Test-Driven Standards

Steve Loughran
HP Laboratories
steve_loughran@hpl.hp.com
October 2005

Summary

This paper looks at the current mechanisms for test-driven software development in an open-source community. It then shows how standards development could adopt many of the same techniques.

The key point is that modern software projects are settling on test-driven processes that give tests equal priority to the actual deliverable software. A good test suite with broad coverage is viewed as the best way to demonstrate compliance with a design over space (different platforms) and time. The act of writing test-driven software also forces the developers to write testable code, and think more about the corner cases of an application –how to break it, rather than just how to demonstrate that it works. This significantly improves the quality of the application.

Yet these specifications are being let down by the standards bodies, because the standards that programs are expected to implement are coming without any tests, or with tests written as an afterthought.

If “standards” included test suites, written at the time of the standardisation, rather than afterwards, the specifications should be able to gain the same advantages that software itself does. The quality of the standard would be higher, and would be more testable. The real benefit would come downstream: implementations would be able to use the test suite as a means of demonstrating compliance with the standard. Instead of interoperability being left as an implementation detail to be resolved amongst vendors, there would be a rigorous and formal method of testing whether or not an implementation adhered to a specification.

Test-Driven Software Development

“Any feature without a test doesn't exist”

This is the key concept of test-driven development, namely that everything must have a test. If it does not have a test, then it is assumed to be broken. Tests are raised to the same importance as the actual “functionality”. Giving tests a high priority is one of the hardest acts of a project; there is invariably pressure to check a feature off as complete the moment it is implemented. One solution to this is test-first development, in which the tests are written before the implementation is ready. This has the following advantages:

· Forces the tests to be written.

· Verifies that tests fail before the functionality is implemented. If a test passes at this point, the test is probably wrong.

· Acts as a formal specification of behaviour.

· Forces the implementers to consider how a feature will be tested.

The test suite effectively becomes an executable specification of how a system should behave. That is one of the most rigorous forms of formal specification one can have, although the general practice of writing it in a procedural language/framework (such as Java and JUnit) means that one is unable to use the specification for proofs of correctness [sannella]. The test suite cannot prove that a specified behaviour is correct or complete, merely demonstrate that in the environment used to run the tests, the implementation was considered to behave correctly according to the test suite.

Writing tests does involve up-front costs, compared to just implementing the functional software, but those costs are paid back many times over the life of a long project, as regression tests can be fully automated. With the CruiseControl tool [cruise], Continuous Integration is possible [fowler]. The CruiseControl program runs continually, probing the SCM repository every few minutes for changes. A recent change triggers a complete rebuild and retest of the application. The result is that all tests run many times in a single day, and that developers know within minutes if any committed change has broken anything.

Alongside CruiseControl is Apache Gump. This is a classic scheduled build, but is far more ambitious in scope. The central Gump server checks out and rebuilds all the main open source Java projects. Each project provides a Gump Descriptor, that details the repository access mechanism, which Ant or Maven projects to build, what artifacts will be created, which projects/artifacts it depends on and who to email. The Gump runtime builds a dependency graph across projects, building every project in order. If any project fails to build or test, the development team is notified and the public status pages show the problem.

Because Gump builds everything, it performs a slightly different function from CruiseControl. CruiseControl verifies that a change made to a single program does not break any of that program's tests, and it runs whenever a change is made. Apache Gump verifies that incompatible changes are not made across projects. If any project makes a change that breaks a downstream Gump project, emails between the groups will soon raise the issue, and seek out some form of solution. Generally that solution involves rolling back any incompatible changes.

CruiseControl is therefore beneficial on an individual project, because it monitors the quality of that product -the more tests there are, the better the quality. Gump's role is far more ambitious: it raises the quality of all participating projects, by nearly eliminating the risk that upgraded versions of dependent libraries will be incompatible. It also acts as a functional test for many parts of the build process, such as the build tools and XML parser. The remaining problems are:

1. A project makes a change that is no longer backwards compatible: downstream developers have to choose between forwards compatibility with an as-yet-unreleased version, or backwards compatibility with the shipping product.

