
1. Application Contents Service interface specification
1.1 Introduction and Concepts

1.2 The Application Contents Service provides a repository for grid applications. Application providers create Application Archives (AA) by providing the data necessary to describe the archived application and its associated files or references to the associated files. Application Files consist of the application executable code, configuration data necessary for initial deployment of the application and the deployment descriptor documents, which are used to define platform requirements and relationships to other software necessary to successfully deploy and run the application.
1.3 Typical scenario for ACS would include an application provider using ACS to create an application archive, thereby making the application available to for deployment and execution on the grid. Users who wish to use an application held within the ACS repository would then use the application ID, provided by the owner of the archived application, to get the application deployment descriptor and the associated application files from the ACS repository.

1.4 Another scenario would be one where application archives, created in one ACS instance, are replicated into another ACS instance. This might occur to provide geographical relocation or backup or for a variety of business reasons. The ACS specification supports replication of archives in a standardized way permitting ACS instances from multiple vendors to interoperate.
1.5 Roles

1.6 ACS identifies three broad categories of roles of users of the ARI. Note that these roles are used purely for the purposes of describing the ARI. These roles are not explicitly identified or enforced by ARI. The roles are:

· Producer – owner of an application that is to be archived into ACS. This role supports create, update, and delete operations on an AA.
· Consumer – users of ARI that want to retrieve information about an AA or retrieve portions of an AA. This role only supports Get operations.

· Replicator – a special version of Consumer that enables getting a formatted version of the complete AA for the purposes of recreating the AA in another instance of ACS.
1.7 Overall design of Application Contents Service interface
1.7.1 File transport

In addition to the mechanism of external reference, which enables AAs to refer to external files, file transport mechanism is an important issue for the ACS specification.

Files such as AA, ADD, and AC files can be included in request/response messages and transported in two ways:

· (method 1) The files are included in request/response messages as Base64-encoded strings. They can be described in a SOAP envelope as a parameter of the request/response messages or they can be attached as a part other than SOAP envelope by means of SOAP with Attachments.

· (method 2) The URIs of the files are described in request/response messages. The files can be retrieved by means of ftp protocol or OGSA Data Services. Or else, in a limited condition where Grid systems are built up in a local environment, the URIs may indicate the local file paths. If the files cannot be retrieved according to the URIs specified in request messages, then the requested operations should fail.

ACS shall support file transport mechanisms with consideration for both effectiveness and security. The method 1 above is not so effective, but has the advantage that standard web service security framework is available such as WS-Security. Moreover, OGSA security policies, which is discussed in OGSA-WG, are expected to be applied in the case of the method 1. On the other hand, in the case of the method 2, there is a possibility that security policies must be determined in ACS’s own way outside the web service framework. However, considering effectiveness, the method 2 is highly desired in case of bulk file transport.

[TBD] How to realize file transport.

1.7.2 Synchronous/asynchronous messaging

In the case where services cannot control the response time (for example, the case where operation execution includes interaction with external modules), the services should support operation execution by means of asynchronous messaging.

In particular, such cases are expected in the following operations:

· Create operation in ApplicationRepository portType (see 1.2.3)

· Update operation in ApplicationArchive portType (see 1.3.3)

· Transfer operation in ApplicationArchive portType (see 1.3.6)

[TBD] It must be disccussed as to what kind of asynchronous messaging ACS should support.

1.7.3 Fault

1.7.3.1 Fault design policy

The ACS specification classifies ACS faults into the following categories:

(I) Faults due to requester’s operation invocation which does not conform to the ACS specification. For example, errors on the format or content of request messages and errors on the operation invocation conditions. This kind of faults must be processed by the requester. The ACS specification defines ACS fault types and their format, so that the requester can understand the fault cause and execute recovery operations.

(II) Faults due to the reasons which the requester cannot cope with. For example, the WS-ResourceLifetime specification defines ResourceNotDestroyedFault in Destroy operation. In the ACS specification, all the operations need not necessarily define this kind of faults, but we define fault types for the operations which possibly fail for some reasons (such as the Create operation). Because the requester cannot cope with this kind of faults, detail fault reasons need not be notified and a single fault type is sufficient for each operation.

