GWD-R

Oct. 19, 2005

1. Introduction

[This section is from strawman draft and need to be modified according to the glossary refinement.]
OGSA-compliant Grid systems provide a rich set of functionalities such as dynamic resource allocation, provisioning, service level management, and automation of administrative tasks, as shown in OGSA [OGSA doc]. In order to utilize these functionalities in executing applications on Grid systems, applications require certain preparation. That is, developers of Grid applications need develop various components including, but not limited to, deployment procedure scripts, requirement descriptions on resources, and self-management policies, which are all handled by OGSA services, as well as program binaries, initial data, and configuration information, which are commonly necessary for application execution.

In this document, we use the term a Grid Application, or simply an application, to refer an application executable on Grid systems. And we use the term Application Contents for a set of information which collectively makes the application deployable, runnable on Grid systems and optionally help system do provisioning autonomously. The Application Contents include application binaries and related information; e.g. program binaries, configuration data, procedure descriptions for lifecycle management, requirement descriptions for the hardware and underlying middleware, policy rules, and anything needed to create a job instance on grid systems
. They may be real entities or location pointers.
On the other hand,
 the Application Contents don’t include information updated by a job instance and information describing a status of a job instance. In any way, ACS doesn’t interpret or execute information in the contents; rather it just manages them for use by other OGSA-services.
An Application Archive may include a stack of the software, for example, middleware and/or operating system binaries, in order to build the hosting environment required to run a job. Alternatively they may be provided by the system, based on the resource requirement description specified by Application Contents in the Archive. The system may provide with the hosting environment, out of the internal pool of the various hosting environments or creating it on demand.

The necessity for the ACS lies within its potential for contributing to practical configuration/repository management services, a technology aid for automated provisioning, jobs managers, etc, as well as to ease the submission and the following management of the application related files as described above. Exchangeability and interoperability of Application Contents is important so that the complexity of efforts do not impede grid adoption throughout industry.
More complicated application, such as three-tier system, makes it difficult to describe information handled by Grid systems for the purpose of deployment and execution management, and requires many files to be handled. Consistent management of Application Contents throughout the lifetime of application, including its version-upgrade, is difficult and prone to human errors.

Scenarios for resource sharing and disaster recovery across sites may be realized through the distributing a set of jobs among the separate grid systems if they are so designed as to be runnable in the distributed environment. For those jobs, automated exchange of Application Contents between Grid systems will facilitate effective deployment of the job. There already exist many products for automated deployment of application on multiple hosts and change management on them. However, those products don’t target to run in dynamic and heterogeneous environments like the Grid environments, or to realize resource sharing across multiple administrative domains, which is one of the goals of OGSA. Some products, such as J2EE, utilize mechanisms for specific platforms, and some products take proprietary and/or nonpublic approaches.
Application Content Service (ACS), defined by this document, will serve to realize those scenarios more effectively. ACS is an OGSA service, which maintains Application Contents for an unit of a task processed in grid systems as an Application Archive in a ACS repository and provides functions, such as to access them, retrieve them and/or their change histories. We also define a standard format of an Application Archive for registering and
exchanging them.
By storing a deployable logical set of Application Contents in a single archive, ACS simplifies registration and
updating processes of them and enables integrated management to maintain their consistency. The standard description of Application Contents archive also enables automated administration of Grid Application. By providing change history information and restoration capability of Application Contents, ACS can provide with assistance for troubleshooting of problems arising from erroneous update operation of the existing Archives.

In the rest of this chapter, we explain goals and non-goals of ACS. In §2, we analyze and define the set of requirements for ACS. Based on the requirements, we present the ACS concept and architecture in §3 and some example usage scenarios to shape the ACS image in §4. Then we define ACS specification that consists of Application Repository Interface (ARI) to handle Application Contents repository in §5 and Application Archive Format (AAF) to archive Application Contents in §7. We consider security in §8. We are going to describe samples of ACS request messages and Application Archive Descriptor in §9 and normative xsd and wsdl schema in §10.

