GWD-R

Sep. 18, 2005

3. Architecture
3.1 Concepts

3.1.1 Application Archive and Repository

3.1.2 AA Structure

3.1.3 Physical Format of the AA
3.1.4 Relationship between AA and Job

An AA can be used to create a job, i.e. a unit of task, in the grid system
. But maintaining the relationship between an AA and a job is out of ACS’s scope. AA management is independent of execution management of jobs, however, ACS may serve to deliver contents to an execution management system,
The user of a grid system can create a new jobs, reusing an individual AA to support many jobs. Thus, multiple jobs may refer to a same AA instance, but the management related to the job instance is up to the execution management system, which is a consumer of the ACS.
In another case, the user can make a copy of an AA and create a new AA document or AA instance or extend it by modifying or overwriting some of the contents. Different styles of the DD may be needed for deployment in other system that accepts AA and ARI.
The diagram below shows the role of ACS in OGSA EMS architecture.

Figure 3‑1 ACS in OGSA EMS Architecture

3.1.5 AA Identifier and Endpoint Reference

An AAID is information described
in the AAD that uniquely identifies an AA. Two instances of AA with the same AAID are equivalent in contents. Different versions for the same application will have different AAIDs. Two different AA EPRs does not necessarily mean that the two AA instances they refer to are different. To access an AA instance, one must know the endpoint reference of the AA (AAEPR). The AAEPR can be looked up using the key provided by the ACS implementation, such as AAID.
<TBD>Consider WS-Name verbiage here</TBD>
3.1.6 Version Control

A new AA instance can be created based on the existing AA instance, producing another new AA instance. The operation to accomplish this is called Update. It is performed on an existing AA instance, and replaces, removes, or adds to the original in a granularity level starting at the Application Content. The AAD will be always replaced with the execution of the Update operation since the version information, a part of its AAID element, must have a different value and reflect the modification. The implementation of the ACS repository must verify that the two AA instances
do not have the exact same version information. It may maintain internal version information in addition to the producer supplied version information, but the format or semantics of the internal version information is out of scope of this specification.

On updates of the existing AA instance, the original AA instance was kept as it is, except that the Resource Properties describing a list of new AA instances created based on it is modified.
 A newly created AA instance will have the information of the original AA instance as a value of the baseAA Resource Property. On deletion of the original AA when the implementation allows to do so, which is pointed by the baseAA Resource Property, its value is replaced by the value of the original AA instance, i.e. the one of the grand parent. The consumers and producers can trace entire version history using these Resource Properties. Also, they can subscribe events on any change of these Resource Properties to receive the notifications. See Resource Properties of Application Archive in Chapter 5 for more detail.

TBD: When implementations allow to do delete the AA pointed by the baseAA of another AA instance, the updatedContents of the AA of the pointing AA must be modified so that it reflects difference from the grand parent. The implementations need to calculate the difference from the grand parent and modify the AAD of the pointing AA. We may need to consider the way one can retrieve the original AAD or modified AAD in this case. Allowing the deletion of the AA instance that has null value for the newer Resource Properties can avoid the situation.
AA instances will not be deleted until they are explicitly deleted through the ARI operations defined in this specification. The deletion must be controlled or protected based on the system design by other entities, such as job management services. This makes the consumers of the AA instance keep using the referencing AA instance after creation of newer versions of the AA instance. Consumers and Producers will have an access for any of the instance in the history as long as they have appropriate access permission to the AA instance. (I would cary a separate ACL for each version. [perhaps too burdensome to code? Or for these situations , just make a new AAAID?])

Application Archive

ACS

Application Repository

Reservation

Job Manager

Candidate Set Generator

(Work -Resource mapping)

Execution Planning Services

Accounting Services

Service Container

Information Services

Provisioning Deployment Configuration

�Perhaps we could say a unit of “configuration management”

�An element?

�Of the same ID? (one modified from the other?)

�This is confusing. I can’t tell if you incrementing a version of a particular AAID, or making a copy with a new AAID and creating a new version number. (I am pretty sure it is the former, but maybe we can clarify, since Andrew Grimshaw (OGSA) requested the capability to create new AA’s from existing ones.

author@email.address
1