(III) Faults which depend on system failure or environment. The ACS specification does not define this kind of faults. If necessary, service implementers should define implementation specific faults by extending wsbf:BaseFault type.

1.7.3.2 Fault types defined in the ACS specification

The fault types defined in the ACS specification inherits wsbf:BaseFault type, which is mandatory according to OGSA Basic Profile.

1.7.3.3 Fault categories defined in the ACS specification

Faults returned by ACS operations are classified into operation-specific ones and cross-operation ones.

1.7.3.3.1 operation-specific faults

See the fault definitions in 1.2 and 1.3.

[TBD] It must be discussed as to whether the granularity and definition of the fault types is appropriate and whether there are overs and shorts on them.

1.7.3.3.2 cross-operation faults

The ACS specification defines the following faults which all the ACS operations can return:

· ResourceUnknownFault
The WS-Resource (ApplicationRepository or ApplicationArchiveEntry) identified in the message is not known to the Web service.
· SecurityFault
Errors on security.
SecurityFault indicates errors on security in general. For example, the requester does not have the right to invoke the operation, archive alteration is detected, the requester does not have the right to access the specified archive, and so on.

[TBD] The granularity of SecurityFault must be discussed along with security issues. [ACS-Issue:1530,1531]

1.7.4 Notification mechanism

The ACS specification utilizes the WSN specification as notification mechanism.

1.7.5 Security

1.7.5.1 Access control management

The security framework commonly applied to all the OGSA services is now disscussed mainly in OGSA-WG. It is expected that information for identifying the service requester is included, as a message context, in the header of request messages. The ACS specification is due to reflect the outcome of OGSA-WG. ACS services may be able to control access to AAs based on information on the service requester and AA registrant and other management information, but it is now discussed in ACS-WG to what extent the ACS specification should define the access control management.

[TBD] To what extent the ACS specification should define the access control management? [ACS-Issue:1530, 1531]

1.7.5.2 Digital signature on files and messages

AA files and contents files can be transported in SOAP messages of the Create operation in ApplicationRepository portType and the Update, GetContents, GetArchive, Transfer operations in ApplicationArchiveEntry portType.

[TBD] Who digitally signs AA?

[TBD] Who digitally signs contents files? In what granularity should they be signed? Primarily, is it necessary to sign contents files which are returned from ACS services?

1.7.6 Relationship to other specifications

ApplicationRepository and ApplicationArchiveEntry portTypes inherit the portTypes defined by WSRF and WSN according to OGSA Basic Profile 1.0. Moreover, the ACS specification is due to utilize WSDM to manage ACS services.

1.8 ApplicationRepository portType
ApplicationRepository is a WS-Resource which represents a repository managed by ACS service. A web service which implements this portType accepts request messages for manipulating the ApplicationRepository WS-Resource.

1.8.1 Resource Properties
The format of the Resource Properties document defined by ApplicationRepository portType is:

<acs-ari:version>xsd:anyURI</acs-ari:version>

The elements in the Resource Property document are further described as follows:

· /acs-ari:version
The URI which indicates the version of the ACS specification which the repository implementation is based on.

The elements above are the minimum set of required Resource Properties, and repository implementations may add further elements.

1.8.2 Inheritance of portTypes defined in other specifications
All the portTypes which ApplicationRepository portType inherits are expressed in the following table:

	portType name
	required/optional
	purpose

	wsrp:GetResourceProperty
	required
	in order to enable to read the Resource Properties

	wsrp:GetMultipleResourceProperties
	required
	in order to enable to read the Resource Properties

	wsrp:QueryResourceProperties
	optional
	in order to enable to query the Resource Properties

	wsrl:ImmediateResourceTermination
	required
	in order to enable repository destruction (this inheritance is mandatory according to OGSA Basic Profile)

	wsnt:NotificationProducer
	required
	in order to enable to subscribe for AA registration/update notifications

1.8.3 Create operation
This operation creates an AA in an Application Repository. The operation requires a set of information necessary to create an Application Archive Descriptor and shall contain a valid AC or ACR. If an ACR is used, existence of the referenced external files is not checked at the time of AA registration. The Create operation can be successful even if the external files do not exist.

