to the inline descriptor. Recipients of faults can then infer from the
empty/absent file element that the fault was in the inline request.

Note that a consequence of this design is that implementations should preserve white
space in the deployment descriptor when saving them to file.

9.4.3 WrappedSOAPFaultType

This type represents a mapping of aclassic W3C soapraul t [SOAPL.2] to aWS-
BaseFault, as an extension of Depl oynent Faul t . It adds two new elements to contain
data unique to SOAPFaullts.

Element Type Meaning
SoapFaul t s12: Faul t Fault code information

The normative mapping of soaPFaul t elementsto W appedSOAPFaul t elementsis as
follows:

SOAP1.2 WrappedSOAPFault
/s12: Faul t W appedSOAPFaul t / api : SoapFaul t
SQAP endpoi nt W appedSOAPFaul t / wsr f - bf : ori gi nat or

The SOAP endpoint must be trandated into a wsa: Endpoi nt Ref er ence if it isasmple
URL/SOAPAction tuple.

Detail from SOAP stacks with well-known fault fields, such as the Apache Axis stack
trace, may be imported into appropriate fields in the Depl oyrent Faul t .
9.5 Fault Error Codes

Specific fault error codes, and their meaning, will be covered in a separate informative
document.

10 Implementation Requirements

Implementations may validate incoming requests against the XML Schema used to
describe this service. If thisis not done, the implementation should validate message
by other means. It is an error if arequired element is not included in a request, or it
occurs more than is permitted.

Instances of system and portal endpoints must be re-entrant.

Implementations may provide the XSD/WSDL of the endpoints using the de-facto
standard of GET endpoi nt +" 2wsdl *, Or by using some other mechanism.

The generation and processing of SOAP messages and HTTP error codes (if using
SOAP over HTTP), must be in accordance with the WS-I Basic Profile 1.1
specification.

There are number of places in the specification in which the contents of remote URLs
areto beretrieved. This retrieval must also be re-entrant, that is, any caching
mechanism must be thread-safe. Furthermore, al such requests should use HTTP/1.1,
implement a time-out mechanism on downloads, verify the length of retrieved data
against the content-length header (which isrequired by HTTPL.1), and fail if an error
OCCUrsS.

11 Security

The deployment requests must only be granted by suitably authorized individuals, or
thelir suitably authorized agents. For deployment to a Grid infrastructure, that means
that the standardized security model of the infrastructure must be used to authenticate
callers. Only callers with the relevant rights may deploy systems.

When delegating deployments across nodes, the node issuing the deployments needs
to have the rights to do so, and the deployment itself still needs to be authenticated as
alegitimate request of the sender.

Along with deployment, the ability of a caler to list and manipulate running systems,
introduces another security issue: that of who has access to the set of deployed
systems.

Files uploaded via addFi | e must only be visible to the deployed application, and
potentially other applications deployed under the same credentials. There must also be
alimit to the total size of files uploaded by a single user, if adenial of service attack
on the file system is to be prevented. Quota-enabled filesystems are one possible
solution.

There are a number of placesin the system in which remote URL s to data may be
supplied, as an aternative to sending the information inline. In these situations, the
service implementation must not retrieve this content with greater rights than that of
the caller. Furthermore, to ensure that the content is that which the caller has chosen
to publish, the HTTPS/TLS protocols should be preferred over HTTP, unless the
downloaded content is itself authenticated by some form of signing mechanism.

12 Editor Information
Steve Loughran, HP Laboratories

steve_|loughran@hpl.hp.com

13 References

13.1 Normative References

[Goldsack04] Goldsack, SmartFrog Language, 2004

[MOWS] Sedukhin 1. et al, Web Services Distributed Management: Management of
Web

Services (WSDM-MOWS) 1.0, OASIS, 2004.

[MTOM] Gudgin, M., SOAP Message Transmission Optimization Mechanism W3C,
2005.

