
Testing the Deployment API

Steve Loughran
2005-11-14

The CDDLM deployment API is a SOAP/WS-RF API to deploy systems. This is the recommended
test plan for validating an implementation, or a deployment.

1. These are mostly functional tests; the underlying SOAP stack and language implementation(s)
have to be present before these tests can take place.

2. In this document, XML namespace prefixes are used. All these prefixes have the same URI
mapping as in the deployment API document.

3. Tests marked as "status: experimental" are tests for which compliance is not required for
compliance with the deployment API specification.

Test Documents

Many of the tests will submit documents for deployment. The CDL files used will be described in the
appendix. Here are their goals

api-test-doc-1: valid-descriptor

An empty descriptor that deploys a valid application. It will deploy and stay deployed until
undeployed. It contains some simple values that can be resolved, in order to test resolution.

api-test-doc-2: parse-time-error in CDL

This document is valid CDL, but contains a resolution-time error and cannot be instantiated.

api-test-doc-3: fail-to-run

This document is valid CDL, but contains a cdl:lazy reference which will not resolve at run time, so the
deployment will fail then.

api-test-doc-4: fail-on-ping

This document is valid CDL, but contains a component designed to fail on a liveness test.

api-test-doc-5: fail-on-terminate

This document contains a special test component which will raise an exception during termination.

api-test-doc-6: slow-start

This document contains a special test component that takes a specified number of second to start. This
can be used to verify that starting is an asynchronous operation.

Portal and Creation tests

The following tests mostly test the portal EPR

api-1: portal-wsdm-properties

Verify that a portal exports the following resources, and that they match their specifications in the
WSRF, WS-N and WSDM specifications.

Resource expected
muws-p1-xs:ResourceId A URI
muws-p1-xs:
ManageabilityCapability

The list of manageability capabilities. This must
include those listed in section 6.1.2 of the
deployment API.

wsnt:Topics This must list notification topics, including that
for resource properties changing, and for the
SystemCreatedEvent

wsnt:FixedTopicSet

wsnt:
TopicExpressionDialects

The list of manageability capabilities must include the following elements
<muws-p1-xs:ManageabilityCapability>
http://docs.oasis-open.org/wsdm/2004/12/mows/capabilities/ManageabilityReferences
</muws-p1-xs:ManageabilityCapability>
<muws-p1-xs:ManageabilityCapability>
http://docs.oasis-open.org/wsdm/2004/12/muws/capabilities/ManageabilityCharacteristics
</muws-p1-xs:ManageabilityCapability>
<muws-p1-xs:ManageabilityCapability>
http://www.gridforum.org/cddlm/deployapi/2005/02/capabilities/portal
</muws-p1-xs:ManageabilityCapability>

api-2: get-portal-state

Examine the state of a portal; including languages and notification mechanisms

Actions:

1. SystemEPR->GetProperty(api:StaticPortalStatus) => status

Assertions:

• Response is valid by the XSD declarations of the StaticPortalStatus type.

• /languages/item/name[.="CDL"] resolves successfully.

• /notifications/item[.="http://docs.oasis-open.org/wsn/2004/06/wsn-
WS-BaseNotification-1.2-draft-01.xsd"] resolves successfully.

Other languages and notification mechanisms may be listed: their presence is not an error.

api-3: Create a System, then destroy it

Create a system , then destroy it immediately.

Actions
1. PortalEPR->Create => SystemEPR
2. SystemEPR->GetProperty(muws-p1-xs:ResourceId) => ResourceId

3. SystemEPR->GetProperty(api:CreatedTime) => CreatedTime
4. SystemEPR->Destroy => SUCCESS.

Assertions:

• The system EPR returned is a valid URL.

• A GetProperty(muws-p1-xs:ResourceId) MUWS capability is valid.

• The CreatedTime property is a valid xsd:dateTime element.

• The system EPR responds successfully to a <Destroy/> operation.

api-4: Create a System, then destroy it

Status: experimental

In a newly created system, the StartedTime and TerminatedTime properties

Actions
1. PortalEPR->Create => SystemEPR
2. SystemEPR->GetProperty(api:StartedTime) => StartedTime
3. SystemEPR->GetProperty(api:TerminatedTime) => TerminatedTime
4. SystemEPR->Destroy => SUCCESS.