1.8.3.1 Request message

ApplicationRepository portType must implement both the method 1 and 2 in 1.1.1.

(method 1)

If the entity of an AA file is specified as a parameter of the Create request message, the format of the message is:

<acs-ari:Create>

 <acs-ari:archive>xsd:base64Binary</acs-ari:archive>

</acs-ari:Create>

The contents of the Create request message are further described as follows:

· /acs-ari:Create/acs-ari:archive
Base64-encoded AA file.

(method 2)

The format of the Create request message is:

<acs-ari:Create>

 <acs-ari:archiveURI>xsd:anyURI</acs-ari:archiveURI>

</acs-ari:Create>

The contents of the Create request message are further described as follows:

· /acs-ari:Create/acs-ari:archiveURI
The URI of the AA file.

1.8.3.2 Response message

The response to the Create request message is a message of the following form:

<acs-ari:CreateResponse>

 <acs-ari:archiveEpr>wsa:EndpointReference</acs-ari:archiveEpr>

</acs-ari:CreateResponse>

The contents of the CreateResponse message are further described as follows:

· /acs-ari:CreateResponse/acs-ari:archiveEpr
The endpoint reference of the registered AA.

1.8.3.3 Fault

The types of faults specific to the Create operation are as follows:

· IllegalFormatFault
This fault type indicates that the specified AA file does not conform to the Application Archive Format specification. For example:

· The AAD of the AA does not conform to the specification.

· Files which are referenced in the AAD (other than external files) are not archived in the AA file.

· etc.

· AAIDDuplicatedFault
The AAID specified in the AAD is already used for another registered AA.

· DeltaArchiveRegistrationFault
Delta AA was tried to be registered. Delta AA must be registered by the Update operation defined in the ApplicaitonArchiveEntry portType.

· ArchiveNotAccessibleFault
The specified AA cannot be accessed. This type of fault can be generated in case of method 2 in 1.1.1.

· TooLargeArchiveFault
The size of the AA file is too large to be registered into the repository. For example, the case where the user tried to register an AA over the repository space allocated for him/her.

· RegistrationFailedFault
The operation failed due to server internal reasons.

For the types of faults common for ACS operations, see 1.1.3.3.2.

1.8.4 LookupEntries operation

This operation retrieves the list of endpoint references of AA corresponding to the query expression specified in the request message. This operation can be used, for example, in the following purposes:

· in order to retrieve the AA which has the specified AAID

· in order to retrieve the list of the AAs which a certain Producer created
· in order to retrieve the list of all the versions of archives of a certain application

[TBD] In order to support the first case, the uniqueness of AAID must be discussed. This is relevant to Application Archive Format specification, and coordination with OASIS SDD-TC is expected necessary.

1.8.4.1 Request message

The format of the LookupEntries request message is:

<acs-ari:LookupEntries>

 <acs-ari:queryExpression dialect="xsd:anyURI">

 xsd:any

 </acs-ari:queryExpression>

</acs-ari:LookupEntries>
The contents of the LookupEntries request message are further described as follows:

· /acs-ari:LookupEntries/acs-ari:queryExpression
Query expression evaluated for all the AAs which the requester can access.

· /acs-ari:LookupEntries/acs-ari:queryExpression@dialect
A URI that identifies the language of the query expression.

[TBD] It must be discussed as to what query languages should be defined in the ACS specification. wsrp:QueryResourceProperties portType identifies XPath 1.0/2.0 as examples of query languages, but these are inappropriate for the LookupEntries operation here.

1.8.4.2 Response message

The response to the LookupEntries request message is a message of the following form:

<acs-ari:LookupEntriesResponse>

 <acs-ari:archiveEpr>wsa:EndpointReference</acs-ari:archiveEpr>*

</acs-ari:LookupEntriesResponse>

The contents of the LookupEntriesResponse message are further described as follows:

· /acs-ari:LookupEntriesResponse/acs-ari:archiveEpr
The endpoint reference of one of the AAs which match the specified query expression.

If there are no AA matching the query expression, an empty response message is returned.

