
Configuration Description, Deployment,
and Lifecycle Management

A Service API for Deployment

Draft 2005-01-14

This is an interim working draft for comment only

Status of this Memo
This document provides information to the community regarding the specification of the
Configuration Description, Deployment, and Lifecycle Management (CDDLM)
Language. Distribution of this document is unlimited. This is a DRAFT document and
continues to be revised.

Abstract
Successful realization of the Grid vision of a broadly applicable and adopted framework
for distributed system integration, virtualization, and management requires the support
for configuring Grid services, their deployment, and managing their lifecycle. A major
part of this framework is a language in which to describe the components and systems
that are required. This document, produced by the CDDLM working group within the
Global Grid Forum (GGF), provides a definition of the service API whereby a Grid
Resource is configured, instantiated, and destroyed.

GLOBAL GRID FORUM

office@ggf.org
www.ggf.org

Full Copyright Notice
Copyright © Global Grid Forum (2004-2005). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its implementation
may be prepared, copied, published and distributed, in whole or in part, without
restriction of any kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to the
GGF or other organizations, except as needed for the purpose of developing Grid
Recommendations in which case the procedures for copyrights defined in the GGF
Document process must be followed, or as required to translate it into languages other
than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF
or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and
THE GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE
USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Intellectual Property Statement
The GGF takes no position regarding the validity or scope of any intellectual property or
other rights that might be claimed to pertain to the implementation or use of the
technology described in this document or the extent to which any license under such
rights might or might not be available; neither does it represent that it has made any
effort to identify any such rights. Copies of claims of rights made available for
publication and any assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of such proprietary
rights by implementers or users of this specification can be obtained from the GGF
Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or
patent applications, or other proprietary rights which may cover technology that may be
required to practice this recommendation. Please address the information to the GGF
Executive Director (see contact information at GGF website).

1 Table of Contents
1Table of Contents..3
2Introduction...3
3CDDLM-WG and the Purpose of this Document..4
4Purpose of the Deployment API...4

4.1Use Cases...4
4.2Fault Tolerance..5

5Core Concepts...5
6Architecture..5

6.1Core Architecture..5
6.2Application Lifecycle..6
6.3Fault Tolerance Support..7
6.4Other Architectural Features...7

6.4.1Named Applications...7
6.4.2Language Agnostic..7
6.4.3Deploy-time properties in the language and service API..8
6.4.4Extensibility...8

7Deployment API ..10
7.1Portal Endpoint..10

7.1.1Portal EPR Properties..11
7.1.2Portal EPR Operations...11

7.2Application Endpoint...11
7.2.1Application EPR Properties...12
7.2.2Application EPR Operations..12

8Notification...13
8.1Notification Policy..13
8.2WS-Notification Support...13
8.3Fault-Tolerant Notification...13

9Fault Policy...14
9.1The causes of faults...14

9.1.1Transport faults..14
9.1.2Service Faults...14
9.1.3Relayed Faults..14

10Security...15
11Editor Information..15
12References...15

2 Introduction
The CDDLM framework needs to provide a deployment API for programs submitting
jobs into the system for deployment, terminating existing jobs, and probing the state of
the system.

This document defines the WS-Resource Framework-based deployment API for
performing such tasks. It is targeted at implementors and users of the API.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
this document are to be interpreted as described in RFC 2119 [RFC2119]

3 CDDLM-WG and the Purpose of this Document
The CDDLM WG addresses how to: describe configuration of services; deploy them on
the Grid; and manage their deployment lifecycle (instantiate, initiate, start, stop, restart,
etc.). The intent of the WG is to gather researchers, developers, practitioners, and
theoreticians in the areas of services and application configuration, deployment, and
deployment life-cycle management and to explore the community need for a broader
effort in this area. The target of the CDDLM WG is to come up with the specifications
for CDDML a) language, b) component model, and c) basic services.

This document defines the WS-Resource Framework-based deployment API for
performing such tasks. A CDDLM deployment infrastructure must implement this
service in order for remote callers to create applications on the infrastructure.

This document is accompanied by an XML Schema (XSD) file and a WSDL service
declaration. The latter two documents are to be viewed as the normative definitions of
message elements and service operations. This document is the normative definition of
the semantics of the operations themselves.

