GWD-R (deployment_test_results.doc)

Editors:

Configuration description, Deployment and

S. Loughran
Lifecycle Management

http://forge.gridforum.org/projects/cddlm-wg

2006-03-27

Configuration Description, Deployment,
and Lifecycle Management

CDDLM Deployment API Interoperability Test Results

Draft 2006-06-07

Status of this Memo

This document provides information to the community regarding the specification of the Configuration Description, Deployment, and Lifecycle Management (CDDLM) Language. Distribution of this document is unlimited.

Copyright Notice

Copyright © Global Grid Forum (2006). All Rights Reserved.

Trademarks

OGSA is a trademark of the Global Grid Forum.

Abstract

This document reviews the current status of the interoperability tests between implementations of the CDDLM deployment API.

1 Table of Contents

2 Introduction

The standardization process of the GGF requires multiple independent implementations of a specification. This document shows how the deployment API implementations were tested in such a manner as to permit a clear statement upon interoperability between different implementations.

The CDDLM Deployment API is a WSDM-based SOAP API [1]. Portals with well-known EPRs act as factories for Systems, which can be configured and deployed. Both portals and systems are WSRF resources, responding to the standard WSRF operations. To say that we have interoperable implementations, we need to define interoperability and demonstrate it.

Deployment API Interoperability: An interoperable implementation means that a client program using one project's implementation code can query and deploy to a deployment API server written by another team. There is nothing in the specification that covers communication between servers, so no need or way to demonstrate server-server interoperability. It is merely client-server interoperability.

Demonstrated Interoperability: a client is deemed to have demonstrated interoperability by performing a predefined set of operations against the server. These operations were written in the test plan document [2]. Every team had to write test cases in their chosen test framework (usually JUnit), to implement each of the tests in the test plan. The test clients had to be written so that they could be pointed at remote endpoints. They were then run against each others implementations until all test failures had been resolved. With multiple clients working with the multiple servers, one could then say that for the set of operations tested in the test plan, the implementations were interoperable.

The physical process for testing the nodes was based on the SOAPBuilder process; the original mechanism by which SOAP stacks were brought up. Each vendor hosted their own public endpoint, and others were invited to test against it. While many of the original endpoints are now down, the fact that SOAP stacks interoperate at all is testament to the effectiveness of this process.

For the CDDLM system, every participating team had to implement their complete CDDLM service, and host it on a public endpoint. Three such endpoints were made available:

	Team
	URL

	HP
	http://deployapi.iseran.com:8080/alpine/portal/

	NEC
	http://cddlm.nec-labs.com:9090/cddlm/services/portal

	UFCG
	http://cddlm.lsd.ufcg.edu.br:8080/muse/services/Portal

1.1 Implementations

Each implementation was different.

1.1.1 HP Implementation

The HP Implementation had the following features

· Hardware: PIII server, 256MB RAM

· Network: ADSL link to the site. WLAN connection to the server.

· OS: SuSE Linux 10.1

· Runtime: Java 1.5.06

· SOAP Stack: HPLabs' "Alpine" prototype; Xom-based SOAP engine.

· WS-RF/WSDM implementations: Custom WSRF and WSDM on top of Alpine.

· HTTP Front end: Jetty 4.2

· CDL Runtime: HP SmartFrog system

The SmartFrog system was self hosting, to the extent that it deployed and configured Jetty and Alpine in its own process, using SmartFrog deployment descriptors to control the deployment.

1.1.2 UFCG Implementation

1.1.3 NEC Implementation

· Hardware: P4 server, 1GB RAM

· Network: T1 link

· OS: Fedora Core 5 Linux

· Runtime: Java 1.5.06

· CDL Runtime: NEC CDL Engine

· Apache Muse 1.0, Pubscribe 1.0 and Axis 1.2 framework

1.2 Tests

The tests are detailed in the test plan [1], and summarized here for convenience. Any test that either depended upon an optional feature, or was impossible to realistically test, was downgraded to informative. Such tests are italicized.