1.8.4.3 Fault

The types of faults specific to the LookupEntries operation are as follows:

· UnknownQueryExpressionDialectFault
The given query expression has a dialect that is unknown to the repository service.
· InvalidQueryExpressionFault
The given query expression is not a valid within the query expression language identified by the dialect attribute.
· QueryEvaluationFault
The query expression failed during evaluation.
· LookupFailedFault
The operation failed due to server internal reasons.

[TBD] (QueryEvaluationFault) It must be discussed whether this type of fault is corresponding to (I) or (II) in 1.1.3.1. In the latter case, this type of fault should be integrated into LookupFailedFault.

For the types of faults common for ACS operations, see 1.1.3.3.2.

1.8.5 GetResourceProperty, GetMultipleResourceProperties operation

These operations retrieve Resource Properties of the repository. ApplicationRepository portType has these operations by inheriting wsrp:GetResourceProperty and GetMultipleResourceProperties portTypes, which are defined by the WS-ResourceProperties specification.
1.8.6 Destroy operation

This operation destroys the repository. ApplicationRepository portType has this operation by inheriting wsrl:ImmediateResourceTermination portType, which is defined by the WS-ResourceLifetime specification.

Repository can be destroyed only in the case where no AA is registered in it. In the other cases, this operation fails.

[TBD] It must be discussed whether the behavior of this operation described above is appropriate.

1.8.7 Subscribe, GetCurrentMessage operation

These operations respectively subscribe notifications and retrieve the current notification message. ApplicationRepository portType has these operations by inheriting wsnt:NotificationProducer portType, which is defined by the WS-BaseNotification.

ApplicationRepository portType supports subscription of AA registration/update notifications.

1.9 ApplicationArchiveEntry portType
ApplicationArchiveEntry is a WS-Resource which represents an AA entry in the repository. ApplicationArchiveEntry WS-Resource of a different version of application is a different WS-Resource. A web service which implements this portType accepts request messages for manipulating the ApplicationArchiveEntry WS-Resource.

1.9.1 Resource properties

The format of the Resource Properties document defined by ApplicationArchiveEntry portType is:

<acs-ari:AAID>acs-aaf:AAIDType[TBD]</acs-ari:AAID>

<acs-ari:author>acs-aaf:AuthorType[TBD]</acs-ari:author>

<acs-ari:ownerId>xsd:any[TBD]</acs-ari:ownerId>

<acs-ari:registrationDateTime>

 xsd:dateTime

</acs-ari:registrationDateTime>

<acs-ari:previousVersion>

 wsa:EndpointReference

</acs-ari:previousVersion>

The elements in the Resource Property document are further described as follows:

· /acs-ari:AAID
The ID of the AA.
· /acs-ari:author
The author of the AA.
· /acs-ari:ownerId
The ID of the AA owner.
· /acs-ari:registrationDateTime
The date and time when the AA was registered.
· /acs-ari:previousVersion
The endpoint reference of the AA entry of the previous version.

The elements above are the minimum set of required Resource Properties, and repository implementations may add further elements.

[TBD] The types of acs-ari:AAID, acs-ari:author must be discussed in the Application Archive Format specification. [ACS-Issue:1533]

[TBD] The type of acs-ari:ownerId must be determined cooperating with access control management. At present it is tentatively defined as xsd:any.

[TBD] ApplicationArchiveEntry WS-Resource can have AA version history information in two ways: ApplicationArchiveEntry can have endpoint references of all the versions of AAs or endpoint reference of only the previous version of AA. The former way requires updating the Resource Properties at each time of AA update, so the latter way seems practical.

[TBD] AA version history information can be retrieved in two ways: by means of the operations defined in the WS-ResourceProperties specification or those defined in the ACS specification itself. This is not discussed at present.

[TBD] We must clean up requirements on AA version management and define the concept of AA version before detail discussion on AA version management. Is version branch allowed? Is it allowed to retrieve older version of AA? How should the version expression format be? [ACS-Issue:1522]

[TBD] AA management functions must be separated into common ones for general web services and AA-specific ones.

[TBD] It is possible to expose as Resource Properties of ApplicationArchiveEntry portType as to which transfer method in 1.1.1 is supported in the GetArchive and GetContents operations.