4 Purpose of the Deployment API
The deployment API is the SOAP/WS-ResourceFramework (WS-RF) API for deploying
applications to one or more target computers, physical or virtual.

The API is written assuming that the end user is deploying through a console program, a
portal UI or some automated process. This program will be something written by a third
party to facilitate deployment onto a grid fabric or other network infrastructure which is
running instances of the CDDLM basic services. The API is not intended for direct
invocation by end-user applications, but by front end applications that provide the
interface to the grid infrastructure.

4.1 Use Cases
There are three different use cases that it is designed to support:

1. The deployment target is an OGSA-compliant Grid Fabric. Resource allocation
and Job submission (using the JSDL language [JSDL]) is part of the deployment
process. In this use case, the deployment API must integrate with the negotiation,
and deploy a CDDLM-language described system over the machines allocated by
the resource manager.

2. The deployment target is a pre-allocated cluster set of machines. The resource
allocation process is bypassed -it can be presumed to have happened out of band.

3. One instance of a CDDLM runtime is delegating part of a deployment to another
host. There is no guarantee that the two runtimes are the same implementation of
CDDLM, or, if they are, that they are the same version.

In all these use cases, there is no expectation that the application will be deployed on the
host(s) that provides the deployment service.

4.2 Fault Tolerance
Another aspect of the architecture is that it is intended to support fault tolerant
implementations, to the extent that a failure of the portal may not terminate the
application, and may not render the application unreachable.

To be achieve this goal, any set of nodes onto which a system is deployed, must be
visible to and manageable by more than one deployment portal.

5 Architecture

5.1 Core Architecture
The API comprises a model for deployment, and a WS-ResourceFramework (WS-RF)
[WS-RF] based means of interacting with this model.

A deployment client is an application that wishes to use the deployment API to deploy to
ore more hosts that have been pre-allocated using a resource allocation system. A
deployment portal is a WS-RF service endpoint that the deployment client communicates
to, in order to deploy applications, and endpoint addressed via a WS-Addressing
Endpoint Reference (EPR) [WS-A]. This specific EPR is referred to as the portal EPR.

To deploy, the client first issues a request to the portal EPR to create a system. This
creation request returns a new EPR, which provides access to the state and operations of
the application, the system EPR.

The system EPR can be bound to any node that the portal EPR chooses; there is no
requirement that it is bound to the same portal node. An example of this is shown in
figure 1.

The caller can then make a request to the system EPR to initialize the system. This
request includes a deployment descriptor in one of the CDDLM supported languages and
potentially other information that describes and configures the application. If successful,
the application will enters the next state in its lifecycle, initialized. This state transition
will be asynchronous. Once a system has been initialized, it can be moved through other
stages of its lifecycle. The complete lifecycle is defined in section 5.2.

As a deployed system moves through its stages of its lifecycle, it can send lifecycle event
notification messages to registered listeners, using the WS-Notification mechanism [WS-
Notification]. The lifecycle state of the system can also be determined by querying the
appropriate property of the system, using the mechanism described in WS-Resource
Properties [WS-ResourceProperties]. There is also a synchronous, blocking call to probe
the health of an system; this must be routed to the system itself, so that it can determine
its own health. This will return its current state, and any custom status information the
system chooses to return. If the system has failed, or terminated after a failure, the status
information will include the fault information.

The portal EPR supports other properties and operations. The list of currently deployed
systems can be determined, along with their system EPRs. There are also static
information and dynamic information documents which can be retrieved from the server;
again these are represented as properties following the WS-Resource Properties
specification.

The portal EPR supports WS-Notification events when new systems are created.

5.2 Lifecycle
CDDLM components have a uniform lifecycle, one that is normatively described in the
component model specification [Schaeffer05]. The lifecycle of a deployment matches
the lifecycle of the components within. This is essential to permit aggregation of
systems.

Figure 1 Conceptual Model of Portal and system EPRs

Portal EPR#1 Portal EPR#2

System EPR2

Deployment nodes

Client application

System EPR1

The states of an system are as follows:

instantiated The system has just been instantiated.
initialized The system has been initialized.
running The system is running
failed The system has failed
terminated The system has terminated
destroyed The system is destroyed.