Assertions:

• The system EPR returned is a valid URL.

• The StartedTime and TerminatedTime properties return a value to indicate that these times
have not been reached yet. There is no normative definition of what this may be.

• The system EPR responds successfully to a <Destroy/> operation.

api-5: After destruction, properties are not readable

Create a system , then destroy it immediately.

Actions
1. PortalEPR->Create => SystemEPR
2. SystemEPR->GetProperty(muws-p1-xs:ResourceId) => ResourceId
3. SystemEPR->GetProperty(api:CreatedTime) => CreatedTime
4. SystemEPR->Destroy => SUCCESS
5. SystemEPR->GetProperty(muws-p1-xs:ResourceId) => ERROR

Assertions:

• The system EPR returned is a valid URL.

• The EPR has a resource ID

• The system EPR responds successfully to a <Destroy/> operation.

• After destruction, the EPR no longer has a resource ID property.

api-6: After destruction, operations are not allowed

Create a system , then destroy it immediately.

Actions
1. PortalEPR->Create => SystemEPR
2. SystemEPR->Destroy => SUCCESS
3. SystemEPR->Ping() => ERROR

Assertions:

• The system EPR returned is a valid URL.

• The EPR has a resource ID

• The system EPR responds successfully to a <Destroy/> operation.

• After destruction, the EPR no longer responds to ping operations

api-7: Created Systems that are never instantiated get destroyed eventually.

Status: experimental

To prevent a DoS attack, orphan systems should eventually be destroyed. A test for this is to create a
system, do nothing and check a few hours or days later. The EPR should no longer be valid.

Actions
1. PortalEPR->Create => SystemEPR
2. SystemEPR->GetProperty(muws-p1-xs:ResourceId) => ResourceId
3. Sleep(24 hours)
4. SystemEPR->GetProperty(muws-p1-xs:ResourceId) => ERROR

Assertions:

• After an extended period, the server-side structures supporting a created but undeployed system are
purged and the endpoint no longer resolves to new requests

api-8: Creating too many Systems.

Status: experimental

This test explores what happens when 'too many' systems are created. There is nothing in the
specification to cover this, but one would expect that there is an operational limit on how many
systems can be created. The goal of this test is to see what this limit is and what happens when it is
reached.

1. PortalEPR->Create => SystemEPR
2. Goto #1

api-9: Created systems

After creating a system, verify that it is in the list of created systems by looking up its ResourceID in
the list of deployed systems.

Actions
1. PortalEPR->Create => SystemEPR
2. SystemEPR->GetProperty(muws-p1-xs:ResourceId) => ResourceId
3. PortalEPR->GetProperty(api:ActiveSystems) => ActiveSystems
4. SystemEPR->Destroy => SUCCESS
5. PortalEPR->GetProperty(api:ActiveSystems) => ActiveSystems2

Assertions

•SystemEPR is found in ActiveSystems.

•SystemEPR is not found in ActiveSystems2.

In this context, "found" means that an EPR with the same URI and reference parameters exists in the
list, or more formally, an EPR whose resourceID is obtained equals that of the original EPR.

Create a system with invalid hostname hint.

Create a system with an invalid hostname hint. The hint should be ignored and a valid EPR returned as
before.

1. PortalEPR->Create("no-name.example.org") => SystemEPR
2. SystemEPR->Destroy => SUCCESS

api-10: Create a system with a valid hostname hint.

Create a system as above, this time with an valid hostname hint. The EPR should contain that
hostname.

1. PortalEPR->Create("localhost") => SystemEPR
2. SystemEPR->Destroy => SUCCESS

This test is hard to perform, as it needs a set of two or more (potentially virtual) hosts, all part of the
deployment infrastructure.

api-11: Verify uniqueness of ResourceId values.

