Component Model Specification - 011205

- section 1.1, last para: Is this entire document really non-normative? Are there no semantics that cannot be expressed in WSDL/schema that are normative?

>> No, that is not true. I have updated this and added more semantics to the document to >> clearly express its normative description.

- section 3.1, last para: last sentence has "will be not be" - don't know what is intended.

>> Added language to make clearer.

- throughout: my personal biases prefer WSRF and WSDM over WS-RF and WS-DM.

>> Fixed.

- section 3.2, UML: This diagram does not feel quite right. Should "is deployed on" be instead "is deployed by" - there is also some tension between this link and the deploys link on the other side? I don't think the wraps and implements lines should have arrows on both ends. It feels strage to use composite aggreagation and label the association with "deploys". If a deployment comonent is made up of services, perhaps there is a deployment engine (CDDLM framework?) that actually deploys these services.

>> I changed the location of the resource to be connected to the endpoint, but am not sure >> of the “is deployed on”. A deployment component is deployed onto some resource. >> But, the resource is not deployed by the deployment component. I fixed the arrows on >> the wraps and implements, they did not belong with arrows on both end.
>>
>> A deployment component can deploy one or more services which are contained

>> within itself. The CDDLM Framework deploys the component onto the resource

>> which will be used by the endpoint.
- section 3.3, first para: Is a JSDL interface required? Is this the only required interface? How do you know which deplayment description languages are supported?

>> This information is contained within the Deployment API specificiation. I did not

>> want to repeat it all here. I have added a reference to clarify this.

- section 3.3, picture: An EPR is a reference to a component on a node. I am confused by the picture with EPRs on the same node as the component to which they are pointing. Perhaps the EPRs in the picture should just be the blue arrows.

>> The picture was designed to indicate that multiple components and multiple EPRs can

>> exist on one node. Also, an EPR can exist on a node separate from the actual >> component it is managing. The normal case is the EPR for a component will be on the >> same node as the component. Also, an EPR and its component can exist separately >> from the resource and endpoint that are being deployed onto and managed.

>>

>> I have updated the language to reflect this clearly. The diagram was intended to

>> complement the diagram from the Deployment API document on System vs. Portal

>> EPRs.

- section 3.3, last para: same comment as for the picture - the text makes it sound like an EPR is located somewhere. An EPR is just a reference to somewhere. There is a period missing at end of second sentence. I would remove the last sentence because if you follow the rules of WS-Addressing you will do the right thing - besides WSRF no longer calls it the "implied resource pattern".

>> OK. I understand your earlier comment and will update the language and diagram.

- section 3.4, 1st para: The text talks about component interfaces but does not describe the interface. Is this state returned using a WSDM compliant representation of state? What are the responsibilities of the component in each of the states - what messages will it accept? What causes a component to transition its state?

>> Added semantics to describe this. The full interface is described later.

- section 3.4: There is no description of how a system aggregates the state of sub-components to portray a system state. What are the rules for how this is done?

>> Added the semantics to describe this.

- section 3.4.1: How are these secondary states portrayed? How are they returned to a client? What if the client only knows the main states - will it still be able to understand a query for state?

>> The secondary states are described in section 4.2.1.1. The client can ignore

>> everything but the main state, unless it knows how to process the extended

>> information. I think I understand your comments about needing to read the whole

>> document. I tried to describe the semantics of the system in section 3, and left section

>> 4 and 5 to detail actual specification. I will see if I can clean it up.

- Section 3.5.2: What is the Deployment API? 2nd para - I don't understand what this has to do with the CDDLM model.

>> The Deployment API is the third portion of the CDDLM specification family: CDL,

>> Component Model, Deployment API.

>> I think I understand your comment and will detail the interaction more clearly.

- section 3.5.3: What does it mean to "use the minimum subset of WS-RF option"? WSRF offers a set of message exchanges most of which can optionally be exposed by the WS-Resource. If I understand what you are saying, components will only expose the GetResourceProperty message exchange. It seems to me that a component should be free to expose any of the richness that WSRF offers.

>> A component is free to expose as much of WSRF as it would like. For the purpose of

>> creating a functional component, we would like not to mandate a developer to have to

>> implement more than is necessary. GetResourceProperty and Notifications are

>> declared to be used later in the specification. SetResourceProperty is listed as a

>> SHOULD.