2. Some projects are considered “frozen”, yet are used downstream. The Crimson XML parser is a case in point. This no longer builds on modern JVMs, and is no longer under active development.

3. Platform issues. Public Gump runs on Solaris, on Java1.4 and the Kaffe/Classpath JVM. Java1.5 code cannot (yet) be built, and code is not tested or run on Windows.

4. Long-duration functional testing is not permitted on the public servers.

The CDDLM Experience

One of the projects implementing CDDLM was the HP SmartFrog project, whose LGPL codebase was already part of Gump. Bringing the CDDLM specification into Gump was an obvious action.

1. We created a project on SourceForge (http://www.sourceforge.net/), with a license (BSD) that was acceptable to all parties.

2. XSD and WSDL development was moved to the SourceForge CVS repository.

3. Custom versions of the WS-RF, WS-Notification, WS-DM and WS-Addressing XSD/WSDL files were created, all referring to the local copies, and all using different prefixes for the multiple versions of WS-A that WSDM implies.

4. An XML file, constants.xml contained constants, URI declarations and fault declarations.

5. An XSL file turned the constants.xml file into Java source; HTML and other languages are also options.

6. Apache XmlBeans was run against the server to create proxy classes for all the XSD types used in the various specifications.

7. An Ant build file was written to create a JAR file containing the various XSD and WSDL files, and the compiled down Java constants and XmlBeans.

8. A Gump descriptor was created to make this deliverable part of Gump.

The result of this is that we had an automated build of the shared schemas of the project. Yet, there was no testing. This was addressed by creating a new Ant task <schemavalidate>, to validate one or more documents against supplied XML Schema files. This task was used first to validate the WSDL files against the WSDL schema itself, then to verify sample valid XML messages and CDL documents against the schemas. The result is that we had automated verification that the designed schemas enabled the messages we expected to be able to send and receive.

This initial process has many limitations

· We never had high-level commitment to the process. Because it was viewed as an implementation detail, not all of the reference schemas were developed under SCM.

· Testing was viewed as secondary: there was pressure to deliver the specification documents in a timely manner, and time spent writing tests perceived as a distraction from writing the specification or any implementation.

· Ant does not have an easy way to verify that schema validations are expected to fail against test files, yet testing invalid documents is a key part of unit testing. Much of this work was implemented downstream in SmartFrog's unit tests, but these were not part of the CDDLM project itself.

· WSDL is only very loosely defined in the XSD: it is easy to write syntactically valid WSDL that is rejected by the mainstream SOAP stacks.

· Every SOAP stack turned out to have different quirks in processing the WSDL, and even XSD, yet this was not tested in Gump.

· Schema validation can validate XSD, but we want to verify that SOAP conversations between two systems follows an expected pattern.

While the CDDLM specification is probably the first specification to be developed using Apache Gump, the testing of the actual normative XSD and WSDL documents, and the expected interaction between systems is inadequate.

The other problem we encountered at implementation time: inadequate interoperability between implementations of WS-Addressing and WS-Resource Framework. There is a simple reason for this: there are no tests for these standards. There is now a mailing list set up to collect tests for WS-Addressing, but at the time of writing (mid-October 2005), only one test has been submitted [haas]. This is despite the fact that WS-Addressing is a core standard for the next generation of SOAP stacks –it is at candidate status with only one proposed test case. Similarly, the do not appear to be any public standards for WS-RF, WS-Notification or WS-DM at all.

Some standards bodies, notably the IETF and GGF require demonstrated interoperability as a means of qualifying a standard. Demonstrated interoperability, while an admirable goal, does not demonstrate compliance with a specification. All it demonstrates is that multiple implementations are consistent -not correct. An interoperability-first process places an emphasis on working code and interoperability plug-festivals, such as those for NFS or SOAP stacks. These events are expensive to host and attend and are only held intermittently. Furthermore, they do not always test failure modes properly -and it is consistent behaviour when things go wrong that makes for the most interesting tests.