	Test
	Summary

	api-01: portal-wsdm-properties
	Verify that a portal exports WSDM properties

	api-02: WSRF:GetProperty failure on unknown property
	Request a property that is not there, expect an error message.

	api-03:WSRF:GetProperty failure on unknown xmlns
	Request a property using a prefix that is not mapped to any known namespace

	api-04: get-portal-state
	Examine the state of a portal; including languages and notification mechanisms.

	api-05:Create a System
	Create a system , then destroy it immediately.

	api-06:System properties
	Created systems have properties

	api-07: After destruction, properties are not readable
	Create a system, check for properties, destroy it, then check that the properties are no longer there.

	api-08: After destruction, operations are not allowed
	Create a system, destroy it, then try pinging it

	api-09: Created systems are listed in ActiveSystems
	After creating a system, verify that it is in the list of created systems by looking up its ResourceID in the list of deployed systems.

	api-10: Create a system with invalid hostname hint.
	Create a system with an invalid hostname hint.

	api-11: Create a system with a hostname hint of "localhost"
	Create a system as with api-10, this time with an valid hostname hint. (informative)

	api-12: Verify uniqueness of ResourceId values.
	ResourceId values are required by WSDM to be strongly unique. (informative)

	api-13: Verify multiple systems can be created.
	Verify that a number of systems can be created at the same time. (informative)

	api-14: Look up a system
	Verify that a created systems can be retrieved using the LookupSystem operation.

	api-14a: Look up a destroyed system
	Verify that a destroyed system can no longer be looked up.

	api-15: Subscribe to System creation events
	The client can subscribe via the portal for system creation events.

	api-16: Unsubscribe
	After subscribing to events, An unsubscribe call should unsubscribe them. After unsubscribing, creating a new system must not result in an event being sent to the (now unsubscribed) endpoint.

	api-17: Create a System while subscribed.
	While subscribed to a portal for creation events, create a system.

	api-18: Create a System while subscribed to a broken endpoint
	Subscribe to a portal for creation events with a notification EPR that is invalid.

	api-19: Create a System while subscribed to a broken endpoint
	Subscribe to a portal for creation events with a notification EPR that is broken.

	api-20: Multiple system event subscribers
	Multiple EPRs can be subscribed to system events; events will be delivered to all.

	api-21: Invalid XML posts
	Test posting bad XML to the endpoints

	api-22: deploy a valid configuration inline
	A CDL descriptor is submitted inline.

	api-23: deploy a valid configuration via AddFile
	A CDL descriptor is uploaded via AddFile, the returned URL being used for the deployment.

	api-24: Unknown options are ignored if mustUnderstand="false"
	Using api-23, the initialize request is extended with a set of options, all of which are marked mustUnderstand="false" or with no mustUnderstand value at all:

	api-25: Unknown options are rejected
	The api-24 test is repeated, this time with an option marked mustUnderstand="true".

	api-26: Unknown languages are rejected
	An attempt to initialize the system fails when the language URI is not recognized.

	api-27: Initialize with an invalid URL.
	Initialize systems using an invalid URL (informative)

	api-28: Initialize with descriptor as an attachment
	If attachments (DIME, MTOM or SwA) are supported, then deployment using the supported attachment mechanisms must be tested.

	Api-29: Initialization fails for invalid CDL content.
	An CDL document with unresolvable references will cause an <api:initialize> operation to fail.

	api-30: Subscribe to lifecycle events
	A client can subscribe to system lifecycle events.

	api-31: Receive lifecycle events when a system is destroyed
	A client that is subscribed to lifecycle events, receives a notification when a system is destroyed.

	api-32: Receive lifecycle events when a system fails
	After deploying a component designed to fail, callers must be notified that the a system enters the failed state.

	api-33: Support multiple event listeners per system.
	More than one endpoint can subscribe to lifecycle events; all will receive them. A more advanced test would verify that the failure/blocking action of one endpoint will not cause the other recipients to be denied their messages.

