CASE 1 : CDDLM stand alone system
When CDDLM is used without any remote storage services, it presumes the existence of an internal file server which is visible from the deployed system and components. It might be NFS, HTTP server or anything. The user can upload files through “AddFile” method of the System Endpoint. The Deployment API says that this is an interim solution and the preferred solution to this is a remote asset store of some form, with an efficient transport and secure, version-based access to assets. (see section 3.2 of the Deployment API)
 [image: image1.emf]
CASE 2 : Collaboration of ACS and CDDLM (1)

Case 2 and 3 are possible sequences when CDDLM works with ACS. (NOTE: the possibility is not limited to these sequences)
In the case 2, the interfaces of the CDDLM services need no changes from current specs. AA EPR is passed to the System Endpoint implicitly included in the “options“ parameter of the Initialize method.
 [image: image2.emf]
CASE 3 : Collaboration of ACS and CDDLM (2)

In the case 3, System Endpoint retrieves the CDL document from ACS service. JM (or something) need not know the key which is required to retrieve the CDL. In this case, the parameter “CDL” in the Initialize method should be optional. The AA EPR may be included in the options parameter in the same way as in the case 2.
[image: image3.emf]
The actual process to configure, run and terminate each component is hard-coded in the deployment component, i.e. “ApacheDeployer” class in this case.

URIs of the uploaded files are contained in the “options”, which can be used to rewrite the CDL late-binding parameters.

Methods whose names begin with a capital letter are defined in the normative CDDLM specs, and others are implementation-specific.

The lifecycle operations, i.e. Initialize, Run and Terminate, are performed asynchronously. This is defined in the Deployment API.

Files to be deployed are directly pulled from ACS by each Component Endpoint.

The keys to the files which is used as a parameter of the GetContent are likely to be hard-coded in the Deployment Component code.

One or more Component Endpoints are instantiated as defined in the CDL.

In the case below, a single component named “WebApplication” is created using “com.exns.ApacheDeployer” class that is included in the file.jar.

How to instantiate the Component Endpoints is platform specific.

<cdl:cdl targetNamespace=”http://example.org/webapp-template”>

<cdl:system>

<WebApplication>

 <cmp:CodeBase>http://server/file.jar</cmp:CodeBase>

 <cmp:CommandPath>com.exns.ApacheDeployer</cmp:CommandPath>

 <port>80</port>

 <hostname>www.example.org</hostname>

</WebApplication>

</cdl:system>

</cdl:cdl>

(This sample is from “Component Model”)

JM (or something) retrieves the CDL document from ACS repository which is passed to the System Endpoint.

Methods whose names begin with a capital letter are defined in the normative CDDLM and ACS specs, and others are implementation-specific.

The AA EPR is included in the “options” parameter.

The user must register the AA (Application Archive) file to the ACS repository in advance of deployment.

JM (or something) retrieves the CDL document from ACS repository which is passed to the System Endpoint.

The CDL document is directly retrieved by System Endpoint instead of being passed by JM.

The “CDL” parameter should be NULL in this case.

The AA EPR is included in the “options” parameter .

The AA EPR is somehow passed to the Component Endpoint.

