Component Model Test Plan
Stuart Schaefer

2006-03-28
CDDLM Components are expected to live within a larger framework hosted by an implementor of the Deployment API specifications. The following tests are functional tests of a Component Model implementation based on testing one or more exemplary components. This will require the creation of a test harness to host the components, or use of the framework. These tests attempt to avoid testing the operation of the harness or framework.
Test Assets

As part of testing, a set of predefined components and CDL templates will be utilized. They will have measurable outputs with expected values. Each component will be described in detail below. Its code will be placed into the SourceForge repository for common use. Each CDL template will be listed in this document as well as placed into the repository.

All CDDLM Components must implement the WSRF API as per the Component Model Specification. It is expected that only the required elements of that API will be tested as they relate to the Component Model.

1. Simple Component

A simple component is required with a predefined resource property <testvalue> defined in its CDL, simple.cdl. This test value will be a CDL expression with a lazy reference to some other property within a component that is extended from this simple component. An example of this would be as follows, testing that the value of a deployment time property equals the number 10. It is recommended that the expression evaluate to a simple true/false condition.
<testvalue>

<cdl:expression value-of=”$value = 10”>

 <cdl:variable name=”value” ref=”/a/b/c” cdl:lazy=”true” />

</cdl:expression>

</testvalue>
This component MUST expose resource properties for timing conditions, and its state transitions. These would include <timeOfInitialize>, <timeOfFail>, …, <stateList>. The <stateList> is a comma separated list of the transitions the component took in its lifetime: initialized, running, failed, terminated, destroyed.
This component will also expose an optional property <waitOnTransition> which will define a number of clock seconds the component should wait between the time it receives a command to change its state to the time it actually makes the state transition.

2. Failing Component
A second simple component is required which can be set to specifically fail on certain conditions. This component defines basic semantics for how to purposefully fail.

a. Fail on transition to a specified state.

b. Fail on change of a resource property.
In the first case, the <FailOnTransition> element will specify that during the transition to a state, such as initialization, the component will fail. It is not valid in the current CDDLM lifecycle model to transition from terminated to failed, thus this will not be supported.
In the second case, the <FailOnResource> element, it is expected that this component will register for a property change notification from a component specified in the value of the property list.
3. Delegate Component
A third component is required which can be used to test the functions of delegation. The CDL of this component is not defined. It is presumed to be identical to that of the simple component for the scope of this document, but support delegation. In building actual test cases it can be the same component as the simple one, or a second component can be defined.

Component Properties Tests

The following tests require the instantiation of one instance of the simple component. This component must expose an additional property according to its CDL, such that its property Get/Set behavior can be tested. The CDL is listed in the appendix as properties-test.cdl.
identity-test

Instantiate the component. Query the ResourceId of the simple component. Ensure that it is a valid element of type <muws-p1-xs:ResourceId>. Destroy the component.
For complete testing, it would be recommended to instantiate more than one instance of this same component, and test to ensure that the ResourceId values are distinct.

status-test

Instantiate the component. Query the ComponentStatus property of the simple component. Parse the return to ensure that each element is properly formed. Destroy the component.
· The State element must be of type <cmp:lifecycleStateType> which is an extension of <muws-p2-xs:StateType>. The value should be InstantiatedState.
· The LifecycleTransition element must be of type <muws-p2-xs:StateTransition>.

· The ExtendedState is optional, but if exists must be well formed XML.

get-property-test

Instantiate the component. Call GetResourceProperty for the test resource property defined in the property-test.cdl. Ensure that the return value is the same as defined in the CDL. Call GetResourceProperty for the <testvalue> element and ensure that it is true. Destroy the component.
set-property-test

Instantiate the component. Call GetResourceProperty for the test resource property defined in the property-test.cdl. Ensure that the return value is the same as defined in the CDL. Call SetResourceProperties and change the value of the property to something different. Call GetResourceProperty again for the test resource property and ensure that the return value has changed and is equal the value set during the SetResourceProperties call. Destroy the component.