ResourceId values are required by WSDM to be strongly unique. This is hard to test. Simple checks
can verify that during a single session, unique identifiers are returned. Long-term tests are more
thorough, but harder to perform.

Action:

1. All tests that create a system should get its ResourceId and verify that it has not been returned
by a previous creation operation.

This will verify that IDs are unique during a single session, but not that they are unique across
machines or server restarts

api-12: Verify multiple systems can be created.

Verify that a number of systems can be created at the same time.
1. PortalEPR->Create => SystemEPR
2. PortalEPR->Create => SystemEPR2
3. SystemEPR->GetProperty(muws-p1-xs:ResourceId) => ResourceId
4. SystemEPR2->GetProperty(muws-p1-xs:ResourceId) => ResourceID2
5. PortalEPR->GetProperty(api:ActiveSystems) => ActiveSystems
6. SystemEPR->Destroy => SUCCESS
7. SystemEPR2->Destroy => SUCCESS

Assertions

•SystemEPR != SystemEPR2

•ResourceID != ResourceID2

•ActiveSystems contains both System Endpoint References

api-13: Look up a system

Verify that a number of systems can be created at the same time.
1. PortalEPR->Create => SystemEPR
2. SystemEPR->GetProperty(muws-p1-xs:ResourceId) => ResourceId
3. PortalEPR->LookupSystem(ResourceId) => SystemEPR2
4. SystemEPR2->GetProperty(muws-p1-xs:ResourceId) => ResourceId2

Assertions

•ResourceId == ResourceId2

Paired-portal tests

The deployment API is designed to support multiple portals providing access to the same set of

systems. If the implementation enables this, then it must be tested

api-14: Create a system on one portal, view in another

After creating a system, look in the "deployed systems" property of the peer portal for a system with
the same ResourceID. Once destroyed in one portal, all other EPRs must be invalid, even if they are
mapped to a different address.

1. PortalEPR->Create => SystemEPR
2. SystemEPR->GetProperty(muws-p1-xs:ResourceId) => ResourceId
3. PortalEPR2->LookupSystem(ResourceId) => SystemEPR2
4. SystemEPR2->GetProperty(muws-p1-xs:ResourceId) => ResourceId2
5. PortalEPR2->GetProperty(api:ActiveSystems) => ActiveSystems
6. SystemEPR2->Destroy => SUCCESS
7. SystemEPR->GetProperty(muws-p1-xs:ResourceId) => ERROR

Assertions

•ResourceId == ResourceId2

•SystemEPR or SystemEPR2 is found in ActiveSystems

System Creation Notification tests

The following tests require WS-Notification support in the test harness.

Test systems may wish to provide a private property listing all eprs subscribing to a system or portal
EPR. This will enable the outcome of these tests to be easily verified.

api-15: Subscribe to System creation events

The test system can subscribe via the portal for system creation events.

api-16: Unsubscribe

After subscribing to events, An unsubscribe should unsubscribe them. After unsubscribing, creating a
new system must not result in an event being sent to the (now unsubscribed) endpoint.

api-17: Create a System while subscribed.

While subscribed to a portal for creation events, create a system.

Assertions:

• A system creation event is received.

api-18: Create a System while subscribed with an invalid endpoint

Subscribe to a portal for creation events with a notification EPR that is invalid. There are the following
types of invalid portal

• Nonexistent URL (e.g. "http://notifications.example.org/epr1").

• endpoint with no open connection (e.g. "http://localhost:8081/epr1"), assuming port 8081 is closed

• 404 URL (e.g. "http://deployment.sourceforge.net/example/epr1").

Assertions:

• In all cases, the notification delivery failure is noted, the endpoint is no longer subscribed

api-19: Create a System while subscribed to a broken endpoint

Subscribe to a portal for creation events with a notification EPR that is broken. There are the following
types of broken endpoint

1. EPR always responds with a SOAPFault of some kind

2. EPR keeps the connection open, and does not terminate the connection.

Test #1 should fail as in the previous test. Test#2 should eventually time out, and be recorded by the
portal as a failure.

api-20: Multiple system event subscribers

Multiple EPRs can be subscribed to system events; events will be delivered to all. When one endpoint
unsubscribes, events will still be delivered to the remainder.

api-21: Invalid XML posts

Each SOAP Operation must be tested with

1. XML documents that do not match the schema. These must be rejected.

2. XML documents that contain extra data where extra data is permitted. These must be accepted.

3. The portal must also reject SOAP actions of the systems themselves, such as an initialize request.

System Initialization

These tests that are performed against a created System endpoint. These probe the endpoints' language
abilities, and the support for options.