	api-34: Receive lifecycle events when a system enters the running state.
	Subscribers to lifecycle events receive notifications when a system enters the running state.

	api-35: get multiple resource portal-wsdm-properties
	Use the <wsrf:GetMultipleResourceProperties> operation to request multiple properties simultaneously. This is not a required operation of the portal endpoint.

	api-37: Create a system on a remote host
	Create a system using a valid remote hostname hint to select the hostname. (informative)

	api-38: AddFile with neither URI nor data
	An <api:addFile> operation with no uri or data element is rejected.

	api-39: AddFile with both URI and data
	An <api:addFile> operation with both uri and data elements are rejected.

	api-40: AddFile with an unsupported scheme type
	An <api:addFile> operation with an unsupported URL scheme is rejected

	api-41: Initialize requests with no language specified are rejected
	A system is initialized a valid CDL document inline, but with no language specified.

2 Results

2.1 HP Implementation
This is the summary of the tests against the three live endpoints.

	Test
	HP
	UFCG
	NEC

	api-01: portal-wsdm-properties
	Success
	
	

	api-02: WSRF:GetProperty failure on unknown property
	Success
	
	

	api-03:WSRF:GetProperty failure on unknown xmlns
	Success
	
	

	api-04: get-portal-state
	Success
	
	

	api-05:Create a System
	Success
	
	

	api-06:System properties
	Success
	
	

	api-07: After destruction, properties are not readable
	Success
	
	

	api-08: After destruction, operations are not allowed
	Success
	
	

	api-09: Created systems are listed in ActiveSystems
	Success
	
	

	api-10: Create a system with invalid hostname hint.
	Success
	
	

	api-11: Create a system with a hostname hint of "localhost"
	Success
	
	

	api-12: Verify uniqueness of ResourceId values.
	Success
	
	

	api-13: Verify multiple systems can be created.
	Success
	
	

	api-14: Look up a system
	Success
	
	

	api-14a: Look up a destroyed system
	Success
	
	

	api-15: Subscribe to System creation events
	WS-N not implemented
	WS-N not implemented
	WS-N not implemented

	api-16: Unsubscribe
	WS-N not implemented
	WS-N not implemented
	WS-N not implemented

	api-17: Create a System while subscribed.
	WS-N not implemented
	WS-N not implemented
	WS-N not implemented

	api-18: Create a System while subscribed to a broken endpoint
	WS-N not implemented
	WS-N not implemented
	WS-N not implemented

	api-19: Create a System while subscribed to a broken endpoint
	WS-N not implemented
	WS-N not implemented
	WS-N not implemented

	api-20: Multiple system event subscribers
	WS-N not implemented
	WS-N not implemented
	WS-N not implemented

	api-21: Invalid XML posts
	Test not implemented
	Test not implemented
	Test not implemented

	api-22: deploy a valid configuration inline
	Success
	
	

	api-23: deploy a valid configuration via AddFile
	Success
	
	

	api-24: Unknown options are ignored if mustUnderstand="false"
	Success
	
	

	api-25: Unknown options are rejected
	Success
	
	

	api-26: Unknown languages are rejected
	Success
	
	

	api-27: Initialize with an invalid URL.
	Success
	
	

	api-28: Initialize with descriptor as an attachment
	Attachments not implemented
	Attachments not implemented
	Attachments not implemented

	Api-29: Initialization fails for invalid CDL content.
	Test not implemented
	Test not implemented
	Test not implemented

	api-30: Subscribe to lifecycle events
	WS-N not implemented
	WS-N not implemented
	WS-N not implemented

	api-31: Receive lifecycle events when a system is destroyed
	WS-N not implemented
	WS-N not implemented
	WS-N not implemented

	api-32: Receive lifecycle events when a system fails
	WS-N not implemented
	WS-N not implemented
	WS-N not implemented

	api-33: Support multiple event listeners per system.
	WS-N not implemented
	WS-N not implemented
	WS-N not implemented

	api-34: Receive lifecycle events when a system enters the running state.
	WS-N not implemented
	WS-N not implemented
	WS-N not implemented

	api-35: get multiple resource portal-wsdm-properties
	Success
	
	

	api-37: Create a system on a remote host
	Test not implemented
	Test not implemented
	Test not implemented

	api-38: AddFile with neither URI nor data
	Success
	
	

	api-39: AddFile with both URI and data
	Success
	
	

	api-40: AddFile with an unsupported scheme type
	Success
	
	

	api-41: Initialize requests with no language specified are rejected
	Success
	
	

