GWD-R (cdl_test_results_steve.doc)

Editors:

Configuration description, Deployment and

S. Loughran
Lifecycle Management

http://forge.gridforum.org/projects/cddlm-wg

2006-03-27

CDDLM Configuration Description Language
CDL Implementation Test Results

Draft 2006-07-05
Status of this Memo

This document provides information to the community regarding the specification of the Configuration Description, Deployment, and Lifecycle Management (CDDLM) Description Language (CDL). Distribution of this document is unlimited.

Copyright Notice

Copyright © Global Grid Forum (2006). All Rights Reserved.

Trademarks

OGSA is a trademark of the Global Grid Forum.

Abstract

This document reviews the current status of the interoperability tests between implementations of the CDDLM Description Language (CDL) engines.

1 Table of Contents

2 Introduction

The standardization process of the GGF requires multiple independent implementations of a specification. This document shows how the CDL parser implementations were tested.

The CDDLM Configuration Description Language (CDL) is an XML-based language for declarative description of system configuration where system is consists of components (deployment objects) defined in the CDDLM Component Model. [Component Model] The Deployment API [CDDLM-API] uses a deployment descriptor in CDL in order to manage deployment lifecycle of systems. XML-CDL provides ways to describe properties (names, values, and types) of components including value references so that data can be assigned dynamically with preserving specified data dependencies. A system is described as a hierarchical structure of components. XML-CDL also provides prototype-based template functionality (i.e., prototype references) so that the user can describe a system by referring to component descriptions given by component providers.
	Team
	CDL

	NEC
	

	UFCG
	

	HP
	

1.1 Implementations

Each implementation was different.

1.1.1 HP Implementation

· Expression evaluation is not implemented
· Import into a namespace was not implemented (this is a feature that is being removed from the specification, as testing revealed too many ambiguities)
1.1.2 UFCG Implementation

1.1.3 NEC Implementation

· Language parser is implemented using Java

· ‘cdl:switch’ element is not supported yet

1.2 Tests

The following are the test cases identified for testing the CDL implementation.

	Valid Tests

	1. extends

	test 1-Basic inheritance
	Verify that inheritance of property list is resolved by the language processor

	test 2-Cascading inheritance
	Verify that cascading inheritance of property list is resolved by the language processor

	test 3-Property order
	Verify that property list order is resolved by the language parser

	test 4-Deep inheritance
	Verify that ‘deep’ inheritance is not resolved by the language parser

	test 5-Multiple extends
	Verify that multiple @cdl:extends in a tree

	test 6-Namespace-based inheritance
	Verify that you can inherit something

	

	2. references

	test 1-Basic reference resolution
	Verify that basic ‘ref’ of a property is resolved

	test 2-Basic reference resolution after prototype resolution
	Verify that the prototype resolution happens before the basic reference resolution

	test 3-Cascading reference resolution
	Verify the Cascading reference resolution

	test 4-In system relative resolution
	Verify the in-system relative resolution

	test 5-In-system absolute resolution
	Verify the in-system absolute resolution

	test 6-In-system relative path resolution
	Verify the in-system relative path resolution

	test 7-Resolution of the "." node
	Verify the in-configuration refroot-relative resolution of the "." node

	test 7-QName in refroot
	Verify that the QName in refroot is resolved

	test 8-QName in refroot and in reference to resolve
	Verify that the QName in refroot and in reference is resolved

	test 9-QName in refroot and in reference to resolve, with a different prefix
	Verify that QName in refroot and in reference to resolve, with a different prefix in the system from the configuration is resolved

	test 10-Resolution occurs after extends processing.
	Verify that Resolution occurs after extends processing. Either all things get extended, or everything that needs to be extended must be extended before reference processing

	test 11-Chained references
	We are able to resolve to something that is itself a resolution point.

	test 12-QName Resolution can be relative to the refroot
	Verify that QName Resolution can be relative to the refroot

	test 12-Interaction of extends and resolves
	Verify that interaction of extends and resolves

	test 13-Interaction of extends and resolve
	Verify that in this case a reference in an extended node is only resolvable after extension takes place

	test 14-Retaining all attributes of the original reference
	Verify that when copying a reference, it is possible to retain all attributes of the original except for cdl:ref and cdl:refroot

	

	3. type annotations

	test 1-type annotations
	Verify that the schema annotations are resolved by the language parser

	

	4. import

	test 1-import
	Verify the ‘cdl:import’ element

	test 2-Chained import
	Verify the chained cdl:import element resolution. Two documents are provided as imports, one importing the other. Both have to be imported for the description to parse

	test 3-Relative chained import
	Verify the relative chained cdl:import element resolution. Two documents are provided as imports, one importing the other. The reference used for the second import is relative. This is an informative test, as the specification doesn't actually say anything about relative URLs

	

	5. structure

	test 1-An empty document
	Verify that an empty document can be resolved

	test 2-Documentation element
	Verify that the cdl:documentation element can be resolved by the language parser

	test 3-Extra elements are allowed at the tail of a doc
	Verify that extra XML elements are allowed at the tail of the CDL doc and they are not resolved

	

	6. lazy references

	test 1-Lazy references
	Verify that cdl:lazy is resolved by the language parser

	test 2-Lazy references with multiple components
	Verify that cdl:lazy values are resolved properly when multiple components are used in the description language file.