In order to test valid deployments, we will need test components whose behaviour are well defined,
and which are implemented on all test systems.

api-22: deploy a valid configuration inline

A CDL descriptor is submitted inline

Actions:
1. PortalEPR->Create => SystemEPR
2. SystemEPR->Initalize(valid-cdl) => SUCCESS

 <api:initializeRequest>
 <api:descriptor
 language="http://www.gridforum.org/namespaces/2005/02/cddlm/CDL-1.0">
 <api:body>
 //insert api-test-doc-1 document here
 </api:body>
 </api:descriptor>
 </api:initializeRequest>

3. SystemEPR->Terminate() => SUCCESS
4. SystemEPR->Destroy() => SUCCESS

Assertions:

• That the application initializes.

api-23: deploy a valid configuration via AddFile

A CDL descriptor is uploaded via AddFile, the returned URL being used for the deployment.

Actions:
1. PortalEPR->Create => SystemEPR
2. SystemEPR->AddFile => [URL11,...]

<api:addFileRequest>
 <api:name>valid-cdl.cdl</api:name>
 <api:mimetype>text/xml</api:mimetype>
 <api:schema>file</api:schema> //or http
 <api:data>

//base 64 encoding of api-test-doc-1 document
 </api:data>
</api:addFileRequest>

3. SystemEPR->Initalize(url1) => SUCCESS
 <api:initializeRequest>
 <api:descriptor
 language="http://www.gridforum.org/namespaces/2005/02/cddlm/CDL-1.0">
 <api:reference>${URL1}</api:reference>
 </api:descriptor>
 </api:initializeRequest>

4. SystemEPR->Terminate() => SUCCESS
5. SystemEPR->Destroy() => SUCCESS

Assertions:

• That AddFile uploads a file and returns at least one URL pointing to where it was uploaded.

• If an http: URL, that URL may be visible to the testing application.

• That the application initializes with the URL as a parameter in the request

• If an http: URL, that URL is not visible to the testing application after the System is destroyed.

api-24: Unknown options are ignored if mustUnderstand="false"

Using the test above, the initialize request is extended with a set of options, all of which are marked
mustUnderstand="false" or with no mustUnderstand value at all:

 <api:options>
 <api:option name="http://example.org/options/1">
 <api:string>string value</api:string>
 </api:option>
 <api:option name="http://example.org/options/2">
 <api:integer>-8</api:integer>
 </api:option>
 <api:option name="http://example.org/options/3"
 mustUnderstand="true">
 <api:boolean>true</api:boolean>
 </api:option>
 <api:option
 name="http://example.org/map"
 mustUnderstand="false">
 <api:propertyMapOption>
 <api:property>
 <api:name>jvm.maxmemory</api:name>
 <api:value>64M</api:value>
 </api:property>
 <api:property>
 <api:name>jvm.minmemory</api:name>
 <api:value>16M</api:value>
 </api:property>
 <api:property>

 <api:name>max.users</api:name>
 <api:value>128</api:value>
 </api:property>
 </api:propertyMapOption>
 </api:option>
 <api:option name="http://example.org/bool"
 <api:option name="http://example.org/xml"
 mustUnderstand="false">
 <api:data>
 <cdl:import location=".."/>
 </api:data>
 </api:option>
 </api:options>

Assertions

• The unknown options are ignored

api-25: Unknown options are rejected

The previous test is repeated, this time with an option marked mustUnderstand="true".