1.9.2 Inheritance of portTypes defined in other specifications
All the portTypes which ApplicationArchiveEntry portType inherits are expressed in the following table:

	portType name
	required/optional
	purpose

	wsrp:GetResourceProperty
	required
	in order to enable to read the Resource Properties

	wsrp:GetMultipleResourceProperties
	required
	in order to enable to read the Resource Properties

	wsrp:QueryResourceProperties
	optional
	in order to enable to query the Resource Properties

	wsrl:ImmediateResourceTermination
	required
	in order to enable AA entry destruction (this inheritance is mandatory according to OGSA Basic Profile)

	wsnt:NotificationProducer
	required
	in order to enable to subscribe for AA entry destruction notifications

1.9.3 Update operation
This operation updates the AA in the case where older version of AA is already registered in the Application Repository.

[TBD] Is this operation necessary in addition to the Create operation in ApplicationRepository portType? If so, the meaning and behavior must be defined in the case where newer version of AA is registered into the Application Repository by means of the Create/Update operation. [ACS-Issue:1537]

1.9.4 Request message
ApplicationArchiveEntry portType must implement both the method 1 and 2 in 1.1.1.

(method 1)

If the entity of an AA file is specified as a parameter of the Update request message, the format of the message is:

<acs-ari:Update>

 <acs-ari:archive>xsd:base64Binary</acs-ari:archive>

</acs-ari:Update>

The contents of the Update request message are further described as follows:

· /acs-ari:Update/acs-ari:archive
Base64-encoded AA file.

(method 2)

The format of the Update request message is:

<acs-ari:Update>

 <acs-ari:archiveURI>xsd:anyURI</acs-ari:archiveURI>

</acs-ari:Update>

The contents of the Update request message are further described as follows:

· /acs-ari:Update/acs-ari:archiveURI
The URI of the AA file.

1.9.4.1 Response message

The response to the Update request message is a message of the following form:

<acs-ari:UpdateResponse>

 <acs-ari:archiveEpr>wsa:EndpointReference</acs-ari:archiveEpr>

</acs-ari:UpdateResponse>

The contents of the UpdateResponse message are further described as follows:

· /acs-ari:UpdateResponse/acs-ari:archiveEpr
The endpoint reference of the registered AA.

1.9.4.2 Fault

The types of faults specific to the Update operation are as follows:

· IllegalFormatFault
This fault type indicates that the specified AA file does not conform to the Application Archive Format specification. For example:

· The AAD of the AA does not conform to the specification.

· Files which are referenced in the AAD (other than external files) are not archived in the AA file.

· etc.

· AAIDDuplicatedFault
The AAID specified in the AAD is already used for another registered AA.

· BaseVersionNotFoundFault
The AA which the specified delta AA is base on is not registered in the repository.

· NewerVersionExistsFault
Newer or the same version of the specified AA is already registered in the repository.

· ArchiveNotAccessibleFault
The specified AA cannot be accessed. This type of fault can be generated in case of method 2 in 1.1.1.

· TooLargeArchiveFault
The size of the AA file is too large to be registered into the repository. For example, the case where the user tried to register an AA over the repository space allocated for him/her.

· UpdateFailedFault
The operation failed due to server internal reasons.

[TBD] (NewerVersionExistsFault) It must be discussed whether AA update is allowed in the case when newer or the same version of the AA is already registered.

For the types of faults common for ACS operations, see 1.1.3.3.2.

1.9.5 GetContents operation

This operation retrieves more than or equal to one contents in AA. Three types of key is possible for contents retrieval:

· (key 1) type of content

· (key 2) meta-character expression which indicates the path in AA
· (key 3) file ID assigned to each file in AA

[TBD] It must be discussed which type of key is necessary for contents retrieval. This discussion has relationship to the Application Archive Format specification. [ACS-Issue:1539]

[TBD] It is not yet strictly determined whether multiple contents (files) are allowed to be retrieved in a single operation. But, considering effectiveness, multiple contents are desired to be retrieved in a single operation.

The contents can be returned in the method 1 and 2 in 1.1.1. In case of the method 2, the requester is responsible for retrieving the contents.