	

	7. complex

	test 1-Complex Example
	This tests import, extends and static references, plus attributes the latter are used for some binding things in the SmartFrog impl

	

	8. import namespace

	test 1-Import with a namespace defined
	Verify that it is possible to import external cdl file and extends from outside import/@namespace only affects top-level names

	test 2-Import with a namespace defined with ref. from outside
	Verify that it is possible to import external cdl file with references from outside

	test 3-Import with a namespace defined with ref. from inside
	Verify that it is possible to import external cdl file with references from inside

	test 4-Chained import
	This test verifies the expectation that when the nested document will be imported into the same namespace as the outer one The first import is into a namespace, the second is imported into the first

	test 5-An ambiguous interpretation of namespace and attributes
	It asserts that changing the namespace of a node does not change the namespace of attributes

	

	Invalid Tests

	1. failures

	test 1-CDL file with a dangling link
	Verify that a dangling link in the cdl file causes the language parser to throw an error

	test 2-A system node cannot be extended
	It is only allowable to extend a configuration node, not a system node

	test 3-Invalid cdl:extends element in the namespace
	Even in a default namespace, you have to give a full QName to whatever you are extending. That is, the default xmlns does not propagate to extends attributes

	

	2. invalid references

	test 1-Non-resolvable reference
	Verify that the language parser fails to resolve the non-resolvable references

	test 2-Recursive reference which asks for the parent
	Verify that the recursive reference needs a parent reference to be resolved by the language parser

	test 3-Indirect recursive reference
	Verify that the indirect recursive reference cannot be resolved

	test 4-Illegal inclusion of text under a reference
	The unknown or illegal text inserted in the cdl file is not resolved

	test 5-Illegal inclusion of comment under a reference
	The unknown or illegal comment inserted in the cdl file is not resolved

	test 6-Reference with an excessive number of .. operations
	Go too far up the tree and then down again. The reference is there, but only if you allow an excessive number of .. operations

	test 7-Invalid namespace in the refroot
	Verify that invalid namespace in the refroot is not resolved

	test 8-Multiple top level nodes
	There are two nodes called "toplevel", one under configuration, one under system, which means that cdl:refroot will not know which way to go. It should fail

	test 9-A reference with a trailing space
	This is not valid by the schemas, but may slip past non validating things

	test 10-A reference with double slashes
	Verify that a reference with double slashes is not resolved

	test 11-Recursive reference which implicitly asks for the parent
	Verify that recursive reference which implicitly asks for the parent is not resolved

	test 12-Recursive reference which asks for the root
	Verify that recursive reference which asks for the root

	test 13- Top-level elements in a cdl:system node are not reference roots
	Verify that top-level elements in a cdl:system node are not reference roots, unlike cdl:configuration children

	

	2. imports

	test 1-Import a URL that is not valid
	Verify that it’s not possible to resolve the cdl:import element with a URL that is not valid

	test 2-Recursive import
	Verify that the document we import imports itself inevitably fails somehow, even if it is graceless. Spinning forever is not an acceptable option

	test 3-Chained recursive import
	Two documents are provided as imports, each importing the other. This should fail

	

2 Results

2.1 NEC Implementation
This is the summary of the tests against the NEC CDL parser implementation.

	Valid Tests

	1. extends

	test 1-Basic inheritance
	Success

	test 2-Cascading inheritance
	Success

	test 3-Property order
	Success

	test 4-Deep inheritance
	Success

	test 5-Multiple extends
	Success

	test 6-Namespace-based inheritance
	Success

	

	2. references

	test 1-Basic reference resolution
	Success

	test 2-Basic reference resolution after prototype resolution
	Success

	test 3-Cascading reference resolution
	Success

	test 4-In system relative resolution
	Success

	test 5-In-system absolute resolution
	Success

	test 6-In-system relative path resolution
	Success

	test 7-Resolution of the "." node
	Success

	test 7-QName in refroot
	Success

	test 8-QName in refroot and in reference to resolve
	Success

	test 9-QName in refroot and in reference to resolve, with a different prefix
	Success

	test 10-Resolution occurs after extends processing.
	Success

	test 11-Chained references
	Success

	test 12-QName Resolution can be relative to the refroot
	Success

	test 12-Interaction of extends and resolves
	Success

	test 13-Interaction of extends and resolve
	Success

	test 14-Retaining all attributes of the original reference
	Success

	