 <api:options>
 <api:option name="http://example.org/options/1" mustUnderstand="true">
 <api:string>string value</api:string>
 </api:option>
 <api:option name="http://example.org/options/2">
 <api:integer>-8</api:integer>
 </api:option>
 </api:options>

Assertions

• The <Initialize> operation fails with an error that is a derivative of
api:DeploymentFaultType.

• Ideally, the faultcode QName should be
("http://gridforge.org/cddlm/serviceAPI/faults/2004/10/11/",
"not-understood"), though this is not (currently) required.

api-26: Unknown languages are rejected

A system is sent the following Initialize document:
 <api:initializeRequest>
 <api:descriptor
 language="http://example.org/language/unknown"
 xmlns:odd="http://example.org/language/unknown"
 >
 <api:body>
 <odd:lisp version="1.0">
 ((language 3 4) (unknown))
 </odd:lisp>
 </api:body>
 </api:descriptor>
 </api:initializeRequest>

Assertions

• The <Initialize> operation fails with an error that is a derivative of
api:DeploymentFaultType.

• Ideally, the faultcode QName should be
("http://gridforge.org/cddlm/serviceAPI/faults/2004/10/11/",

"unsupported-language")

api-27: Initialize with an invalid URL.

Status: experimental.

Initialize systems using the following template for a request, with the values of ${URL} specified
below:
 <api:initializeRequest>
 <api:descriptor
 language="http://www.gridforum.org/namespaces/2005/02/cddlm/CDL-1.0">
 <api:reference>${URL}</api:reference>
 </api:descriptor>
 </api:initializeRequest>

These tests are only valid when a system is online, and the server has proxy settings configured to
allow Internet access.

Url test
http://noname.example.org Hostname lookup fails
http://www.ggf.org/ Not valid XML. Parsing should fail
file:/etc/passwd On a Unix system, this should be rejected for security reasons

api-28: Initialize with descriptor as an attachment

Status: experimental.

If attachments (DIME, MTOM or SwA) are supported, then deployment using the supported
attachment mechanisms must be tested. The tests in such as case are

Succeeding

• Send an <Initialize> an request with the inline descriptor sent as an MTOM attachment.

• Send an <Initialize> an request with the URL-referenced descriptor sent as an SwA or DIME
attachment.

Failing:

• Deploy request with both an inline document and attachment ->Unknown action. Ignore the
attachment?

• Deploy request with very large (128+MB) attachment (stress test). This may be rejected as too
large, or it may be accepted. Most of the request can be generated white space.

• Deploy request that has an include statement whose URI is resolved against another attachment.

Deploy Invalid Configurations

The implementation must parse and reject those deployment configurations that can be assessed as
invalid during the initialization phase. That includes

• configurations with looped dependencies

• configurations with unresolved references

• configurations whose values does not match the (enforced) type system.

• Inclusion of a non-resolvable URI

api-29: Initialization fails for invalid CDL content.

A system is sent the following Initialize document:
 <api:initializeRequest>
 <api:descriptor
 language="http://www.gridforum.org/namespaces/2005/02/cddlm/CDL-1.0">
 <api:body>
 <cdl:cdl >
 <cdl:documentation>
 This system extends a reference that is unknown.
 Resolution MUST fail
 </cdl:documentation>
 <cdl:system>
 <Component cdl:extends="unknown">
 </Component>
 </cdl:system>
 </cdl:cdl>
 </api:body>
 </api:descriptor>
 </api:initializeRequest>

Assertions

• The <Initialize> operation fails with an error that is a derivative of
api:DeploymentFaultType.

DeployAPI/Component Model Combined Tests

api-30: Deploy a system that fails during the transition to running state.

api-31: Deploy a system that fails during a <Ping /> operation.

api-32: Deploy a system that successfully terminates (workflow-style)

api-33: Deploy a system that does not respond in a timely fashion to a <Ping/>
operation.

Status: experimental.

This test needs a component that can be configured to pause during a <Ping/> operation, so that the
client's behaviour during a long delay can be explored.

System notifications

api-34: Subscribe to lifecycle events

A client can subscribe to system lifecycle events.

api-35: Receive lifecycle events when a system is destroyed

A client that is subscribed to lifecycle events, receives a notification when a system is destroyed.

api-36: Receive lifecycle events when a system fails

With the Fault component, we can expect to be notified when a system enters the failed state.

api-37: Support multiple event listeners per system.