This specification is designed utilizing the experience in the Business Grid Project [BizGrid] in Japan, which makes reference with OGSA architecture.
Most of the terms in this document are included in OGSA documents [OGSA doc][OGSA glossary][OGSA usecase]. See glossary section at the end of this document for terms specific to this document.
1.1 Goals
This document is intended to:

define the standard way to manage and handle Application Contents as a deployable logical unit so as to maintain their consistency, reduce management overheads, and enable automation throughout the lifetime of the application.

define the standard format of Application Archive so as to simplify registration and
updating processes and to automate administration of application

1.2 Out of scope
ACS defines the specification necessary for management of Application Archive, but doesn't interpret or execute Application Contents contained in them. That is, ACS handles Application Contents as opaque data except for Application Archive Descriptors. Information necessary for deployment and execution management of application need to be defined by other OGSA services that process the information.
1.3 Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC 2119].

When describing abstract data models, this specification uses the notational convention used by the [XML Infoset]. Specifically, abstract property names always appear in square brackets (e.g., [some property]).

When describing concrete XML schemas, this specification uses the notational convention of [WS-Security]. Specifically, each member of an element’s [children] or [attributes] property is described using an XPath-like notation (e.g., /x:MyHeader/x:SomeProperty/@value1). The use of {any} indicates the presence of an element wildcard (<xsd:any/>). The use of @{any} indicates the presence of an attribute wildcard (<xsd:anyAttribute/>). Characters are appended to attributes, elements, and {any} to indicate the number of times they may occur as follows: ? (0 or 1), * (0 or more), + (1 or more). No character indicates exactly 1 occurrence. The characters [and] are used to indicate that contained items are to be treated as a group with respect to the ?, *, and + characters. Attributes, elements, and values separated by | and grouped with (and) are meant to be syntactic alternatives.
1.4 Namespaces
The following namespaces are used in this document:
	Prefix
	Namespace

	xsd
	http://www.w3.org/2001/XMLSchema

	wsa
	http://schemas.xmlsoap.org/ws/2003/03/addressing

	wsrf-bf
	http://docs.oasis-open.org/wsrf/2005/03/wsrf-WS-BaseFaults-1.2-draft-04.xsd

	ref
	http://ws-i.org/profiles/basic/1.1/xsd

	ari
	http://schemas.ggf.org/acs/2005/10/ari

	aaf
	http://schemas.ggf.org/acs/2005/10/aaf

1.3
1.4
2. Requirements

[This section was reviewed at the last F2F meeting. Format and expression need to be refined.]
Related Issues:

[Issues: 1530] Decide the minimum set of requirements on security specification in ACS.
[Issues: 1522] Clarify the requirements on version control.
In this chapter, we define a set of requirements that ACS is intended to address. The analysis is based on the demand of manipulating Application Contents inside/outside of the Gird system.
2.1 Functional Requirements
2.1.1 Everything required for a task in a single archive
In order to install and operate complex systems, a number of various application related information must be specified, especially for three-tier systems or Grid tasks. Keeping everything required for a task into a single archive will contribute to ease of use, reduction of the administrative cost and higher consistency. Examples of such information are the following:

· Program binaries and initial data: These are the main contents of the systems and/or the Grid tasks.

· Middleware and/or OS: These may be required for building execution environments in a data center required for Grid task execution.

· Policy rules: OGSA services for task execution management use this information to manage Grid tasks dynamically in case of, for example, erroneous conditions and/or increasing load.

· Fail-over and/or load-sharing configuration: It is an important Grid requirement to be able to cope with disaster recovery and load-sharing among geographically separated sites.

· Scheduling information or operational policy rules, etc.

Merits:

· (Ease of use) Business activity manager of a complex system can handle application contents easily, resulting in less human errors.

· (Administrative cost reduction) Administrative costs will be reduced by simplifying the handling procedures of application contents.

· (Consistency) Consistency of application contents can be validated more easily if they are in a single archive.