[RFC2119] S. Bradner, RFC 2119 - Key words for use in RFCs to Indicate
Requirement Levels, 1997

[Schaeffer05] Schaeffer., CDDLM Component Model Specification, 2005

[SOAPL.2] W3C, SOAP Version 1.2, 2003.

[XML-CDL] CDDLM XML Configuration Description Language Specification
version 1.0 draft 2004-12-10.

[WS-A] Gudgin, M. and Hadley S., Web Services Addressing -Core, 2004.

[WS-BF] Tuecke et al., Web Services Base Faults (WS-BaseFaults), 2004.

[WS-BaseNotification] Graham et a., Web Services Base Notification 1.0 (WS-
BaseNotification), 2004.

[WS-BrokeredNotification] Graham et al., Web Services Brokered Notification 1.0
(WS-BrokeredNotification), 2004.

[WS-Policy] Schlimmer et al., Web Services Policy Framework (WS-Policy), 2004

[WS-ResourceLifetime] Frey et al., Web Services ResourcelLifetime 1.1 (WS-
ResourceL ifetime), 2004.

[WSRF] Tuecke et a., Web Services Resource Framework (WSRF), 2004.

[WS-ResourceProperties] Graham et a., Web Services Resource Properties 1.1
(WS-ResourceProperties), 2004.

[WS-ServiceGroups] Graham et a., Web Services Service Group Specfication 1.0
(WS-ServiceGroups), 2004.

[WS-Topics] Graham et al., Web Services Topics (WS-Topics), 2004.

13.2Non-Normative References

[Axis] Apache Software Foundation, Apache Axis,

[DIME] Nilesen et a., Direct Internet Message Encapsulation Microsoft, 2002.

[Foster04] Foster et al., Modeling Stateful Resources with Web Services, 2004.

[GlobusRSL] Globus, Resource Specification L anguage, 2004

[JSDL] Job Service Description Language, 2004.

[Loughran02] Loughran, Making Web Services that Work, HP Laboratories,
TR-HPL-2002-274, 2002.

[ParastatidisO3] Parastatidis et al., A Grid Application Framework based on Web
Services Specifications and Practises, University of Newcastle, 2003.

31

Appendix A: Event Topics
The normative listing of the Portal event topicsis

<wst op: Topi cSpace nanme="Syst enmNoti fi cati onTopi cs"
t ar get Nanespace=

“http://ww.gridforum org/cddl nl depl oyapi / 2005/ 02/ event s/ syst ent
xm ns: api ="http://wwmv. gri df orum or g/ cddl m depl oyapi / 2005/ 02"
xm ns: cnp="htt p://ww. gri df orum or g/ cddl mf conponent s/ 2005/ 02"
xm ns: wst op=

"http://docs. oasi s- open. or g/ wsn/ 2004/ 06/ wsn- W5- Topi cs-1. 2-draft-01. xsd"
>
<wst op: Topi ¢ nanme="Syst enCr eat edEvent "

nmessageTypes="api : Syst enCr eat edEvent " >

</ wst op: Topi ¢c>

</ wst op: Topi cSpace>

The normative listing of the System event topicsis

<wst op: Topi cSpace nanme="SystenNotificati onTopi cs"
t ar get Nanespace=

“http://ww.gridforum org/ cddl m depl oyapi / 2005/ 02/ event s/ portal "
xm ns: api =" http://ww. gri df orum or g/ cddl nl depl oyapi / 2005/ 02"
xm ns: cnp="http://ww. gri df orum or g/ cddl m conponent s/ 2005/ 02"
xm ns: wst op=

"http://docs. oasi s-open. or g/ wsn/ 2004/ 06/ wsn- W5- Topi cs-1. 2-draft-01. xsd"
>

<wst op: Topi ¢ nane="Li f ecycl eEvent"
messageTypes="cnp: Li f ecycl eEvent "/ >

</ wst op: Topi cSpace>

32

