Deciding on Component Policy

The component model described thus far only provides for simple aggregation and inheritance within component and system definitions. For complex deployments and other cases, it can be advantageous to take explicit control over the order of actions and other internal behaviors of multi-component systems.

The reference SmartFrog implementation provides for compound objects that allow rich intercommunication and interoperation between parent and child objects. However, this behavior creates tight coupling within the system and provides no direct ability for component authors to create reusable behaviors that are not tied to the implementation. It also requires components to be able to handle the tasks of deployment.

Thus, we review several alternative approaches to providing controlled deployment behavior. One is the SmartFrog pattern, where objects can be declared to be compound and thus aggregate their child objects. Second are methods of using declarative semantics in the language for defining behavior. The others are variants of using deployment policy objects which can be applied like aspects to a deployment descriptor.

In all cases, we are trying to define operational semantics of how to control two major behaviors

1. Order of deployment operations, or dependencies between operations.

2. Responses to deployment events.
1 WS-Policy

Ideally, we would like to be able to declare “policy” to control the behaviors of deployments. In considering this, we reviewed the WS-Policy specification and attempted to apply the techniques to our problem.

WS-Policy is an XML based grammar for expressing capabilities and requirements of just about any element declared in a document. It is a system of definitions that can be asserted about these resource elements. An example policy is one to define allowable authentication protocols for a transaction. This policy defines that a system requires the use of Kerberos or X509 certificates in order to use the service.
<wsp:Policy>

<wsp:ExactlyOne>

<wsp:All>

<wsse:SecurityToken>

<wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>

</wsse:SecurityToken>

</wsp:All>

<wsp:All>

<wsse:SecurityToken>

<wsse:TokenType>wsse:X509v3</wsse:TokenType>

</wsse:SecurityToken>

</wsp:All>

</wsp:ExactlyOne>

</wsp:Policy>

In order to apply this to our requirements, a deployment policy would need to be able to define operations or semantics to control the necessary behaviors. The WS-Policy syntax does not provide a grammar rich enough to accommodate this. It would need to be augmented with our own extensions, as the WS-Security tokens were used above. Even if this were done, the WS-Policy grammar limits the assertion syntax to be on/off only. It cannot define dependencies or order, as it is not a full calculus.
Thus, it is my recommendation that this approach be abandoned. The definition of “policy” and its applications of WS-Policy do not match our requirements. It would be ideal to use an industry accepted standard, but it does not appear feasible.
2 Declarative Relationships

As shown above, what is necessary is some encoding of the dependencies and relationships of authored components. In order to achieve the goal of loose coupling, it would be recommended to allow every component be independently authored. The interdependencies would then be tied together at time of composition of the system to be deployed. This requires that all dependencies be declarative within the CDL document.
Currently, the CDL language provides for an implicit dependency through the LAZY attribute. This implies that the originator of the lazy link be deployed after the destination attribute has been set. However, we would desire a more rich ordering, allowing the deployment actions to be stepped through in a controlled fashion.
To be able to provide controlled ordering, we would need to be able to declare that one component be deployed before or after another. Syntactically they are different, but semantically they are equivalent. Thus, for sake of argument we will choose to use the syntax of declaring something should be done after another. This will follow the same pattern as the LAZY link in which the source of the dependency declares its relationship to the destination.
In looking at a deployment graph, there is an implicit hierarchy in its organization. This graph could be treated as an ordered, hierarchical list, or an un-directed, acyclic graph. In the former case, there is an understood parent-child relationship between components as they are declared in the CDL document. In the latter case, all components are treated as equal, top-level elements.

By default, all elements at the top-level with no declared relationships would be acted on simultaneously and asynchronously. If any top-level elements declare dependencies on other components, the deployment will begin to order and become somewhat more synchronous. With the enforcement of additional hierarchy of a parent-child relationship, the deployment actions will implicitly become synchronous to some degree.

With a parent-child relationship, all facets of deployment actions – initialize, run, terminate – will follow the same relationship. If a component needs to be deployed before another component, and stopped before the same component, the pure parent-child relationship will be violated. The hierarchy will not be enforced.

An example of using this type of declaration is shown below.
<WebApplication>

 <c:ComponentClassName cdl:type="c:classNameType">ApacheDeployer</c:ComponentClassName>

 <c:ComponentCodeBase>http://server/file.jar</c:ComponentCodeBase>

 <c:ComponentId cdl:lazy="true" cdl:type="c:componentIdType"/>

 <c:dependency cdl:action="c:initialize">DatabaseServer</c:dependency>

 <c:dependency cdl:action=”c:terminate”>FileServer</c:dependency>
</WebApplication>

PROS:

· Explicitly controllable deployment actions

· Completely decoupled implementation

CONS:

· Unwieldy syntax if lots of dependencies

· Deployment graph can be complex

3 Policy Calculated Relationships

In order to simplify the proposed scenario of using declared relationships, it is possible to employ policy objects to calculate relationships during deployment. Rather than embed relationships directly into the CDL, a post-processing step could be done by the Deployment API to resolve these relationships. This post-processing step would pass the CDL to a document processing object for substitution of dependencies. The dependencies would then be declarative as above, but done at runtime instead of at compilation time. This would allow the creation of some simple policy objects for doing ordering that could be commonly used/re-used, plus rich policy object creation for complex interrelationships.