The normative definition of this lifecycle is the component model [CITE]. Instantiation
and initialization represent the creation and configuration of a component, and when it is
moved into running then it is actually functional, The state failed is entered
automatically when a failure is detected; termination is the only exit condition;
terminated is the end state of a component and can be entered through a termination
request.

Figure 2Lifecycle of a component

instantiated

running

failed terminatedinitialized

<initialize/>

<run/> <terminate/>

<destroy/>fail

fail

<terminate/>

<create/>

fail

The lifecycle is exposed through the operations1 of the service. The create operation is
will create and instantiate an a system. The run operation will move the system to the
running state, and terminate will move it to the terminated state.

5.3 Fault Tolerance Support
As stated, the architecture is must enable fault tolerant implementations. Here is how this
is enabled:

• Multiple Portal EPRs can provide access to the same set of nodes.

• The failure of a portal does not imply the failure of a system.

• The failure of a node hosting a system EPR will result in the destruction of that
system.

• Issuing a <wsrl:Destroy> request to an system EPR will destroy the system.

• Every system instance must have a WS-RF property "ID" of type xsd:URI property
that must be unique; this can be used for equality tests through simple string
comparison.

• Portal EPRs servicing a set of nodes should be discoverable by a client in some
manner. Registration in a service group is one option [WS-ServiceGroup].

• Implementations may implement fault tolerant EPRs through the use of a dynamic
DNS service, one in which the DNS entries for the hostname(s) of the portal are
updated as portal instances appear and disappear. Client systems should to be written
with the knowledge that the IP addresses of an EPR may change, and not to cache
resolved IP addresses indefinitely2.

5.4 Other Architectural Features.

5.4.1 Named systems

Callers may provide a string name for a system. This system name, if provided, must be
unique amongst all systems that a portal EPR can manage.

TODO: more on why. Maybe move under optional

TODO: some restrictions on naming. [A..Za..z09_]

5.4.2 Language Agnostic

The deployment API is agnostic as to which particular language is being used, or which
version of that language. When a remote deployment is created, the language and version
of the descriptor must be supplied. The sole requirement is that it can either be nested
inside an XML document, or that a URL to the descriptor is remotely accessible to the
destination. In the case of the latter, the URL to the descriptor must be provide when
initializing the system.

Every language is identified by a unique URI. This language URI must be supplied with
the deployment descriptor or URI.

1 In this document, operations, are taken to mean message exchanges between caller
and the relevant WS-Addressing EPR-referenced endpoint
2This is of particular relevance to Java applications, where the default behaviour is to cache the resolved
address of a hostname for the duration of the application.

5.4.3 Deploy-time properties in the language and service API

Consider a deployment descriptor that wants to control onto which machine that it wants
different components deployed onto. When the descriptor is written, the actual hosts are
unknown. It is only during deployment that the mapping becomes apparent. Either the
descriptor is rewritten with the fixed values, or we provide a way for subsidiary
information to be passed alongside the descriptor.

The SmartFrog language [CITE] supports this with the PROPERTY and IPROPERTY
keywords, which bind keys in the Java virtual machine's java.System.Properties global
HashTable to string and integer values []. For example, a deployment descriptor could be
bound to three properties:

database extends Database {
sfHostname PROPERTY hosts.database;
password PROPERTY database.password;
localhost LAZY PROPERTY local.hostname

}

At deployment time, each property string is looked up and assigned to the attribute, or a
fault is raised. The LAZY keyword can declare indicates that the evaluation must not take
place in the context of the process interpreting the deployment descriptor, but instead the
system actually hosting it. The XML language does not explicitly contain such a feature
[CITE], a standardized component could be designed to extract the values from the
name/value list.

To enable this functionality within the Service interface a set of name/value pairs is one
of the options that be specified when initializing a deployed system. How these tuples
are exposed to a deployment language/framework is not covered in this specification.

5.4.4 Extensibility

The deployment API is designed to support extensible implementations, and changes
over time.

Extra Operations

A service implementation may offer extra operations at any EPR. Such extensions must
not add new declarations to the XML namespaces used in this document: they must be in
their own, private, namespace. Implementations should document these operations and
provide updated WSDL descriptions.

There is no requirement for the extra operations supported by an EPR to remain constant
over any period of time.