Notes:

The first and second items are among the main purposes of OGSA, and described as OGSA requirements in section 2.11 (Ease of Use and Extensibility) and 2.8 (Administrative Cost Reduction) of OGSA v1.0 [OGSA v1.0].

Requirements:

· [1.1-a] AAF/ARI: Application contents must be logically bundled in a single and consistent archive.

· [1.1-b] AAF: ACS should allow diversity of information as its contents, including application, middleware, OS, or firmware.

· [1.1-c] AAF: ACS should allow bundling a set of applications which are to be deployed and executed in geographically and/or administratively separated sites.
2.1.2 Everything required for Grid in a single archive
Grid application ready to be executed comprises various files such as the descriptive information to be used by the various services for scheduling and resource management. To operate the system more efficiently and automatically, those files need to be presented in a standard format. Examples of such information are the following:

· Configuration Description, Deployment and Lifecycle Management information, presented as CDL.

· Resource requirement description for hardware and/or software, presented as JSDL or WS-Agreement.

Merits:

· (Completeness of the contents) Itemizing and collecting the requisite information in an archive contribute to clarify the completeness of the required information both for user and system.

Requirements:

· [1.2-a] AAF: All information required for Grid task execution must be logically bundled in a archive.

Notes:

· Requirement [1.2-a] above is relevant to requirement [4-d] in chapter ‎2.4 .
2.1.3 A service comprising a part of systems
The ACS will be a service comprising a part of systems, such as a Grid system. An archive repository can facilitates a stable source of the archive to collaborate with other services in the system. Complex system composed from multiple applications is at risk for troubles due to missing and/or inconsistency of application contents. It will execute a consistency check, especially at the time of modification of the application.

Changes, upgrades and bug-fixes of the application are envisioned during the lifecycle of application archive. The archive repository facilitates lifecycle management of application contents including version control, distributed deployment such as copying and relaying a software stack onto multiple machines when sharing application archives across administrative domain.

Merits:

· (Service Integration) Storing the contents of the Application Contents in a repository and providing to other services contributes to the system efficiency in executing a task.

· (Lifecycle management support) Version management, if combined with repository management, can reduce the cost of lifecycle management of application.

Requirements:

· [1.3-a] ARI: Archives must be stored in a repository, with a standard set of the CRUD functions, i.e. Create, Read, Update, and Delete. Once registered, operations must be allowed in a smaller unit in the archive.

· [1.3-b] ARI: Repository Interface must provide reference handles, with appropriate access control management for actors in both inside and outside of the system.

· [1.3-c] AAF/ARI: Incremental upgrading of the application archive must be supported.

· [1.3-d] AAF: Consistency check of the archive contents should be assisted through the ARI.

Notes:

· Further investigation may be desired as to in which grain size archive contents are retrieved.

· ACS assumes that there is an overall grid management which ensure that ACS and other resources are available to support the entire system. For example, an archive should not be deleted when it is in use. ACS is not responsible for this.
2.1.4 Reuse of an existing archive
Considering situations such as repeating the same calculation with different parameters or performing similar services, in parallel or in different points of time, a business activity manager may feel convenient if the system allows creating a new task reusing the content for a running task or its subset. ACS should enable to create a new task using an existing archive in the repository that is previously registered for a similar task. A business activity manager may want to apply some updates on the archive to modify a task or to create a different sort of task. A business activity manager may also want to use the archive created by another business activity manager besides improving his/her own archive.

Merits:

· (Cost reduction) Reuse of an archive can reduce the development/administrative cost when creating similar or repetitive tasks.

· (Incremental improvement) Reuse of an archive enables incremental improvement of functionality and/or reliability.

· (Ease of use) Reuse of an archive contributes to the over all ease of use for the systems

Requirements:

· [1.4-b] ARI: Retrieving an archive by multiple different actors, under appropriate access control to the archive, must be allowed.
2.2 Non-functional Requirements (or Design Goal)
2.2.1 Exchangeability, Interoperability
An application archive is expected to be used for various administrative domains and/or heterogeneous environments. In order to address to diversity of the environments, standard specification needs to define a reliable universal format and/or interface which ensure reusability and exchangeability.