This implementation represents the most divergent code base from the other implementations. It has its own SOAP stack "Alpine", with its own WSRF implementation on top. As a consequence, interoperability at the SOAP and WSRF level proved quite a barrier; it took consultation with the WSDM team itself to clarify issues with the specification that had been interpreted differently between Alpine and Apache Muse.

The HP implementation has no WS-Notification support, so all such tests fail against all endpoints. It also lacks support for MTOM and “Soap with Attachments”. Accordingly, there are many tests that fail simply because the HP implementation is incomplete. Any feature that is not implemented in the server also lacks a client-side implementation, so the same test will fail against the client.
2.2 UFCG Implementation

This is the summary of the tests against the three live endpoints.

	Test
	HP
	UFCG
	NEC

	api-01: portal-wsdm-properties
	Failed
	Success
	Success

	api-02: WSRF:GetProperty failure on unknown property
	Success
	Success
	Success

	api-03:WSRF:GetProperty failure on unknown xmlns
	Success
	Success
	Success

	api-04: get-portal-state
	Success
	Success
	Success

	api-05:Create a System
	Success
	Success
	Success

	api-06:System properties
	Test not implemented (experimental)
	Test not implemented (experimental)
	Test not implemented (experimental)

	api-07: After destruction, properties are not readable
	Success
	Success
	Success

	api-08: After destruction, operations are not allowed
	Success
	Success
	Success

	api-09: Created systems are listed in ActiveSystems
	Failed
	Success
	Success

	api-10: Create a system with invalid hostname hint.
	Success
	Success
	Success

	api-11: Create a system with a hostname hint of "localhost"
	Not tested (informative)
	Not tested (informative)
	Not tested (informative)

	api-12: Verify uniqueness of ResourceId values.
	Not tested (informative)
	Not tested (informative)
	Not tested (informative)

	api-13: Verify multiple systems can be created.
	Not tested (informative)
	Not tested (informative)
	Not tested (informative)

	api-14: Look up a system
	Success
	Success
	Success

	api-14a: Look up a destroyed system
	Success
	Success
	Failed

	api-15: Subscribe to System creation events
	Failed (error)
	Success
	Success

	api-16: Unsubscribe
	Failed (error)
	Success
	Failed

	api-17: Create a System while subscribed.
	Failed (error)
	Success
	Unable to test

	api-18: Create a System while subscribed to a broken endpoint
	Failed (error)
	Success
	Failed

	api-19: Create a System while subscribed to a broken endpoint
	Failed (error)
	Success
	Unable to test

	api-20: Multiple system event subscribers
	Failed (error)
	Success
	Unable to test

	api-21: Invalid XML posts
	Failed
	Success
	Unable to test

	api-22: deploy a valid configuration inline
	Failed (error)
	Success
	Unable to test

	api-23: deploy a valid configuration via AddFile
	Failed (error)
	Success
	Unable to test

	api-24: Unknown options are ignored if mustUnderstand="false"
	Failed (error)
	Success
	Unable to test

	api-25: Unknown options are rejected
	Success
	Success
	Fail

	api-26: Unknown languages are rejected
	Success
	Success
	Unable to test

	api-27: Initialize with an invalid URL.
	Not tested (informative)
	Not tested (informative)
	Not tested (informative)

	api-28: Initialize with descriptor as an attachment
	Test not implemented (informative)
	Test not implemented (informative)
	Test not implemented (informative)