The continuous integration philosophy argues for testing many times a day, something that is only possible with automated test suites. The SOAPBuilders work towards SOAP stack interoperability is also notable, because it involves the hosting of independent implementations of the various test rounds. Interoperability testing is therefore possible, because the remote endpoints are frequently available. Yet the coverage of these test servers is limited, and in the absence of a normative test suite, determining who is responsible for an interoperability problem is limited. If WS-A is being interpreted differently at each endpoint, how can we say who is wrong?

The RDF Data Access Experience

The RDF Data Access Working Group at the W3C [DAWG] has also been adopting a test-driven process, one more central to the standard itself. Every feature request must be described in a test case, a test case which becomes the test of compliance [DAWG2]. Every test case is an RDF manifest in either XML or n3 notation, describing a query, a dataset and an expected result [DAWG3]. These manifests are platform independent.

By adopting a test-first process, the act of defining the problem creates the test suite as the standard is created. Determining an implementation's compliance with the specification is then the relatively simple matter of writing a test harness that parses the test manifests and evaluates them against the implementation. This should eliminate the need for plug-fests, compliance bodies and recrimination which seems so prevalent in the WS-* standards space.

Clearly the technology being standardised does simplify the process: it is easier to describe the test and result of an RDF query than a complex, stateful interaction with a remote SOAP endpoint. Yet formal languages for describing the state of a distributed system do exist –perhaps these languages can be used as part of the test language.

The DAWG test suite is not yet part of the Gump nightly build.

Test Driven Standards: an alternate approach

If test-driven development demands tests before implementation code, then Test-Driven-Standards must follow the same regime:

Any standard without tests doesn't exist

This is a ruthless policy, as it should apply not only to standards that are written, but those that are referenced. Currently the policy is that normative standards should only depend upon other normative standards, occasionally resorting to de-facto specifications such as WSDL1.1 in the absence of any other option.

Organisational implications

A test-first policy would demand tests from all standards used in deriving other standards, regardless of which particular organisation produced the standard. This is going to be controversial and hard, and requires support all the way down the organisation. If testing is viewed as an implementation detail to be dealt with after a standard meets its formal release, then standards will never have decent tests, and interoperability will always be a problem, for the implementation and standards that depend upon it.

There are two possible tactics here. The first is that a standards body could adapt the rule that a standard must have a test suite to be formally submitted. That is, a normative test suite must be provided alongside the written standard. Any requirement for demonstrable interoperability must be extended to include demonstrable passing of the now-normative test suite.

The second tactic is to informally object to every specification that lacks a decent test suite. Returning to the examples of WS-Addressing and WS-Resource Framework, individuals and organisations should register objections to proposed standards that lack an adequate test suite. This approach may be less effective than having testing embraced by the standards body itself, but as it is open to more objectors, it is the only immediate way to influence other organisations. For example, because OASIS requires neither tests nor interoperability for its standards, the GGF could object to OASIS standards on the grounds they lacked any means of being verifiably implemented.

Technical Implementations

In this context, what would it mean to have a set of tests? Especially when the standard may be covering a conversation between multiple nodes; a series of messages and responses. Ideally, the test suite would be a declarative specification of the conversation, one that could be parsed and used in multiple test clients. Multiple is a key point here: a single client implementation would only be testing interoperability with that particular client. The W3C test metadata document [W3C01] adds some useful ideas about using RDF metadata to describe tests better, including licensing issues and which part of the specification a test refers to. It does revert to free form text to describe the pre- and post- conditions of a test run, which is inadequate for easy automation.

Build process

If such tests existed, what could be done with them?