	3. type annotations

	test 1-type annotations
	Success

	

	4. import

	test 1-import
	Success

	test 2-Chained import
	Success

	test 3-Relative chained import
	Success

	

	5. structure

	test 1-An empty document
	Success

	test 2-Documentation element
	Success

	test 3-Extra elements are allowed at the tail of a doc
	Success

	

	6. lazy references

	test 1-Lazy references
	Success

	test 2-Lazy references with multiple components
	Success

	

	7. complex

	test 1-Complex Example
	Success

	

	8. import namespace

	test 1-Import with a namespace defined
	Success

	test 2-Import with a namespace defined with ref. from outside
	Success

	test 3-Import with a namespace defined with ref. from inside
	Success

	test 4-Chained import
	Success

	test 5-An ambiguous interpretation of namespace and attributes
	Success

	

	Invalid Tests

	1. failures

	test 1-CDL file with a dangling link
	Success

	test 2-A system node cannot be extended
	Success

	test 3-Invalid cdl:extends element in the namespace
	Success

	

	2. invalid references

	test 1-Non-resolvable reference
	Success

	test 2-Recursive reference which asks for the parent
	Success

	test 3-Indirect recursive reference
	Success

	test 4-Illegal inclusion of text under a reference
	Success

	test 5-Illegal inclusion of comment under a reference
	Success

	test 6-Reference with an excessive number of .. operations
	Success

	test 7-Invalid namespace in the refroot
	Success

	test 8-Multiple top level nodes
	Success

	test 9-A reference with a trailing space
	Success

	test 10-A reference with double slashes
	Success

	test 11-Recursive reference which implicitly asks for the parent
	Success

	test 12-Recursive reference which asks for the root
	Success

	test 13- Top-level elements in a cdl:system node are not reference roots
	Success

	

	2. imports

	test 1-Import a URL that is not valid
	Success

	test 2-Recursive import
	Success

	test 3-Chained recursive import
	Success

	

2.2 UFCG Implementation

This is the summary of the tests against the UFCG CDL parser implementation.

2.3 HP SmartFrog CDL Implementation
This is the summary of the tests against the HP CDL parser implementation.

The HP CDL parser passes all the tests except for the following.
cddlm-cdl-2005-02-0023
 when extending a reference, cdl: attributes from the predecessor are dropped. If they are not, this thing does not resolve.

This test was written in May 2006 to expose a problem in the GGF-17 draft of the specification, namely that the extends child-node processing algorithm did not mandate that cdl:ref and cdl:lazy attributes must be dropped during extension.

 <component>

 <entry cdl:ref="todo"/>

 </component>

 <c2 cdl:extends="component">

 <entry>something</entry>

 </c2>
Any implementation that correctly followed the GGF-17 draft of CDL would fail to produce a correctly resolved document, as the <entry> node would be extended to an unresolvable reference:
<entry cdl:ref="todo">something</entry>
This is exactly what the HP implementation does, showing that this implementation is at the GGF-17 draft with respect to extension processing.

Suite_06_LazyReferencesTest
The document generated when running the two tests in this suite do not match that which is expected. This merits further investigation, to determine whether this is a test failing correctly, or whether an implementation detail is causing a false positive.
Suite_09_ImportNamespacesTest
All tests that try and import a CDL document into a new namespace fail. This feature is not implemented. As the feature has been shown to demonstrate too much ambiguity, it is being removed from the CDL specification.
All tests involving expressions

There are no tests for expression evaluation in the current test suite. If there were, the fact that the HP implementation has not yet implemented this feature would become apparent.
3 Analysis
The use of an XML-based test system, in which both the input file(s) and expected output document proved very successful, especially when coupled with manifest-driven test runners. Anyone in the working group could add a new test, and expect it to be picked up by the others within a short period of time.
It enabled discussions on an issue to center around a test case that all implementations could run, to see their own behavior.

It also provided feedback on many aspects of the language, feedback which resulted in a clarified document, and even the removal of some features which were deemed over-complex or over-ambiguous. Specifically, the ability to import a CDL document into a new namespace was dropped, and the rules for processing attributes on extended nodes clarified.

The JUnit test runner, which could parse tests manifests and run tests against any (Java) implementation, meant that new JUnit bridge classes could be added, classes that would automatically bind and test any of the Java implementations. One weakness of this approach was its requirement for an XML document for comparision. Although there is no explicit requirement in the specificiation for a resolved CDL document to be convertible back into XML after parsing and resolution, this is an implicit requirement of the test harness. However, support of the test harness is an optional requirement of implementations; they are free to run the tests and validate the results in different ways.

4 Issues

5 Recommendations for other working groups

6 Bibliography

[1] CDL Language
cddlm-wg@ggf.org