	Api-29: Initialization fails for invalid CDL content.
	Success
	Success
	Unable to test

	api-30: Subscribe to lifecycle events
	Failed (error)
	Success
	Unable to test

	api-31: Receive lifecycle events when a system is destroyed
	Failed (error)
	Success
	Unable to test

	api-32: Receive lifecycle events when a system fails
	Failed (error)
	Success
	Unable to test

	api-33: Support multiple event listeners per system.
	Failed (error)
	Success
	Unable to test

	api-34: Receive lifecycle events when a system enters the running state.
	Failed (error)
	Success
	Unable to test

	api-35: get multiple resource portal-wsdm-properties
	Test not implemented (informative)
	Test not implemented (informative)
	Test not implemented (informative)

	api-37: Create a system on a remote host
	Test not implemented (informative)
	Test not implemented (informative)
	Test not implemented (informative)

	api-38: AddFile with neither URI nor data
	Success
	Success
	Unable to test

	api-39: AddFile with both URI and data
	Success
	Success
	Unable to test

	api-40: AddFile with an unsupported scheme type
	Success
	Success
	Unable to test

	api-41: Initialize requests with no language specified are rejected
	Success
	Success
	Unable to test

2.3 NEC Implementation

This is the summary of the tests against the three live endpoints. The HP implementation has no WS-Notification support, so all such tests fail against all endpoints.

	Test
	HP
	UFCG
	NEC

	api-01: portal-wsdm-properties
	Failed (error)
	Success
	Success

	api-02: WSRF:GetProperty failure on unknown property
	Success
	Success
	Success

	api-03:WSRF:GetProperty failure on unknown xmlns
	Success
	Success
	Success

	api-04: get-portal-state
	Success
	Success
	Success

	api-05:Create a System
	Success
	Success
	Success

	api-06:System properties
	Test not implemented (experimental)
	Test not implemented (experimental)
	Test not implemented (experimental)

	api-07: After destruction, properties are not readable
	Success
	Success
	Success

	api-08: After destruction, operations are not allowed
	Success
	Success
	Success

	api-09: Created systems are listed in ActiveSystems
	Failed (error)
	Success
	Success

	api-10: Create a system with invalid hostname hint.
	Success
	Success
	Success

	api-11: Create a system with a hostname hint of "localhost"
	Not tested (informative)
	Not tested (informative)
	Not tested (informative)

	api-12: Verify uniqueness of ResourceId values.
	Not tested (informative)
	Not tested (informative)
	Not tested (informative)

	api-13: Verify multiple systems can be created.
	Not tested (informative)
	Not tested (informative)
	Not tested (informative)

	api-14: Look up a system
	Success
	Success
	Success

	api-14a: Look up a destroyed system
	Success
	Success
	Success

	api-15: Subscribe to System creation events
	Failed (error)
	Success
	Success

	api-16: Unsubscribe
	Failed (error)
	Success
	Success

	api-17: Create a System while subscribed.
	Failed (error)
	Unable to test
	Success

	api-18: Create a System while subscribed to a broken endpoint
	Failed (error)
	Unable to test
	Success

	api-19: Create a System while subscribed to a broken endpoint
	Failed (error)
	Unable to test
	Success

	api-20: Multiple system event subscribers
	Failed (error)
	Unable to test
	Success

	api-21: Invalid XML posts
	Failed (error)
	Unable to test
	Success

	api-22: deploy a valid configuration inline
	Failed (error)
	Unable to test
	Success

	api-23: deploy a valid configuration via AddFile
	Failed (error)
	Unable to test
	Success

	api-24: Unknown options are ignored if mustUnderstand="false"
	Failed (error)
	Unable to test
	Success

	api-25: Unknown options are rejected
	Success
	Unable to test
	Success

	api-26: Unknown languages are rejected
	Success
	Unable to test
	Success

	api-27: Initialize with an invalid URL.
	Not tested (informative)
	Not tested (informative)
	Not tested (informative)

	api-28: Initialize with descriptor as an attachment
	Not tested (informative)
	Not tested (informative)
	Not tested (informative)