As with above, the objects would need to be scoped at some level. The CDL would need to declare that an object is responsible for all or some subset of the deployment graph. Additionally, an object could be responsible for some or all deployment actions. This way one could sequentially enforce deployment, but allow random termination.

An example of this is shown below, displaying only the syntax of the document prior to processing. The interface to the policy object would need to be defined, either as a SOAP interface or as a direct, platform specific invocation. A policy object could be part of a set of objects within some container. The interface will need to be able to accommodate this.
<WebApplication>

 <c:ComponentClassName cdl:type="c:classNameType">ApacheDeployer</c:ComponentClassName>

 <c:ComponentCodeBase>http://server/file.jar</c:ComponentCodeBase>

 <c:dependency cdl:action="c:initialize”>SequentialDeploy</c:dependency>

</WebApplication>

<SequentialDeploy>

<c:PolicyCodeBase>http://server/policy.jar</c:PolicyCodeBase>

</SequentialDeploy>

PROS:

· Explicitly controllable deployment actions

· Largely decoupled implementation

· Flexibility to accommodate complex deployments

· Simpler to implement than full declaration

CONS:

· Deployment graph can be complex

· Additional pre-processing step needs to be accommodated

4 Compound Objects / Parent-Child Relationships

The SmartFrog system declares the use of compound components. The purpose of a compound object is to aggregate the lifecycle of a series of components within a specific, controllable means. The compound object takes on the responsibility from the Deployment API of managing all aspects of aggregated components.

A compound object mandates an explicit parent-child relationship to exist between the container object and its aggregated children. To the CDDLM framework, communication requests will flow through the compound object. The compound object will interpret the request and decide how to fulfill it. As a simple example, if a lifecycle action is to be taken, it is transmitted to the compound object which will in turn step each of its children through the action.

In using a compound object, the state of the deployment graph must be kept somewhere. The CDDLM framework maintains this information by default for standard objects. In order for the compound object to use this information, it would need to query the Basic Services to obtain the object states. If, instead, the deployment graph is maintained by the compound object, it must be replicated and coordinated with the Deployment API. As notifications and callbacks have been specified, these events will need to be chained or otherwise.

PROS:

· Simplicity of implementation.

· Total control over the lifecycle of child components; component initiated start/stop; fault handling.

CONS:

· Tight coupling of object code to managed component

· Security implication of object making remote calls.

· Policy can only be changed by writing new compound components

· Notifications must be chained
· Deployment capabilities must be implemented in components

· Unsure of integration with WS-RF for endpoint addressing without strong coordination with Deployment API

5 Deployment Policy Objects
In order to decouple coordination behavior from implementation, instead we can develop deployment policy objects. These policy objects would be integrated as event handlers to respond to deployment action requests and system events. They can be declared with parent-child relationships as with SmartFrog compound objects, or be simply event responders that can be targeted to events for the entire application or a subset of the components.
An object can be coded to provide a specific behavior such as sequential lifecycle transitions, fail-one-fail-all policy, auto-restart, etc… To do this, a policy component will be enabled by activation on some event, either a deployment action or a lifecycle event. In response to a deployment action, the policy object can mask further invocations of an action and operate on covered components directly. In response to a lifecycle event, the policy object can act on the event and either stop or propagate the event further up the chain. As with all of the scenarios proposed, the scoping of the policy object is an important part of the policy declaration.

The declaration of a policy object is simple, very much as in scenario 3. Additional declarations will cover lifecycle events.

<WebApplication>

 <c:ComponentClassName cdl:type="c:classNameType">ApacheDeployer</c:ComponentClassName>

 <c:ComponentCodeBase>http://server/file.jar</c:ComponentCodeBase>

 <c:dependency cdl:action="c:initialize”>SequentialDeploy</c:dependency>

 <c:dependency cdl:event=”c:onTerminate”>KillAll</c:dependency>

</WebApplication>

<SequentialDeploy>

<c:PolicyCodeBase>http://server/policy.jar</c:PolicyCodeBase>

</SequentialDeploy>

<KillAll>

<c:PolicyCodeBase>http://server/policy.jar</c:PolicyCodeBase>

</KillAll>

PROS:

· Decoupled implementation

· Quick to author and reuse objects

· Rich deployment semantics

CONS:

· Requires API support from Deployment API
· Requires support of WS-BrokeredNotifications

· More complicated first authored object

· More things to put into the repository and get remotely

· More points of failure

· Some semantics embedded in policy objects, not declarative