Component Operations Tests

The following tests verify the external command API of a component. In the following tests, each sequence should be run through to ensure proper behavior according to the lifecycle definition. In order to provide complete coverage it is desirable to simulate failure of some stage(s). This is not required, however it is recommended to create more than one component for each of the following test. One component that will simulate correct behavior, and one which will purposefully fail.

simple-lifecycle-test

Instantiate the simple component defined above. Check the ComponentStatus property to ensure proper reporting both of the new state and the state transition. Verify that the State subelement is InstantiatedState. Verify the LifecycleTransition subelement data against the timeOfInitalize and stateList property values.
Send a series of requests to Initialize, Run, and Terminate the component. Repeat the verification steps outlined in the previous paragraph. At each step, all data should correspond to the proper transitions. Destroy the component.

simple-lifecycle-fail-test

Using the CDL defined in lifecycle-fail-test.cdl, instantiate the simple component. Send a series of requests to Initialize and Run the component. After the Run command is sent, the component should transition to the failed state. Verify this state transition and other transitions using the same verification steps outlined in the prior test.
Terminate the component. Repeat the verifications steps. Destroy the component.

delegate-lifecycle-test

In this lifecycle test, three components should be created as defined in the delegate-lifecycle-test.cdl. One component will act as a delegate to the others. All components should be instantiated.

Send a series of commands to Initialize, Run and Terminate the components by sending a command only to the delegate component. Verify that all components properly transition. Destroy the delegate. Verify that all components have been destroyed.
delegate-state-test

In this lifecycle test, one of the child components is specified with a time to wait on its transition to a new state, as defined in delegate-state-test.cdl. All components should be first instantiated.
Send a series of commands to Initialize, Run and Terminate the components by sending a command only to the delegate component. Verify that the delegate component does not report the transition until all components have successfully transitioned to the new state. Destroy the delegate. Verify that all components have been destroyed.

delegate-fail-test

In this lifecycle test, one of the child components is specified to fail on transition to the running state as defined in delegate-fail-test.cdl. All components should be first instantiated.

Send a series of commands to Initialize then Run the components by sending a command only to the delegate component. Verify that the delegate reports failure on transition to the running state. Destroy the delegate. Verify that all components have been destroyed.

maintenance-test

A simple RunTask command should be created and sent to an example component. Verify that the return is well formed.
Notification Tests
The following tests duplicate the actions of the earlier tests, but add the requirement that WS-Notifications be used to receive the events generated by these commands.
simple-event-test
A simple lifecycle test should be enacted as described above in the simple-lifecycle-test case. The test should subscribe for OnInitialized, OnRunning, and OnTerminated notifications. The events should be parsed to ensure that they are:

· Valid WSDM ManagementEvent(s)

· ResourceId matches that of the component

· Situation is of type <cmp:LifecycleSituation>

· StateTransition is a well formed WSDM structure

property-event-test
The set-property-test from should be repeated. In this test, a subscription should be made to the resource property that will be modified. The event received should contain the value set during the call.

lifecycle-event-test

In this test, two simple components should be defined as shown in lifecycle-event-test.cdl. The components should be instantiated. Test the value of the SourceInitialized parameter of the EventTestSink component. Verify that it is false. Send a command to initialize the EventTestSource. Retest the EventTestSink component. Verify that the SourceInitialized parameter has been updated to true. Initialize the EventTestSink component.

Run the two components successively. On transition to the running state, the EventTestSink should fail. When it reaches the failed state, it should notify the EventTestSource component to terminate. Verify that the components are in the proper states. Terminate the EventTestSink component. Destroy the components.

Control Flow Tests
The following tests require the use of three or more components to simulate control flow behavior. This test also requires that the testing framework is able to either simulate the behavior of the deployment framework or use a real framework instance.

It is important that the test harness be able to verify the order of execution of lifecycle commands. This can be done by checking the ComponentStatus of components or receiving events. To ensure coarse enough granularity of the reported transition times, it is recommended that components specifically delay to ensure that the test can accurately verify the order of enactment.
flow-test

As defined in the flow-test.cdl file, three components are defined with separate flow control operations for each of the basic lifecycle events. Instantiate all components.

Send the Initialize command to the components. The initialization of these components should follow the order ComponentA, ComponentB, ComponentC. This can be verified by testing the time stamps of each components transition to the initialized state. Verify that the elapsed time between initialization of ComponentA and ComponentB should be ten seconds.
Send the Run command to the components. The execution behavior of the components should be random.