Extra WS-Resource Properties

A service implementation may offer extra WS-Resource properties at any EPR. Again,
they must be in their own, private, namespace. Implementations should document these
properties and provide updated WSDL descriptions.

Extra deployment options

It is possible that extra deployment options will be desired on different implementations
or over time. The core of such customization should be in deployment descriptors
themselves, yet there may be a need to provide extra deployment metadata.

This is implemented through an <options> element in the <initialize> message. This
(optional) element contains a list of zero or more deployment options. These are extra
parameters to the deployment request. Every option is named with a URI, and can have a
string or integer attribute value, or contain nested XML. A mustUnderstand attribute is
used to indicate whether or not an option must be understood.

The option list is a very powerful aspect of the API, but potentially dangerous. Any
protocol standard which has optional aspects is harder to write clients against than one
which does not, as there is likely to be less consistency between different
implementations. To manage this risk, the deployment API has the following
requirements:

● All options must be that: optional. It must not be an error to deploy a system with no
options declared.

● Every option is named by a URI.

● All URIs that begin with http://gridforum.org/cddlm/ are reserved for options
defined by the CDDLM working group.

● Options must contain either string, integer, Boolean or arbitrary XML values. String
and integer values are supported via attributes; XML is supported as nested data.

● An options must contain only one value type.

● All options that an implementation supports must be enumerated in the server
information property of the portal EPR.

● It is an error to include multiple options of the same URI in a descriptor.
Implementations must raise a fault when this occurs.

● Options may be processed in any order. Options must not require a specific order of
processing.

● Service implementations must ignore any options that they do not recognize, if
mustUnderstand="false" for that option.

● Service implementations must understand all options which are supplied with
mustUnderstand="true" for that option. If any such option is not understood, a fault
must be raised.

The processing rules for deployment are as follows:

1. Option processing must take place before the system is instantiated.

2. An implementation must be able to create a system when the entire options portion of
the request is empty or omitted.

3. To be "understood", an option must be processed in accordance with the specification
of that option.

4. Any option that is marked mustUnderstand="true" MUST be understood. If not, the
Fault "not-understood" must be raised, identifying the particular option by its URI in
the body of the fault.

5. Implementations must not raise this fault when they do not understand any options
that are marked mustUnderstand="false", or for which there is no mustUnderstand
attribute. These must be ignored.

6. Duplicate options must cause the operation to be rejected with a bad-argument fault.

6 Deployment API
The service API consists of two endpoint types, portal endpoints, addressed by portal
EPRs, and system endpoints, addressed by system EPRs. Portal EPRs return system
EPRs to callers, either in response to lookup/mapping messages, or when a system is
successfully created.

The two endpoint types are Resources within the terminology of the WS-Resource
Framework specifications. There is no requirement that resources are implemented as
object classes within an object-oriented language; indeed, there are strong arguments
against doing so.

In this section of the document, the following listed prefixes refer to the stated
namespaces

abbreviation URI description
xsd XML Schema types [CITE]
wsa WS-Addressing types
api Deployment API types
wsbf WS-BaseFaults
wsrf WS-Resource Framework
wsn WS-Notification
env http://www.w3.org/2003/05/

soap-envelope
SOAP1.2 Envelope

xml http://www.w3.org/XML/1998/
namespace

XML attributes

The namespaces for the different parts of the service API are normatively defined in the
file constants.xml, which is part of the specification. For reference, they are:
http://gridforum.org/cddlm/serviceAPI/api/2004/10/11/ Namespace of

deployment API
WSDL

http://gridforum.org/cddlm/serviceAPI/types/2004/10/11/ Deployment API
types

http://gridforge.org/cddlm/serviceAPI/faults/2004/10/11/ Fault namespace

6.1 Portal Endpoint
The portal endpoint is the endpoint which the caller initially locates and communicates
with. It can be used to create a new system within the set of nodes that it manages, or it
can be used to locate an existing system.