1.9.5.1 Request message

ApplicationArchiveEntry portType must support the three types of key for contents retrieval.

(key 1)

The format of the GetContents request message is:

<acs-ari:GetContents>

 <acs-ari:type>xsd:string</acs-ari:type>

 <acs-ari:responseMethod>

 acs-ari:FileTransportMethodType

 </acs-ari:responseMethod>

</acs-ari:GetContents>

The contents of the GetContents request message are further described as follows:

· /acs-ari:GetContents/acs-ari:type
The type of the contents.

· /acs-ari:GetContents/acs-ari:responseMethod
The transport method of the contents files. This must be either the string “IncludedInMessage” or “URIReference”. This parameter is just a request, and the contents are not necessarily returned in the method specified in this parameter.

(key 2)

The format of the GetContents request message is:

<acs-ari:GetContents>

 <acs-ari:contentPathExpression>

 xsd:string

 </acs-ari:contentPathExpression>

 <acs-ari:responseMethod>

 acs-ari:FileTransportMethodType

 </acs-ari:responseMethod>

</acs-ari:GetContents>

The contents of the GetContents request message are further described as follows:

· /acs-ari:GetContents/acs-ari:contentPathExpression
Meta-character expression which indicates the path in AA.

· /acs-ari:GetContents/acs-ari:responseMethod
The transport method of the contents files. This parameter is similar to that in case of key 1.

(key 3)

The format of the GetContents request message is:

<acs-ari:GetContents>

 <acs-ari:fileId>xsd:string</acs-ari:fileId>

 <acs-ari:responseMethod>

 acs-ari:FileTransportMethodType

 </acs-ari:responseMethod>

</acs-ari:GetContents>

The contents of the GetContents request message are further described as follows:

· /acs-ari:GetContents/acs-ari:fileId
The ID of the file to be retrieved.

· /acs-ari:GetContents/acs-ari:responseMethod
The transport method of the contents files. This parameter is similar to that in case of key 1.

[TBD] Should it be allowed to specify multiple keys in case of key 1 and 3?

[TBD] In order to allow the case of key 3, ID of the file in AA must be able to be specified in the AAD.

1.9.5.2 Response message

The contents files can be returned in the method 1 or 2 in 1.1.1. Return values in the both methods are allowed to be contained in the same response message.

(method 1)

If the entity of contents file is specified as a parameter of the GetContentsResponse message, the format of the message is:

<acs-ari:GetContentsResponse>

 <acs-ari:content>xsd:base64Binary</acs-ari:content>*

</acs-ari:GetContentsResponse>

The contents of the GetContentsResponse message are further described as follows:

· /acs-ari:GetContentsResponse/acs-ari:content
Base64-encoded string of a single contents file.

(method 2)

The response to the GetContents request message is a message of the following form:

<acs-ari:GetContentsResponse>

 <acs-ari:contentURI>xsd:anyURI</acs-ari:contentURI>*

</acs-ari:GetContentsResponse>

The contents of the GetContentsResponse message are further described as follows:

· /acs-ari:GetContentsResponse/acs-ari:contentURI
The URI of the contents file.

[TBD] The multiple contents can be returned in two ways: they can be returned as multiple attached files according to SOAP with Attachments or a single zip file containing all the contents files.

[TBD] Should the contents be digitally signed in order to ensure their integrity?

1.9.5.3 Fault

The types of faults specific to the GetContents operation are as follows:

· InvalidKeyExpressionFault
This fault type indicates that the specified key expression is invalid.

For the types of faults common for ACS operations, see 1.1.3.3.2.

1.9.6 Transfer operation

This operation directs the repository to transfer an AA to a remote ACS repository. The repository storing the AA executes the transfer process by invoking the Create (Update) operation of the remote ACS repository.

The actual process for obtaining an endpoint reference of the remote repository is not in the scope of this document; it is assumed to have been obtained by some means.
[TBD] This operation could be practically implemented as an asynchronous message.

[TBD] It must be discussed as to who digitally signs the AA to be transferred.