Send the Terminate command to the components. The termination of this system should follow the order ComponentC, ComponentB, ComponentA.

switch-test

The switch operator test is more complex and is defined in the file switch-test.cdl. The following test requires two components, one of which must expose a modifiable property. The test must be run twice, changing the value before each test. By changing the value, it should alter the order of initialization of components.
Appendix

simple.cdl

<cdl:cdl
 xmlns:cdl=”http://www.gridforum.org/namespaces/2005/02/cddlm/CDL-1.0”

 xmlns:cmp=”http://www.gridforum.org/cddlm/components/2005/02”

targetNamespace=”urn:simple”>

<cdl:configuration>

<simple>

<testvalue cdl:type=”xsd:boolean” cdl:use=”required” />

<timeOfInitialize cdl:type=”xsd:dateTime” />

<timeOfRunning cdl:type=”xsd:dateTime” />

<timeOfFail cdl:type=”xsd:dateTime” />

<timeOfTerminate cdl:type=”xsd:dateTime” />

<stateList cdl:type=”cmp:stringListType” />

<waitOnTransition cdl:type=”xsd:nonNegativeInteger” cdl:use=”optional” />

</simple>

</cdl:configuration>

</cdl:cdl>

fail.cdl

<cdl:cdl

 xmlns:cdl=”http://www.gridforum.org/namespaces/2005/02/cddlm/CDL-1.0”

targetNamespace=”urn:fail”>

<cdl:configuration>

<fail>

<FailOnTransition cdl:type=”cmp:lifecycleProcessEnum” cdl:use=”optional” />

<FailOnResource cdl:use=”optional>{value}</FailOnResource>
</fail>

</cdl:configuration>

</cdl:cdl>

property-test.cdl

<cdl:cdl

 xmlns:cdl="http://www.gridforum.org/namespaces/2005/02/cddlm/CDL-1.0"

 xmlns:cmp="http://www.gridforum.org/cddlm/components/2005/02"

 xmlns:ex="urn:simple"

 targetNamespace="urn:identity-test">

<cdl:import namespace="urn:simple" location="simple.cdl" />

<cdl:system>

<PropertyTest cdl:extends="ex:simple">

 <!-- change these per your system -->

 <cmp:CodeBase>http://localhost/test1.jar</cmp:CodeBase>

 <cmp:CommandPath>com.exns.Test1</cmp:CommandPath>

 <testproperty>test</testproperty>

 <!-- -->

 <ex:testvalue>

 <cdl:expression value-of="$value != 'test'" >

 <cdl:variable name="value" ref="testproperty" cdl:lazy="true" />

 </cdl:expression>

 </ex:testvalue>

</PropertyTest>

</cdl:system>

</cdl:cdl>

lifecycle-fail-test.cdl
<cdl:cdl

 xmlns:cdl="http://www.gridforum.org/namespaces/2005/02/cddlm/CDL-1.0"

 xmlns:cmp="http://www.gridforum.org/cddlm/components/2005/02"

 xmlns:ex="urn:fail"

 targetNamespace="urn:lifecycle-fail-test">

<cdl:import namespace="urn:fail" location="fail.cdl" />

<cdl:system>

<LifecycleFailTest cdl:extends="ex:fail">

 <!-- change these per your system -->

 <cmp:CodeBase>http://localhost/test1.jar</cmp:CodeBase>

 <cmp:CommandPath>com.exns.Test1</cmp:CommandPath>

<!-- -->

<ex:FailOnTransition>execution</ex:FailOnTransition>
</LifecycleFailTest>

</cdl:system>

</cdl:cdl>

delegate-lifecycle-test.cdl

<cdl:cdl
 xmlns:cdl="http://www.gridforum.org/namespaces/2005/02/cddlm/CDL-1.0"

 xmlns:cmp="http://www.gridforum.org/cddlm/components/2005/02"

 xmlns:ex="urn:simple"

 targetNamespace="urn:delegate-lifecycle-test">

<cdl:import namespace="urn:simple" location="simple.cdl" />

<cdl:system>

<DelegateTest cdl:extends="ex:simple">

 <!-- change these per your system -->

 <cmp:CodeBase>http://localhost/test1.jar</cmp:CodeBase>

 <cmp:CommandPath>com.exns.Test1</cmp:CommandPath>

 <!-- -->

 <ex:testvalue>true</ex:testvalue>

 <cmp:Delegate/>

 <ComponentA cdl:extends="ex:simple">

 <!-- change these per your system -->

 <cmp:CodeBase>http://localhost/test1.jar</cmp:CodeBase>

 <cmp:CommandPath>com.exns.Test1</cmp:CommandPath>

 <!-- -->

 <ex:testvalue>true</ex:testvalue>

 </ComponentA>

 <ComponentB cdl:extends="ex:simple">

 <!-- change these per your system -->

 <cmp:CodeBase>http://localhost/test1.jar</cmp:CodeBase>

 <cmp:CommandPath>com.exns.Test1</cmp:CommandPath>

 <!-- -->

 <ex:testvalue>true</ex:testvalue>

 </ComponentB>

</DelegateTest>

</cdl:system>

</cdl:cdl>

delegate-state-test.cdl

<cdl:cdl
 xmlns:cdl="http://www.gridforum.org/namespaces/2005/02/cddlm/CDL-1.0"