6.1.1 Portal EPR Properties

Name Type Meaning
staticInfo TBD static server info; constant

for the lifetime of the portal
itself

dynamicInfo TBD dynamic server info; may be
different on every read

systems xsd:list List of system EPRs
WS-Resource Lifetime
Properties

Properties requires for
WSRL

6.1.2 Portal EPR Operations

Name In Out Meaning
create name: string

jsdl: xsd:any

descriptor:
xsd:any

wsa:EPR Create a system.

lookupByName xsd:string wsa:EPR Map from system name to a
system EPR

LookupByIdentifier xsd:uri wsa:EPR Map from system name to a
system EPR

WS-Resource
Lifetime
Operations

Operations used by the WS-
RL specification to manage
the lifetime of EPR-
referenced entities

WS-Notification
Operations

Operations used by the WS-
Notification specification to
enable callers to subscribe
to supported topics.

6.2 System Endpoint
This represents a system that has been deployed. System EPRs are obtainable by creating
one at the portal EPR, or through lookup operation offers by a portal.

6.2.1 system EPR Properties

Name Type Meaning
name xsd:string user-defined name

(optional)
id xsd:uri unique identifier
deploymentInfo xsd:any deployment data
state xsd:enum state current system state
stateInfo (xsd:any) most recent extra state info
terminationInfo (message, fault, xsd:any) termination info
started xsd:dateTime started time
terminated xsd:dateTime end time (not present until

system is terminated)
WS-Resource Lifetime
Properties

Properties requires for
WSRL

TODO: It may also be convenient to formalise timestamp recording as a list of state
transitions and the time those transitions occurred.

6.2.2 System EPR Operations

Name In Out Meaning
init TODO void Initialize a system; pass in the

component descriptor and build up
the component graph.

run xsd:string
Message

Start running an initialized system

ping void api:status Probe a system's health.
resolve xsd:string path xsd:any Resolve a reference relative to this

system. Can return EPRs to
components; string or other data

WS-Resource
Lifetime
Operations

Operations used by the WS-RL
specification to manage the
lifetime of EPR-referenced entities

WS-Notification
Operations

Operations used by the WS-
Notification specification to
enable callers to subscribe to
supported topics.

7 Notification
Notification enables front-end applications to receive notification when a system
finishes. It also enables management tools to track the number of running systems.

All implementations of the deployment API must support WS-Notification (WS-N), as
specified in the document. The implementations are free to implement alternate
mechanisms; that is beyond the scope of this document. What is covered, however, is a
means of listing all notification mechanisms supported by an implementation. Every
server instance is required to enumerate all supported mechanisms in a list included in its
static server information property this can be used by callers to choose which mechanism
is appropriate.

7.1 Notification Policy
• Implementations MUST support WS-Notification.

• Implementations MAY support alternate notification mechanisms.

• Implementations MUST list all supported notification mechanisms in the staticInfo
information.

• Implementations MUST support the topics defined below, on the relevant EPR types.

• Implementations MAY also support Terminate notification events of WS-
ResourceLifetime, which are raised after an EPR is destroyed.

• There will be one notification for system lifecycle events.

• There will be one notification for the portal EPRs, which is raised when a system is
created.

• There is no guarantee of fault tolerant subscriptions. Implementations MAY include
WS-Policy metadata that informs callers how to renew subscriptions in the event of
system failure.

7.2 WS-Notification Support
As stated above, implementations MUST support WS-Notification; this does not prevent
them also implementing supplementary mechanisms.

• Portal EPRs support a WS-TopicSpace that contains one topic: system addition
events.

• System EPRs support a WS-TopicSpace that contains one topic: lifecycle events

7.3 Fault-Tolerant Notification
Implementations are not required to provide fault-tolerant notification. The failure of
portal may result in the loss of portal event subscriptions, and the failure of a system may
result in the loss of system event subscriptions.

8 Fault Policy
Faults are based upon the WS-BaseFault model [WS-BF], taking on some of the lessons
of [Loughran02], namely that extra information such as hostname and process is
essential for locating which process among many has failed on a clustered system.

Faults are raised in response to errors either at the remote endpoint, in the local
framework, or between the remote endpoint and other parts of the distributed system.
They can be returned to callers in response to a an operation on an endpoint, or sent as
part of a notification event.

All faults that will be explicitly sent are derived from WS-BaseFault faults. Service
implementations may implicitly raise SOAPFault faults, as that is inherent in most
implementations.

8.1 Fault Categories

8.1.1 Service Faults

These are the faults that are raised by the service. They are categorized into a hierarchy
of WS-BaseFault faults. There is a base fault class DeploymentFault, from which all
others are derived.