Requirements:

· [2.1-a] AAF/ARI: Standard format of archive and interface to the repository needs to be defined.

Notes:

· Further investigation should be performed as to at what level and to what extent the interoperability.

· The following requirement (‎2.2.2Extensibility) assumes this requirement.
2.2.2 Extensibility
Specification should allow incremental evolution of itself, to be adaptable for future technologies that are under development or not predicted today, including those in GGF. In addition, specification is desired to allow broader range of the industry to share its single framework. Application archives should accommodate various use cases, such as application installation on a single machine, copying a software stack onto multiple machines, and task execution on a Grid system. It should allow for diversity of system implementations to handle the application archives.

Requirements:

· [2.2-a] AAF/ARI: In addition to minimum set of requirements, ACS must allow optional or extension sets.
2.2.3 Making use of the external ingenuity
There are and will be ingenuity in the world to implement the feature, while satisfying the common set of the requirements and interface specifications. The specification should make full advantage of the external ingenuity in the field.

Requirements:

· [2.3-a] AAF/ARI: ACS specification will not define how to implement; it should provide common interfaces and mechanisms for implementing.
2.2.4 Efficiency
Complex application comes to be a larger set of files and data. In order to address to this, the references to the external storage that is persistent and stable should be allowed in the both archive and repository. Efficiency in data storage and efficiency in transport is also expected. Transport on network is expected in registration and retrieval of an archive file. ACS should seek to method to take advantage of the state of the art of various technologies in both storage and transport of archives.

Requirements:

· [2.4-a] AAF: To reduce the size of archives, reference to external storage/files should be allowed in them.

· [2.4-b] AAF/ARI: ACS must provide mechanisms for minimizing the network traffic by allowing differential application archives.

· [2.4-c] ARI: When managing contents of archives in the repository, mechanisms for eliminating redundancy and minimizing the disk usage should be allowed.

· [2.4-d] ARI: To make use of the efficient transport technologies available, the third party transports must be allowed in the repository interface.

· [2.4-e] ARI: ACS should allow ARI implementers to select a communication protocol for transport.

Notes:

· When allowing reference to external entities, consistency of application contents must be considered.
2.3 Security
Business/commercial applications may include confidential and/or critical information, and integrity of contents is vital.

Requirements:

· [3-a] ARI: Security features must be deployable according to the business requirements.

· [3-b] ARI: Appropriate access control to archives is required.

· [3-c] AAF/ARI: Secure transport of archives must be realized. For example, mechanisms for keeping confidentiality of archive contents and detection of alteration and spoofing are required.

The security design of ACS follows that of OGSA-WG Security Design Team.
2.4 OGSA-compliant
It is important that the ACS is an OGSA-service since the OGSA will be a harness framework for the future grid systems and ensure the interoperability of the diversity of the Grid system implementations.

Requirements:

· [4-a] ARI: The service must be implemented as an OGSA-service based on OGSA infrastructure services (such as XML, WSDL, WS-Addressing, WS-ResourceFramework, WS-Notification).

· [4-b] ARI: ACS must cooperate with other OGSA-services and must not overlap in capabilities with them.

· [4-c] ARI: Archive components must be retrievable by other OGSA-service entity such as CDDLM, Job Manager, and Candidate Set Generator.

· [4-d] AAF: Archive contents can be any opaque entities that are required for deployment and execution of application.

�Should be removed. Redundant to the first paragraph.

�PAGE \# "'ページ : '#'�'" �ページ : 4���Should be removed since we dropped off External Reference in AA instance.

�Should be moreved.

�PAGE \# "'ページ : '#'�'" �ページ : 5���May be removed or changed since we no longer use the word "register".

�PAGE \# "'ページ : '#'�'" �ページ : 5���Same as comment [s2]

�PAGE \# "'ページ : '#'�'" �ページ : 5���Should be removed.

�PAGE \# "'ページ : '#'�'" �ページ : 6���Same as comment [s2]

author@email.address
8