	Api-29: Initialization fails for invalid CDL content.
	Success
	Unable to test
	Success

	api-30: Subscribe to lifecycle events
	Failed (error)
	Unable to test
	Success

	api-31: Receive lifecycle events when a system is destroyed
	Failed (error)
	Unable to test
	Success

	api-32: Receive lifecycle events when a system fails
	Failed (error)
	Unable to test
	Success

	api-33: Support multiple event listeners per system.
	Failed (error)
	Unable to test
	Success

	api-34: Receive lifecycle events when a system enters the running state.
	Failed (error)
	Unable to test
	Success

	api-35: get multiple resource portal-wsdm-properties
	Test not implemented (informative)
	Test not implemented (informative)
	Test not implemented (informative)

	api-37: Create a system on a remote host
	Success
	Unable to test
	Success

	api-38: AddFile with neither URI nor data
	Success
	Unable to test
	Success

	api-39: AddFile with both URI and data
	Success
	Unable to test
	Success

	api-40: AddFile with an unsupported scheme type
	Success
	Unable to test
	Success

	api-41: Initialize requests with no language specified are rejected
	Success
	Unable to test
	Success

3 Implications for the API

One item that the tests showed that the optional hostname parameter for the <api:Create> operation is both inadequately defined and untestable. It was meant to be a hint as to the name of a machine onto which the system endpoint should be created. The specification failed to say whether that hint must refer to a valid host, or, if not, what the action should be if an invalid hostname was provided. This prevents any the negative tests from being written. As it is only a hint, even positive results may be meaningless: how can one tell if a hint was correctly or incorrectly ignored?

Problems like this show how early test definition is beneficial to the quality of the specification.

A broader issue was how to deal with optional features, such as attachment support or support for different URL schemes for dereferencing added files. The tests for these can only be informative, as an implementation can legitimately opt not to implement them. These optional features therefore make interoperability testing hard, which implies that interoperability itself is reduced. This argues strongly against optional features, in favour of compulsory features, with tests, in specifications.

4 Issues

It is worth noting some aspects of the process, as other GGF working may find it informative. These are problems that are going to recur.

4.1 WS-Addressing

The CDDM deployment API and component model are built on WSDM, which is built on WS-RF and WS-N, which depends upon WS-Addressing, WSDL and SOAP. While SOAP1.1 and SOAP1.2 stacks are fairly stable and widely tested, even WS-Addressing is a new and immature specification. It has only recently become a "1.0 standard"; and so WSDM depends upon two different draft versions. There is not yet enough stable support for WS-A in the different endpoints to reliably use addresses other than those that use simple URLs to describe the address of a destination. The message properties/message parameter element sets are particularly troublesome, because they are not consistently supported across all versions of the address specifications.

4.2 Specification and Stack Maturity and Interoperability

Overall, the immaturity and instability of the different implementations of WSA/WSRF/WSDM proved a barrier to interoperable implementations. Those implementations that shared a common WSRF stack worked together best. All development teams ended up having to diagnose interoperability problems with the other protocol stacks. This is not something that should be needed. Nobody had to diagnose TCP protocol issues; nobody had to diagnose HTTP interpretation issues. Yet the higher up the WS-* stack a service API goes, the more layers underneath you end up having to debug. Fortunately, in the world of open source, you do get the source for debugging and the ability to make changes. However, this is meant to be a benefit -you have the option of making the changes, the right to tweak the implementation, not the duty to edit other project's code to address interoperability problems.

Because WSRF/WSDM are new specifications, off-the-shelf implementations are somewhat limited. The Apache Muse implementation was used by two systems -this effectively became the de-facto reference implementation for the other teams. Any behaviors in the Muse stack were taken as the correct behavior, and the other clients were written to operate with this implementation. This is certainly one way to get working implementations; it is effectively how TCP and NFS protocol stacks are brought up -by testing against the Berkeley and Sun reference implementations.