All Service interfaces must declare that they raise these DeploymentFault instances,
rather than list the specific faults. This is to provide forward extensibility.

The API lists specific subclassed faults of DeploymentFault that may be generated by a
service or received by a client. These faults represent some of the faults that a service
implementation may send.

If an implementation has a fault state whose meaning matches that of the predefined
fault, the predefined fault must be thrown. If this predefined fault has standard elements
for embedded fault information, the implementation should fill them in. The
implementation may add implementation-specific data within the extra-data element of
the fault, to supplement this information. This extra data must not add new types to the
XML namespaces of this deployment data. The XML schema and semantics of this extra
data should be documented.

If an implementation creates new fault types for new fault states, these must extend the
existing fault types which operations are declared as throwing. Again, these must not
change the XML schemas of the deployment API; they must be in a new namespace. The
new faults and XML content should be publicly documented.

If an implementation adds new operations or properties at the existing endpoints, these
new operations may raise whatever faults they see fit, within the constraints of the WS-
BaseFaults specification. Again, the implementation must not add new types to the
deployment API namespace.

8.1.2 Transport faults

Transport faults will inevitably be raised as the appropriate fault for the system. For
example, the Apache Axis SOAP client raises AxisFault faults for all SOAP events,
wrapping stack trace and even HTTP Fault data within the fault as DOM elements. .NET
WSE has a similar fault class.

8.1.3 Relayed Faults

Relayed faults are those received by the far end and passed on. They may be WS-
BaseFault Faults; HTTP error codes, SOAP faults, native language faults wrapped as
SOAPFaults, or predefined deployment faults.

WS-BaseFault uses fault nesting for relaying faults; however, all faults must be a
derivative of WS-BaseFault. This is addressed by defining a new WS-BaseFault
derivative, a WrappedSOAPFault. This type is actually an extension of DeploymentFault.
This fault can nest any received SOAPFault, with an element containing the received
XML data. Well-known elements in this fault data (such as the Apache Axis stack trace
and HTTP fault code) should be copied into any fields in the main fault which fill the
same role.

8.2 Fault Security
Sites offering deployment services, may, for security reasons, wish to strip out some
information, such as stack trace data. Implementations should provide a means to enable
such an action prior to transmitting faults to callers.

Hostname and process information may be viewed as sensitive, yet again, this is
exceedingly useful to operations. Implementations may provide a means to disguise this
information, so that it does not describe the real hostname or process ID of a process, but
instead pseduonyms that can still be used in communications with any operations team.

8.3 Internationalisation
The WS-BaseFault specification makes no statement upon which langauge error
descriptions are in.

If an implementation can return descriptions in one language, it must use xml:lang
attributes to indicate the language of a description. Multiple descriptions, in different
languages may be included. The client application should extract the description(s)
whose language is the nearest match to that of the client.

8.4 Fault Type Declarations
The fault hierarchy is shown in Figure 3.

8.4.1 DeploymentFault

This type represents any fault thrown during deployment. All endpoint operations must
declare that they throw this fault, and must not declare that they throw any derivative
fault.

Element Type Meaning
Host xsd:string Hostname or pseduonym
Process xsd:string Any process identifier suitable for

diagnostics
Extra-data xsd:any Extra fault data

Figure 3 Fault Hierarchy

DeploymentFault
base for all faults in the API

Host: xsd:string
Process: xsd:string (0..1)
Extra-data: xsd:any (0..1)
Component: xsd:string (0..1)
Stacktrace: xsd:string (0..1)

WS-BaseFault

Timestamp: xsdDateTime
OriginatorReference: wsa:EPR
ErrorCode: xsd:string
Description: xsd:string
FaultCause: wsbf:BaseFault

WrappedSoapFault
converts SOAPFault to WS-BF

SoapFaultCode: env:FaultCode
SoapFaultRole: xsd:anyURI

LanguageFault
Fault in the language where file+line
provide information

File: xsd:string
Line: xsd:integer

Element Type Meaning
Component xsd:string Path to component raising the fault
Stacktrace api:stacktrace Stack trace of fault

Implementations must include a component reference if it is known. Implementations
should include hostname and process information.

8.4.2 LanguageFault

A language fault represents any fault in language processing for which a file and line
number are relevant.