More than one endpoint can subscribe to lifecycle events; all will receive them. A more advanced test
would verify that the failure/blocking action of one endpoint will not cause the other recipients to be
denied their messages.

api-38: Receive lifecycle events when a system enters the running state.

Subscribers to lifecycle events receive notifications when a system enters the running state.

Notes

Writing these tests has thrown up the interesting problem is that there is no formal way of defining
equivalence of EPRs. The sole mechanism we have is to get the ResourceId value, and compare them.
ResourceID comparison must be by case-insensitive string comparision. No attempt should be made to
perform 'URL-aware' comparison logic, such as assuming that "http://host:80/e" is equivalent
to "http://HOST/%65". This is not what RFC 2616 Section 3.2.3, URI equivalence, mandates.

Appendix A: test descriptors

api-test-doc-1: valid-descriptor
 <cdl:cdl
 xmlns:w="urn:webapps"
 xmlns:cdl="http://www.gridforum.org/namespaces/2005/02/cddlm/CDL-1.0">
 <cdl:configuration>
 <w:webapp-base>
 <app>security</app>
 <app>logging</app>
 </w:webapp-base>

 <w:webapps2 cdl:extends="w:webapp-base">
 <app>testing</app>
 </w:webapps2>

 <w:server>
 <port>8080</port>
 <security>true</security>
 <webapps/>
 </w:server>

 <w:tomcat cdl:extends="w:server">
 <basedir>
 </basedir>
 </w:tomcat>

 </cdl:configuration>
 <cdl:system>
 <w:deployment cdl:extends="w:tomcat">
 <w:webapps2/>
 </w:deployment>
 </cdl:system>
 </cdl:cdl>

api-test-doc-2: parse-time-error in CDL

This document is valid CDL, but contains a resolution-time error and cannot be instantiated; the
cdl:extends attribute refers to a nonexistent component.

 <api:initializeRequest>
 <api:descriptor
 language="http://www.gridforum.org/namespaces/2005/02/cddlm/CDL-1.0">
 <api:body>
 <cdl:cdl >
 <cdl:documentation>
 This test extends a reference that is unknown.
 Resolution MUST fail
 </cdl:documentation>
 <cdl:system>
 <Component cdl:extends="unknown">
 </Component>
 </cdl:system>
 </cdl:cdl>
 </api:body>
 </api:descriptor>
 </api:initializeRequest>

	Testing the Deployment API
	Steve Loughran
2005-11-14
	Test Documents

	Many of the tests will submit documents for deployment. The CDL files used will be described in the appendix. Here are their goals
	api-test-doc-1: valid-descriptor
	An empty descriptor that deploys a valid application. It will deploy and stay deployed until undeployed. It contains some simple values that can be resolved, in order to test resolution.
	api-test-doc-2: parse-time-error in CDL
	This document is valid CDL, but contains a resolution-time error and cannot be instantiated.
	api-test-doc-3: fail-to-run
	This document is valid CDL, but contains a cdl:lazy reference which will not resolve at run time, so the deployment will fail then.
	api-test-doc-4: fail-on-ping
	This document is valid CDL, but contains a component designed to fail on a liveness test.
	api-test-doc-5: fail-on-terminate
	This document contains a special test component which will raise an exception during termination.
	api-test-doc-6: slow-start
	This document contains a special test component that takes a specified number of second to start. This can be used to verify that starting is an asynchronous operation.
	Portal and Creation tests
	Paired-portal tests
	System Creation Notification tests
	System Initialization
	Deploy Invalid Configurations
	api-29:Initialization fails for invalid CDL content.
	DeployAPI/Component Model Combined Tests
	System notifications
	Notes
	Appendix A: test descriptors

	api-test-doc-2: parse-time-error in CDL
	This document is valid CDL, but contains a resolution-time error and cannot be instantiated; the cdl:extends attribute refers to a nonexistent component.