At the same time, because the Muse implementation predates the other implementations, and because it has not been recently updated (there have been many change in the developers working on it and it has not progressed much recently), there are inevitably faults in the implementation that the other stacks have to work around. A de-facto implementation is not a reference implementation, merely the one that was built first, before there were other implementations to test for interoperability.

If there was anything resembling a test suite for WSRF and WSDM, then interoperability would be easier to show.

4.3 Networking Problems: Firewalls and Proxies

Firewalls proved to be a recurrent troublespot. It is all too easy to get the firewall settings wrong, so that although the endpoint is visible by a local team, it is not accessible remotely. Port scanning web sites can help diagnose this, but our real preference would be for a relay web page that would attempt to fetch a remote page, returning an HTTP error code if it was not reachable. A deployment could include not just a local liveness test (an attempt to retrieve happyaxis.jsp or its equivalent, but do a relayed fetch, with a URL such as : http://example.org/fetch?url=http://myserver.example.com/services/cddlm/

Another aspect of firewalls is for return WS-N notifications. WS-N can not send messages to nodes behind firewalls, unless those firewalls have open ports, or unless some WS-N relay system has been implemented and is used to relay messages. The WS-N specification is designed to enable a relay service, but we are not aware of an implementation and are certainly not using it. Alternative notification protocols -Polling/RSS feeds, SMTP emails and XMPP to cite but three, do work in this scenario.

Proxies are another issue. They exist, SOAP clients need to be ready for them. Although Java1.5 claims to have automatic proxy binding if the relevant property is set (-Djava.net.useSystemProxies=true), we see no evidence that this actually works. Instead manual proxy configuration is required. This complicates all test runners, be they JUnit-under-Ant, or some other mechanism: proxies need to be set. On a laptop, they need to be set dynamically. This is very frustrating. The other problem with proxies is that most SOAP Proxies, which are invaluable for obtaining traces of SOAP conversations, do not appear to be proxy enabled themselves. That is, they cannot relay requests to another proxy. While they perform acceptably for local system diagnostics, they cannot be used during a conversation with a remote endpoint which can only be accessed via a proxy. Both Apache tcpMon and PocketSOAP's proxyTrace appear to suffer from this problem.

4.4 Service availability

No development endpoint can or should have high availability. It takes too much developer time to do 5x8 availability, let alone anything higher. Yet during distributed interop testing, the servers need to be available to the other callers.

A recurrent problem was that the servers did become unavailable regularly, yet those hosting the systems did not notice. The callers did, who then emailed the administrators. This would result in a delay of minutes to days. The obvious solution to this is live monitoring of the external services and notification emails/messages when they go down. This is what production systems do, and there is no real reason why development systems should avoid this step.

4.5 Debugging

Apart from fixing the SOAP proxy tools to become proxy aware, the other way to improve interoperability testing is for better logging in the client and server. Near the end of testing, the HP stack was deployed with the Log4J logging infrastructure configured to log all messages to web pages in a directory that was remotely accessible. When combined with a SOAP handler that logged all incoming messages, it became much easier to see why calls to that endpoint were failing. It also provided the stack implementors with accurate information about the structure and content of incoming messages. As a consequence, implementors of both the clients and the servers benefited from this logging. Any application which uses Log4J can switch to HTML file generation with ease, and are encouraged to add a WWW output channel to their log4.properties file to enable this feature, these being the relevant lines:

log4j.appender.WWW=org.apache.log4j.DailyRollingFileAppender

log4j.appender.WWW.DatePattern='.'yyyy-MM-dd-HH'.html'

log4j.appender.WWW.File=/home/interop/public_html/logs/server-log.html

log4j.appender.WWW.layout=org.apache.log4j.HTMLLayout

log4j.appender.WWW.layout.LocationInfo=true

4.6 Security

There are interesting security issues with bringing up an endpoint whose whole objective is remote deployment. It is not something that IT operations departments like to make publicly accessible on their network. One team resorted to deploying the endpoint on a home server, minimizing such problems. A security risk still remains, but this endpoint could not turn security on, as the early prototype clients by the other teams did not have support for authenticated HTTP communications. Security is something that all clients and servers should think about early and build in. At a minimum, HTTPS+Basic Authentication should be something both sides can be expected to support.