Element Type Meaning
File xsd:string Filename/URI of file at fault
Line xsd:integer Line number within the file

This information must be included if it is known.

If a deployment request includes the deployment descriptor inline, the file and line info is
missing/wrong. What to do?

8.4.3 WrappedSOAPFault

This type represents a mapping of a classic W3C-style SOAPFault [SOAP1.2] to a WS-
BaseFault, as an extension of DeploymentFault. It adds two new elements to contain data
unique to SOAPFaults.

Element Type Meaning
SoapFaultCode env:FaultCode Fault code information
SoapFaultRole xsd:anyURI Role of sender

The normative mapping of SOAPFault elements to WrappedSOAPFault elements is as
follows:

SOAP1.2 WrappedSOAPFault

/env:Code /api:SoapFaultCode

/env:Role /api:SoapFaultRole

/env:Detail /api:ExtraData

/env:Reason/env:text /wsbf:Description

Any text elements under env:Reason must be converted into separate description
elements in the fault; all xml:lang attribute must be preserved.

Detail from SOAP stacks with well-known fault fields, such as the Apache Axis stack
trace, may be imported into appropriate fields in the DeploymentFault.

8.5 Fault Error Codes
Specific fault error codes, and their meaning, are covered in a separate document.

Every unique fault will be described by its own fault code. Deployment faults that are
part of the API specification will all be in the namespace http://X/Y/Z with their code
value described in the CDDLM Fault Specification.

TODO: Fault Specification, namespace

Implementations may add new fault codes in different namespaces. They must not add
new fault codes to the primary fault namespace of the deployment API.

9 Security
The deployment requests must only be granted by suitably authorized individuals, or
their suitably authorized agents.

For deployment to a Grid infrastructure, that means that the standardized security model
of the infrastructure must be used to authenticate callers. Only callers with the relevant
rights may deploy systems.

When delegating deployments across nodes, the node issuing the deployments needs to
have the rights to do so, and the deployment itself still needs to be authenticated as a
legitimate request of the sender.

Along with deployment, the ability of a caller to list and manipulate running systems,
introduces another security issue: that of who has access to the set of deployed systems.

10Editor Information
Steve Loughran, HP Laboratories

11References
[Axis] Apache Software Foundation, Apache Axis,
[Foster04] Foster et al., Modeling Stateful Resources with Web Services, 2004.
[Goldsack04] Goldsack, SmartFrog Language, 2004
[JSDL] Job Service Description Language, 2004.
[Loughran02] Loughran, Making Web Services that Work, HP Laboratories,

TR-HPL-2002-274, 2002.
[Parastatidis03] Parastatidis et al., A Grid Application Framework based on Web

Services Specifications and Practises, University of Newcastle, 2003.
[RFC2119] S. Bradner, RFC 2119 - Key words for use in RFCs to Indicate Requirement

Levels, 1997
[Schaeffer05] Schaeffer., CDDLM Component Model Specification, 2005
[SOAP1.2] W3C, SOAP Version 1.2, 2003.
[XML-CDL] CDDLM XML Configuration Description Language Specification

version 1.0 draft 2004-12-10.
[WS-A] Gudgin, M. and Hadley S., Web Services Addressing -Core, 2004.

[WS-BF] Tuecke et al., Web Services Base Faults (WS-BaseFaults), 2004.
[WS-BaseNotification] Graham et al., Web Services Base Notification 1.0 (WS-

BaseNotification), 2004.
[WS-BrokeredNotification] Graham et al., Web Services Brokered Notification 1.0 (WS-

BrokeredNotification), 2004.
[WS-Policy] Schlimmer et al., Web Services Policy Framework (WS-Policy), 2004
[WS-ResourceLifetime] Frey et al., Web Services ResourceLifetime 1.1 (WS-

ResourceLifetime), 2004.
[WS-RF] Tuecke et al., Web Services Resource Framework (WS-RF), 2004.
[WS-ResourceProperties] Graham et al., Web Services Resource Properties 1.1 (WS-

ResourceProperties), 2004.
[WS-ServiceGroups] Graham et al., Web Services Service Group Specfication 1.0 (WS-

ServiceGroups), 2004.
[WS-Topics] Graham et al., Web Services Topics (WS-Topics), 2004.