 xmlns:cmp="http://www.gridforum.org/cddlm/components/2005/02"

 xmlns:ex="urn:simple"

 targetNamespace="urn:delegate-state-test">

<cdl:import namespace="urn:simple" location="simple.cdl" />

<cdl:system>

<DelegateTest cdl:extends="ex:simple">

 <!-- change these per your system -->

 <cmp:CodeBase>http://localhost/test1.jar</cmp:CodeBase>

 <cmp:CommandPath>com.exns.Test1</cmp:CommandPath>

 <!-- -->

 <ex:testvalue>true</ex:testvalue>

 <cmp:Delegate/>

 <ComponentA cdl:extends="ex:simple">

 <!-- change these per your system -->

 <cmp:CodeBase>http://localhost/test1.jar</cmp:CodeBase>

 <cmp:CommandPath>com.exns.Test1</cmp:CommandPath>

 <!-- -->

 <ex:testvalue>true</ex:testvalue>

 <ex:waitOnTransition>10</ex:waitOnTransition>
 </ComponentA>

 <ComponentB cdl:extends="ex:simple">

 <!-- change these per your system -->

 <cmp:CodeBase>http://localhost/test1.jar</cmp:CodeBase>

 <cmp:CommandPath>com.exns.Test1</cmp:CommandPath>

 <!-- -->

 <ex:testvalue>true</ex:testvalue>

 </ComponentB>

</DelegateTest>

</cdl:system>

</cdl:cdl>

delegate-fail-test.cdl
<cdl:cdl

 xmlns:cdl="http://www.gridforum.org/namespaces/2005/02/cddlm/CDL-1.0"

 xmlns:cmp="http://www.gridforum.org/cddlm/components/2005/02"

 xmlns:ex="urn:simple"

 xmlns:ex2="urn:fail"

 targetNamespace="urn:delegate-fail-testt">

<cdl:import namespace="urn:simple" location="simple.cdl" />

<cdl:import namespace="urn:fail" location="fail.cdl" />

<cdl:system>

<DelegateTest cdl:extends="ex:simple">

 <!-- change these per your system -->

 <cmp:CodeBase>http://localhost/test1.jar</cmp:CodeBase>

 <cmp:CommandPath>com.exns.Test1</cmp:CommandPath>

 <!-- -->

 <ex:testvalue>true</ex:testvalue>

 <cmp:Delegate/>

 <ComponentA cdl:extends="ex:simple">

 <!-- change these per your system -->

 <cmp:CodeBase>http://localhost/test1.jar</cmp:CodeBase>

 <cmp:CommandPath>com.exns.Test1</cmp:CommandPath>

 <!-- -->

 <ex:testvalue>true</ex:testvalue>

 </ComponentA>

 <ComponentB cdl:extends="ex:fail">

 <!-- change these per your system -->

 <cmp:CodeBase>http://localhost/test1.jar</cmp:CodeBase>

 <cmp:CommandPath>com.exns.Test1</cmp:CommandPath>

 <!-- -->

 <ex2:FailOnTransition>execution</ex2:FailOnTransition>

 </ComponentB>

</DelegateTest>

</cdl:system>

</cdl:cdl>

Lifecycle-event-test.cdl

<cdl:cdl

 xmlns:cdl="http://www.gridforum.org/namespaces/2005/02/cddlm/CDL-1.0"

 xmlns:cmp="http://www.gridforum.org/cddlm/components/2005/02"

 xmlns:ex="urn:simple"

 xmlns:ex2="urn:fail"