Gump could run a nightly build over every project, verifying that the specifications were consistent with the test data. The build could generate artifact files containing the latest working draft XSD/WSDL files, for use by other projects.

Dependent projects would refer to these artifacts, and use them in their own test process. This would ensure that the many standards being developed were consistent, and catch integration problems early.

If implementation projects were further downstream in a Gump build, they could run the test suites against the implementations. This would require a Gump server that did do functional deployment of grid applications. It would also imply that the tests in the standards projects were easily executable, and that the results of the tests, even those made by different implementations, could be verified against the expectations -that includes expected fault codes of failure tests.

The latter would imply that all implementations failed in similar ways -possibly with identical error messages, definitely with identical fault codes. This is something that, like tests, tends to get neglected in standards, yet, for true interoperability, is exactly what we need.

What should GGF do?

GGF is still evolving as a standards body. It has been laying down an architectural model for services distributed over a grid, using external specifications (SOAP, WS-A, WS-RF, WS-DM, possibly WS-Management) as some of the underpinnings. It is the interoperability of these underpinnings is already an issue with early implementations of GGF standards. As GGF is focused on producing specifications that can be used for interoperable aspects of a Grid fabric, it cannot tolerate such problems.

1. GGF embraces test-driven standards internally: every standard has to have a test suite.

2. GGF collaborates with other organisations, such as the W3C QA group, on how best to describe tests for OGSA-based systems. We may also need some code to run the tests from both Java and .NET.

3. GGF must demand test suites from every standard on which it depends. If someone comes to the group proposing a new standard, the response should be “where are the tests?”

4. Every working group should have an SCM repository, either on the gridforge site, or on the original SourceForge servers. This repository should host the working schemas, WSDL, test files and build files.

5. All projects should then be built as part of Gump, either in the Apache-hosted server, or in a private server that, by virtue of running on windows hardware, can better test interoperability.

A private Gump server would be the most effective, yet cost more to set up and run. It could be an optimisation, not a feature implemented from the outset. Closed-source implementations may wish to bring up a private server, to test their private CVS- or Subversion-hosted project against the public specifications and tests.

Conclusions

Test-Driven Development has transformed modern software development; it is the most fundamental process change for a long time. Standards can adopt the methodology and the tools, embracing the notion that the test suite forms part of the specification. If the test suite and specification are developed using Open Source servers and processes, automated standards testing can be integrated with open source software development, and tests can be run across the latest versions of dependent specifications. This should improve the consistency of standards and the quality of implementations.

References

[cddlm] Configuration Description, Deployment, and Lifecycle Management Working Group
http://forge.gridforum.org/projects/cddlm-wg

[cruise] CruiseControl
http://cruisecontrol.sourceforge.net/

[DAWG] RDF Data Access Working Group
http://www.w3.org/2001/sw/DataAccess/

[DAWG2] Harris S., RDF Data Access Working Group Test Cases
http://www.w3.org/2001/sw/DataAccess/tests/

[DAWG3] RDF Data Access Working Group Test Structure
http://www.w3.org/2001/sw/DataAccess/tests/README.html

[fowler] Fowler, M. Continuous Integration
http://www.martinfowler.com/articles/continuousIntegration.html

[gump] Apache Gump: http://gump.apache.org/
http://vmgump.apache.org/gump/public/

[haas] Haas H. Test submission: SOAP mustUnderstand fault and wsa:FaultTo
http://lists.w3.org/Archives/Public/public-ws-addressing-tests/2005Aug/0000.html

[hl] Hatcher E., Loughran S,. Java Development with Ant

[ht] Hunt A., Thomas D., Pragmatic Unit Testing.

[sannella] Sannella, D. Algebraic and Logical Foundations of Formal Software Development
http://homepages.inf.ed.ac.uk/dts/alf/index.html

[W3C01] Test Metadata W3C Working Group Note, September 2005
http://www.w3.org/TR/2005/NOTE-test-metadata-20050914/