- section 3.5.6: What is ImplementsMessageSet? Where is it defined? What does it have to do with CDDLM?

>> It is old, but has the purpose of allowing components to implement additional

>> message exchanges and query each other to ensure that the other endpoint supports

>> the exchange. It is supposed to be defined here. It needs more definition to make it

>> useful, or I will remove it.

- section 3.5: I would remove the entire section. It has nothing to do with the CDDLM component model. It belongs in a tutorial or best practices for Web service interface design.

>> OK. It was suggested to remove earlier. Two suggestions, gone.

- section 4: I can't tell whether a component is a "component delegate" or whether a "component delegate" is a component. How is a component delegate different from a component? How does one create or specify a component delegate?

>> A delegate is a type of component. Its purpose is to aggregate the lifecycle and
>> coordination of the components which it controls. One can specify a component

>> delegate as shown in section 4.1.4. But, I have added more concrete information on

>> this topic.
- section 4.1: Deployment API, create() - I thought this was about an interoperable, platform-independent component model, not a language-specific API. Is there a set of messages that the "Deployment API" is expected to expose?

>> Yes, as stated above the Deployment API is the third document in our set. This

>> document is about a platform-independent component model. It expects that the

>> Deployment API will have taken some language specific deployment description and

>> transformed it to XML-CDL so that the components can be identified.

- section 4.1.1: The code section should be for "componentEPR" rather than "codeBase".

>> Fixed.

- section 4.1.3: The last sentence talks about child properties - I don't know what this means. The XML schema definition will only allow for a single string value - no sub-elements, no attributes. If you want something different you will need to change the schema definition.

>> Fixed.

- section 4.1.4: I still don't know how a delegate is different. Why would somene want to mark a component as a delegate?

>> Someone would create a delegate if they have a group of components where they

>> would like to create some custom lifecycle management code, rather than using the

>> built in constructs.

- section 4.2.1.1: base="xsd:any" should be base="xsd:anySimpleType". This definition does not give the client any help in understanding the type. You should look at the WSDM State manageability capability. This is capability is defined such that even if a client only understands the spec defined states and not any component-specific sub-states, it can still get an idea about the state. In WSDM the base states are nested inside the sub-states, recursing to any depth. This means a client needs to start at the outside element, moving in until it understands the state. Also, component-defined sub-states are placed in their own namespace to differentitate from spec defined states.

>> OK. I will look further at WDSM State manageability.

- section 4.2.1.2: Is this a ath? Should it be xsd:anyURI instead of xsd:string? How can you represent the location of 2 different documents using a single value? Have you considered using WS-MetadataExchange?

>> I had discussed this with someone, and they had seemed comfortable with it. Two

>> different documents can be aggregated, not as a single value, but as a single

>> document. I will look at WS-MetadataExchange again. In either case, I will detail

>> out an example to show what I mean.
- section 4.2.1.3: The CD version of WSDM has only a single required resource property: ResourceId. Also, State no longer is defined as an actual capability, but as a template. This means that the CDDLM state model can be supported directly. If you want you can also expose the OperationalStatus capability for an abreviated quick-check on componet health.

>> As you mentioned in your email, I am working with an older version of the WSDM

>> specification. I will update this to reflect. I will need to look at what this means for
>> state. Our desire was for a component to be able to respond to the WSDM State

>> capability, by translating its CDDLM state to a WSDM State. Not sure if we would
>> make people use something which is only a template model and not required.

- section 4.3: The wording here seems a little strange - what you are listing is just the WSRF-RP defined message exchanges. WSRF-RP only requires GetResourceProperty. It is unclear whether this spec is requiring more than that one operation or not.

>> I will clarify what is required and what is not, and make clear the use of SHOULD

>> and MUST.
- section 4.3.1.4, 1st para: The last sentence should be worded "It is RECOMMENDED that an implementation supports the XPath 1.0 query expression dialect at a minimum, additional query expression dialects MAY also be supported." 2nd para: why talk about some operation that is not normtively defined? If it is not defined normatively there will not be any interop for that functionality.

>> Fixed. I will clarify the second paragraph. It does not belong here.