1.9.6.1
Request message

The format of the Transfer request message is:

<acs-ari:Transfer>

 <acs-ari:repositoryEpr>

 wsa:EndpointReferenceType

 </acs-ari:repositoryEpr>

</acs-ari:Transfer>
The contents of the Transfer request message are further described as follows:

· /acs-ari:Transfer/acs-ari:repositoryEpr
The endpoint reference of the remote repository which the AA is transferred to.

1.9.6.2 Response message

The response to the Transfer request message is a message of the following form:

<acs-ari:TransferResponse>

 <acs-ari:archiveEpr>wsa:EndpointReference</acs-ari:archiveEpr>

</acs-ari:TransferResponse>

The contents of the TransferResponse message are further described as follows:

· /acs-ari:TransferResponse/acs-ari:archiveEpr
The endpoint reference of the AA entry in the remote repository.

1.9.6.3 Fault

The types of faults specific to the Transfer operation are as follows:

· InvalidRemoteRepositoryEprFault
The endpoint reference of the remote repository specified in the request message is invalid.

· RemoteRepositoryFault
This type of fault indicates that the invocation of the operation of the remote repository returned a fault. The wsbf:FaultCause field describes the returned fault.

· TransferFailedFault
The operation failed due to server internal reasons.

For the types of faults common for ACS operations, see 1.1.3.3.2.

1.9.7 GetArchive operation

This operation retrieves an AA file which is registered in a repository. The AA file can be returned in the method 1 and 2 in 1.1.1. In case of the method 2, the requester is responsible for retrieving the AA file.

[TBD] It must be discussed whether the repository must digitally sign the AA file to be returned.

[TBD] Is it allowed to retrieve delta AAs? If so, is it allowed even when the delta AAs are not registered by the Update operation?

1.9.7.1 Request message

The format of the GetArchive request message is:

<acs-ari:GetArchive>

 <acs-ari:responseMethod>

 acs-ari:FileTransportMethodType

 </acs-ari:responseMethod>

</acs-ari:GetArchive>

The contents of the GetArchive request message are further described as follows:

· /acs-ari:GetArchive/acs-ari:responseMethod
The transport method of the AA file. This must be either the string “IncludedInMessage” or “URIReference”. This parameter is just a request, and the AA file is not necessarily returned in the method specified in this parameter.

1.9.7.2 Response message

The AA file can be returned in the method 1 or 2 in 1.1.1.

(method 1)

If the entity of AA file is specified as a parameter of the GetArchiveResponse message, the format of the message is:

<acs-ari:GetArchiveResponse>

 <acs-ari:archive>xsd:base64Binary</acs-ari:archive>

</acs-ari:GetArchiveResponse>

The contents of the GetArchiveResponse message are further described as follows:

· /acs-ari:GetArchiveResponse/acs-ari:archive
Base64-encoded string of the AA file.

(method 2)

The response to the GetArchive request message is a message of the following form:

<acs-ari:GetArchiveResponse>

 <acs-ari:archiveURI>xsd:anyURI</acs-ari:archiveURI>

</acs-ari:GetArchiveResponse>

The contents of the GetArchiveResponse message are further described as follows:

· /acs-ari:GetArchiveResponse/acs-ari:archiveURI
The URI of the AA file.

1.9.7.3 Fault

There are no faults specific to the GetArchive operation. For the types of faults common for ACS operations, see 1.1.3.3.2.

1.9.8 GetResourceProperty, GetMultipleResourceProperties operation

These operations retrieve Resource Properties of the AA entry. ApplicationArchiveEntry portType has these operations by inheriting wsrp:GetResourceProperty and GetMultipleResourceProperties portTypes, which are defined by the WS-ResourceProperties specification.

1.9.9 Destroy operation

This operation destroys the AA entry. ApplicationArchiveEntry portType has this operation by inheriting wsrl:ImmediateResourceTermination portType, which is defined by the WS-ResourceLifetime specification.

[TBD] In the case where ApplicationArchiveEntry WS-Resource has endpoint reference of only the previous version of AA, it is impossible to traverse all the history information of AA if midway version of AA entry is destroyed, which is a problem. It must be discussed whether the destruction of midway or only the latest version of AA entry is allowed.