 targetNamespace="urn:lifecycle-event-test">

<cdl:import namespace="urn:simple" location="simple.cdl" />

<cdl:import namespace="urn:fail" location="fail.cdl" />

<cdl:system>

<EventTestSource cdl:extends="ex:simple">

 <!-- change these per your system -->

 <cmp:CodeBase>http://localhost/test1.jar</cmp:CodeBase>

 <cmp:CommandPath>com.exns.Test1</cmp:CommandPath>

 <!-- -->

 <ex:testvalue>true</ex:testvalue>

 <cmp:OnInitialized process="notify" target="EventTestSink" />

</EventTestSource>

<EventTestSink cdl:extends="ex2:fail">

 <!-- change these per your system -->

 <cmp:CodeBase>http://localhost/test1.jar</cmp:CodeBase>

 <cmp:CommandPath>com.exns.Test1</cmp:CommandPath>

 <!-- -->

 <SourceInitialized>false</SourceInitialized>

 <ex2:FailOnTransition>execution</ex2:FailOnTransition>

 <cmp:OnFailed process="terminate" target="EventTestSource" />

</EventTestSink>

</cdl:system>

</cdl:cdl>
flow-test.cdl

<cdl:cdl
 xmlns:cdl="http://www.gridforum.org/namespaces/2005/02/cddlm/CDL-1.0"

 xmlns:cmp="http://www.gridforum.org/cddlm/components/2005/02"

 xmlns:ex="urn:simple"

 targetNamespace="urn:flow-test">

<cdl:import namespace="urn:simple" location="simple.cdl" />

<cdl:system>

 <cmp:sequence lifecycle="initialization"/>

 <cmp:reverse lifecycle="termination" />

 <cmp:flow lifecycle="execution" />

 <ComponentA cdl:extends="ex:simple">

 <!-- change these per your system -->

 <cmp:CodeBase>http://localhost/test1.jar</cmp:CodeBase>

 <cmp:CommandPath>com.exns.Test1</cmp:CommandPath>

 <!-- -->

 <ex:testvalue>true</ex:testvalue>

 <ex:waitOnTransition>5</ex:waitOnTransition>

 </ComponentA>

 <cmp:wait lifecycle="initialization" duration="PT5S" />

 <ComponentB cdl:extends="ex:simple">

 <!-- change these per your system -->

 <cmp:CodeBase>http://localhost/test1.jar</cmp:CodeBase>

 <cmp:CommandPath>com.exns.Test1</cmp:CommandPath>

 <!-- -->

 <ex:testvalue>true</ex:testvalue>

 <ex:waitOnTransition>5</ex:waitOnTransition>

 </ComponentB>

 <ComponentC cdl:extends="ex:simple">

 <!-- change these per your system -->

 <cmp:CodeBase>http://localhost/test1.jar</cmp:CodeBase>

 <cmp:CommandPath>com.exns.Test1</cmp:CommandPath>

 <!-- -->

 <ex:testvalue>true</ex:testvalue>

 <ex:waitOnTransition>5</ex:waitOnTransition>

 </ComponentC>

</cdl:system>

</cdl:cdl>
switch-test.cdl

<cdl:cdl

 xmlns:cdl="http://www.gridforum.org/namespaces/2005/02/cddlm/CDL-1.0"

 xmlns:cmp="http://www.gridforum.org/cddlm/components/2005/02"

 xmlns:ex="urn:simple"

 targetNamespace="urn:switch-test">

<cdl:import namespace="urn:simple" location="simple.cdl" />

<cdl:system>

<SwitchTest>

 <cmp:switch lifecycle="initialization">

 <cmp:case condition="/SwitchTest/ComponentA/testproperty=’true’">

 <cdl:ref ref="/SwitchTest/ComponentA"/>

 </cmp:case>

 <cmp:otherwise>

 <cdl:ref ref="/SwitchTest/ComponentB"/>

 </cmp:otherwise>

 </cmp:switch>

 <ComponentA cdl:extends="ex:simple">

 <!-- change these per your system -->

 <cmp:CodeBase>http://localhost/test1.jar</cmp:CodeBase>

 <cmp:CommandPath>com.exns.Test1</cmp:CommandPath>

 <!-- -->

 <ex:testvalue>true</ex:testvalue>

 <testproperty>true</testproperty>

 <ex:waitOnTransition>5</ex:waitOnTransition>

 </ComponentA>

 <ComponentB cdl:extends="ex:simple">

 <!-- change these per your system -->

 <cmp:CodeBase>http://localhost/test1.jar</cmp:CodeBase>

 <cmp:CommandPath>com.exns.Test1</cmp:CommandPath>

 <!-- -->

 <ex:testvalue>true</ex:testvalue>

 <ex:waitOnTransition>5</ex:waitOnTransition>

 </ComponentB>

</SwitchTest>

</cdl:system>

</cdl:cdl>