- section 4.3: There is a jumbled mess of message exchanges from dependent specs, property definitions (not always even containing type information), an message exchanges defined by this spec. It would be easier to understand if these were broken out seperately. Also, it is not mandatory that each message exchange be defined in its own portType - this is only required if the various operations may be implemented independent of one another. If they are all required, it makes more sense to put them all in one portType.

>> Hmmmm…. I will consolidate to one portType. Not sure about what to do

>> concerning the jumbled mess.

- section 4.3.1.7: I would not give an example that has multiple parts for a message - this is not document style and I would avoid defining anything in RPC if at all possible.

>> OK.

- section 4.4.1: I recommend using the WSDM capability ManageabilityCharacteristics for this functionality instead of what is defined in this spec. This capability defines the property ManageabilityCapability which is to be used for exactly the same thing as ImplementsMessageSet. Furthermore, URIs are defined for all of the WSDM capabilities, and there is some explanation about how a vendor can add new capabilities.

>> We originally did not want an implementer of CDDLM be required to fully support

>> WSDM. So, we created our own concepts, some of which are very similar. I will

>> discuss this with the group.

- section 4.4.2: I would remove this section - it is standard Web services.

>> Done.

- section 5.1: There is a notification format defined for transition events in the WSDM State template. I recommend using these event formats for transitions. You should only need to define the numberof events matching the number of transitions - it should have nothing to do with the number of components.

>> Again, I will need to discuss this with the team, as it was not our original goal to build

>> our system on top of WSDM.

- section 5.2, XML: Need an end element for cmp:sequence.

>> Fixed.

- section 5.2.1, XML: The <cmp:sequence ...> and </xsd:complexTYpe> nodes don't make any sense here. Can you really put a cmp:sequence element in a schema declaration? - how does schema validation work in this case?

>> I have fixed the pseudo-schema defined here to reflect the actual syntax.
- section 5.2.3: The types for duration and time should be xsd:duration and xsd:dateTime. But the text implies that you might want to block until another component has reached a certain state. This operator only allows blocking for a certain time or until a certain time. Maybe you want to offer an operator to block until component X reaches state Y.

>> Fixed date and duration. Implicitly one component can wait for another component to

>> reach its next state in a deployment. This is defined by the <sequence> element. If

>> instead, you want one component to respond to the state change of another, you can

>> define an OnState event handler. This allows the quick creation of standard

>> deployment sequences, but freedom to do what you are talking about through events.
- section 5.2.4: Switch is not defined well enough. What is a bool-expr? What language does one define ths expression in? Is there a way to define the language being used - e.g. XPath 1.0? What is the <cdl:ret ...> element all about? The text talks about transferring execution to another node - how is the destination node specified?

>> I added significant text to describe this more completely.

- section 5.3: You might want to use the WSDM events defined in the State template.

>> As above.

- section 5.4: It is not necessary to define any new element in order to enable WSRF value change notifications.

>> That is correct. One can enable this by hand by creating code which registers for

>> value change notifications. This declaratively allows a component to do so. If this is

>> declared, a component must do the registration for the notification.

- section 5.5: I am not aware of a resolve() function on an EPR. I don't understand why the resolve is needed. Whatever software is parsing the CDL will know where components have been deployed and thus know their EPRs. This software can sen subscribe messages to NotificationProducers with a consumer EPR of the NotificationConsumer. Why is a resolve necessary for this?

>> As defined in the Deployment API document, a CDL may be broken down into

>> fragments during deployment. A component when deployed, is thus not necessarily

>> given direct access to the entire CDL. Further, a client, not a member of the

>> deployment, wishes to communicate with a component, it must resolve the EPR. I

>> have had this discussion with the other authors, and this is where we are at. I agree

>> that if the CDL is present, all EPRs should be known.

- overall: A glossary is definitiely needed. Precise meansings fo the key terms used is very important to understanding the text. For instance, the term "resource" seems to be used in a very different way from how WSDM uses the term.

>> OK. The purpose of section 3.2 was to do this. I additionally had the team create a

>> glossary earlier in the project. It was subsumed.
- overall: Examples of use of the various XML definitions would help a lot.

>> OK. I will add.

- overall: I am not clear on how the model description prescribed by WSRF-RP meshes with the model description defined by CDL.

>> Hmmmmm…. That is not good.