1.9.10 Subscribe, GetCurrentMessage operation

These operations respectively subscribe notifications and retrieve the current notification message. ApplicationArchiveEntry portType has these operations by inheriting wsnt:NotificationProducer portType, which is defined by the WS-BaseNotification.

ApplicationArchiveEntry portType supports subscription of AA destruction notifications.

1.10 Notifications

Based on WS-Topics, we define the topic space of ACS notifications as follows:

· The name of the topic space is “ACSTopicSpace”.

· The URI of the topic space is “http://www.gridforum.org/acs/topicspace”.

· There are two topics in the topic space: ApplicationArchiveCreated and ApplicationArchiveUpdated.

· The notification message type of the ApplicationArchiveCreated topic is ApplicationArchiveCreatedMessageType.

· The notification message type of the ApplicationArchiveUpdated topic is ApplicationArchiveUpdatedMessageType.

1.10.1 ApplicationArchiveCreatedMessageType

This type of notification message is published when a new AA (i.e., AA of the beginning version) is registered.

The format of notification messages of ApplicationArchiveCreatedMessageType is:

<acs-ari:dateTime>xsd:dateTime</acs-ari:dateTime>

<acs-ari:AAID>acs-aaf:AAIDType</acs-ari:AAID>

<acs-ari:archiveEpr>
 wsa:EndpointReferenceType
</acs-ari:archiveEpr>
The contents of notification messages of ApplicationArchiveCreatedMessageType are further described as follows:

· /acs-ari:dateTime
The date and time when the AA was registered.

· /acs-ari:AAID
The ID of the registered AA.

· /acs-ari:archiveEpr
The endpoint reference of the registered AA.

1.10.2 ApplicationArchiveUpdatedMessageType

This type of notification message is published when an AA is updated, where it is assumed that an older version of AA is already registered.

The format of notification messages of ApplicationArchiveUpdatedMessageType is:

<acs-ari:dateTime>xsd:dateTime</acs-ari:dateTime>

<acs-ari:AAIDNew>acs-aaf:AAIDType</acs-ari:AAIDNew>

<acs-ari:AAIDOld>acs-aaf:AAIDType</acs-ari:AAIDOld>

<acs-ari:archiveEprNew>
 wsa:EndpointReferenceType
</acs-ari:archiveEprNew>

<acs-ari:archiveEprOld>
 wsa:EndpointReferenceType
</acs-ari:archiveEprOld>
The contents of notification messages of ApplicationArchiveUpdatedMessageType are further described as follows:

· /acs-ari:dateTime
The date and time when the AA was updated.

· /acs-ari:AAIDNew
The ID of the updating AA.

· /acs-ari:AAIDOld
The ID of the updated AA (i.e., the AA of the previous version).

· /acs-ari:archiveEprNew
The endpoint reference of the updating AA.

· /acs-ari:archiveEprOld
The endpoint reference of the updated AA.

2. ACS manageability
The portTypes defined in the ACS specification conforms to WSDM MOWS V1.0
.

�Re Method 2, If file transport is the responsibility of negotiated protocol between the server and the client then I do not believe that ACS needs to specify a protocol and can defer the responsibility. Example practices might be suggested but these should not be normative.

How to handle security might be an issue if the security of the WHOLE transaction is to be assured by ACS. On the other hand, if ACS only guarantees the security of it’s own transactions then life is much simpler from both an ACS perspective and a server perspective (since security measures can be controlled by the file server).

�I am not sure I like this. I don’t see how ACS can claim to be a valid repository if the files don’t exist and, in fact, the files can not be secured under acceptable security measures.

�This one seems pointless since AAID would be used as a key to for all Get operations.

�This seems unnecessary to define normatively since this is fundamental capability from WS-N. What we may want to define normatively are those properties that would be changed based on changes to AAs. Then managers could subscribe to propertychange topics.

�IMO, I think this operation can be implemented using GetArchive with the appropriate attribute stating that AA is the content that is desired. I don’t see a need for this separate operation.

�These are provided as part of WSDM interface. I think we should simply spec WSDM as Mgmt interface and then this will be unnecessary.

�See comment above re subscribe.

�Need to provide reference to WSDM standard.

25