4.7 System Load

One of the implementations suffered from the cost of bringing up new systems; each system had a high cost with instantiation. The runtime brought up a new instance of the Tomcat server, which became the new endpoint in a new process. Spawning off new processes is a robust way of isolating programs, and can not be faulted -after all, on the grid, hosts will be widely available. It is only on single-host test machines that the number of systems that can be instantiated is limited. To make matters worse, the test suite was written assuming that the cost of creation was minimal, and, in the implementation of the test designer, it is -new systems are created in the same process by default. Accordingly, the API is designed to create and destroy systems on every test, sometimes even more than one per test. This placed an excessive load on the system.

One temporary solution was to add delays between each test; this is a quick-and-dirty workaround. Better to have been aware of the limitations earlier on so that the test suite could have been written to create less systems, to be more frugal. This is an example of where implementation details do change the test design, as unwittingly, the interoperability tests have become load tests.
Another consequence of the test suite's habit of creating and destroying many systems is that any failure to clean up created systems causes a leak of systems at the far end. System cleanup code needs to be implemented server side, or client-side logic to enumerate and delete all active systems must be written and executed regularly.

5 Recommendations for other working groups

5.1 Include tests for the underlying specifications

Even if everyone intends to use prebuilt SOAP/WSRF/WSDM/WS-*/whatever libraries, do not assume they all work as documented. Foundational tests should test those parts of the specification that everyone can assume is already working. If everything works, they act as an easy starting point into interoperability testing, getting the testing and publishing process up and running. If not, they find problems early on.

5.2 Test Planning

Start planning for tests early. If something cannot be tested, then do not include it in the specification, as it will not be implemented correctly or consistently. Use the early results from the tests to tune the specification. Testing is not an implementation detail to be left until after the specifications are finalized.

Discuss the implementations between other members of the working groups. This will give them a clearer knowledge of how the other implementations work, and will make understanding failure modes more intuitive. It will also catch problems like the excessive system load early on.

Do not expect the test suite itself to be something that can be written and finalized. It evolves, as new bugs are found.

5.3 Test reporting

The test clients should be set up to publish their test results to public web sites; using the Ant HTML JUnit results or something similar. Alongside the results, all test messages/responses should be logged, for ease of diagnostics and replication. It is not enough to present summary data; the raw messages should be available.

Test report publishing should be automated, so that a continuous integration server can be set up to test the other endpoints regularly.

5.4 Test Clients

1. All test clients should use the same test names/test class names, so that it is easy to correlate the results of different clients.

2. When a test fails, log as much as you can. Often the test reports are all that can be used to diagnose problems.

3. Include a program that can POST prepackaged SOAP requests (perhaps with some string replacement) straight to an endpoint. This can be used to test problems at leisure, by posting the traces of other clients systems to the development servers.

5.5 Test Servers

1. Fully automate deployment to this server; you will be updating it daily, possibly more often.

2. Add detailed logging to the server, with logs published publicly. Apache Log4J can generate HTML pages from its logs. The more detailed the log, the easier self-diagnosis is for callers.

3. Automate a check that the servers are accessible beyond the firewall.

4. Add a "happy" page that returns 200 if the system is deemed healthy, 500 if not. The reference example of this is happyaxis.jsp, which was hosted by all the Axis/Muse stacks.

5. Faults should be as informative as possible. Turn stack traces on if they are off; add any other diagnostics that is possible.

6. Consider a web page for humans that shows the system status (e.g. deployed applications and their state)

7. Get more memory for the servers than they have already.

6 Bibliography

[1] CDDLM Deployment API

[2] CDDLM Deployment API Test Plan

cddlm-wg@ggf.org

