GWD-R

Date

3. Architecture
3.1 Design Policy
3.1.1 OGSA WSRF Basic Profile Compliant

The OGSA WSRF Basic Profile 1.0 (hereafter, "the Basic Profile") is a set of normative profiles which defines uses of widely accepted specifications in order to ensure interoperability among Grid service implementations. The Basic Profile addresses issues relating to distributed resource management and Grid computing extending WS-I Basic Profile 1.1.
It is strongly recommended that ACS implementation should be compliant with the Basic Profile.

The ACS specification is designed so as to be compatible and consistent with the Basic Profile. That is:
· ACS service is defined as WS-Resources; ApplicationArchive WS-Resource to represent an AA and ApplicationRepository WS-Resource to manage a repository. These are defined as distinct WS-Resources because they have different life spans.
· The ACS WS-Resources are referenced using WS-Addressing endpoint references (EPRs) as specified in the Basic Profile
.

· The ACS WS-Resources support certain resource properties and WS-RF operations that are mandated to implement in the Basic Profile. For details, see Section x.

· The ACS WS-Resources use WS-Notification mechanism for subscribing and publishing notifications as specified in the Basic Profile. For details, see Section x.
· The ACS WS-Resources raise errors compliant with WS-BaseFault.

· The ACS specification specifies security mechanisms only for ACS-specific domains and follows the Basic Profile with regard to generic security issues. For details, see Chapter x.

3.1.2 Data Handling
Some Application Contents such as binary executables and user data are likely to be huge in size. The ACS specification is designed to allow flexible implementation for handling such data.

3.1.2.1 Reference to the external storage
Application Archive (AA) bundles files for a unit of task in logical sense, which means it allows some of the files can be stored outside of the ACS repository and let the ACS repository or consumer of the ACS resolve the reference, i.e. retrieve actual contents of the files.
There are distinct three places where the references (URLs) to the external storage may appear:

1) SOAP messages carrying ARI operations
ACS repository will resolve the reference and replace it with the one for the actual entity in the repository. The ACS repository will return fault if any will fail in the process. The notation of the reference should be specified in the ARI schema.
2) Application Archive Descriptor
Consumers of the ACS will resolve this. It is visible from ACS repository, but kept as it is in the repository without replacing references with the one for the internal repository.

3) Application Contents
Consumers of the ACS will resolve this. They are opaque from ACS repository and leave as it is
For the case 1), ACS repository will validate and resolve the reference on receipt of URI, i.e. the actual entity referred is retrieved and the reference is replaced by the one for the other part of the AA instance, which is an actual entity in the repository. The topic will be covered more in detail in the Data Transport section below.

For the case 2), the application content can be specified in the AAD as a reference to the external storage, for example,

<file external="true">http://foo.com/sample.txt</file>
Otherwise, the application content should be specified in the AAD as a reference to the relative path in the AA, for example.

<file>./dataDeploy/deploy.jar</file>
The reference to the external storage may help save the duplicated copy of contents among AAs, while bundling it logically into an AA. Thus, those should be kept as a reference and the resolving the reference is left to the consumer of the ACS rather than the implementation of the ACS repository. (at least for ACS 1.0)
For the case 3), URLs will appear in the any part of the Application Contents, which is opaque to ACS repository. It is not recommended since it may cause some ambiguity for the consistency among the contents in AA and pose a question what will happen if the reference cannot be resolved. This could happen where the external storage referred was there but has gone away when it is to be retrieved. It is out of the ACS scope how these external references are resolved. The ACS specification does not ensure the existence or validity of the referenced entities, either.

TBD: for case 2), if we were to replace the reference to the external storage with the reference for the other part of the AA instance, which is an actual entity in the repository, do we need to keep original AAD and modified AAD for later retrievals of AAD via getContents operation? An alternative among the options is to keep reference as it is, while the repository will return the actual entity on demand when the getContent is requested for the referenced entity. This may involve further specification/implementation issues.
3.1.2.2 Data Transport

In order to enable flexible upload and download of data, ACS allows the implementations of repository and its clients to choose methods and type of transport to be used for ARI operations. Minimum set of transport types and methods are specified as normative to provide the maximum interoperability, with extension points in ARI SOAP messages for use with the implementation specific extension which will rather limit the interoperability between the implementation of the ACS repository and its client.
Transport Type

An AA Document is the wire format of AA for creating or downloading an AA instance. The ACS specify the two type of transport of AA, discrete and bundled: with the discrete type of transport, files constituting an AA, including an AAD and ACs, are attached to the SOAP message as discrete files. With the bundled type, files constituting an AA are bundled into a single file in advance and then it is attached to the SOAP message, e.g. a files can be bundled with various technologies such as zip, tar, jar, war and so on. ACS will also define the URIs within its namespace for popular one of those to indicate what is used for bundling. An implementation can use its own bundling method and define the URI for it. For the maximum interoperability, implementations of ACS repository are required to implement the discrete type. Implementations of ACS should expose the list of the URIs as its resource properties, indicating the supported transport types. ACS client selects one to be used from the list. Below are the example of the URIs indicating discrete, bundled with zip, and bundled with tar for TransportType:

http://schema.ggf.org/acs/2005/10/acs/transport_type/discrete

http://schema.ggf.org/acs/2005/10/acs/transport_type/bundled-zip

http://schema.ggf.org/acs/2005/10/acs/transport_type/bundled-tar

Transport Method

The ACS specifies the methods for transporting data. An implementation of ACS repository exposes the list of supported transport methods as its resource properties and ACS client selects one method to transport data.

ACS defines Simple and SwA transport methods: with the Simple method files are BASE64-encoded and embedded into the SOAP message. With the SwA method, files are attached to the SOAP message as proposed as in [SwA]. For maximum interoperability, implementations of ACS are required to implement the Simple method. However, SwA would be preferred method for most of the implementations. It is also allowed to support implementation-specific transport methods such as file, ftp, gridFtp, http, etc. Implementations of ACS should expose the list of the URIs as its resource properties, indicating the supported transport method. ACS client selects one to be used from the list. Below are the example of the URIs indicating discrete, bundled with zip, and bundled with tar for TransportMethod:

http://schema.ggf.org/acs/2005/10/acs/transport_method/Simple
http://schema.ggf.org/acs/2005/10/acs/transport_method/SwA

The figure below illustrates a non-normative example of implementation-specific transport method, where an external http server is used to upload data to the ACS repository.

Figure 1 Example of Create operation using external http server.
In this case, the client specify the discrete as the transportType and URI-http as the transportMethod, indicating the http protocol is used for the data transport. As such, the URLs to the real entities are specified in the Create message. The implementation of ACS repository is responsible for resolving the contained URLs and collecting real entities of the data.
3.1.3 Asynchronous Messaging

It may consume much time to collect necessary data and create a valid AA instance. Therefore, the ACS service is recommended to implement Create/Update operation as an asynchronous one. That is, the Implementation of the ACS repository creates an empty AA instance on accepting a request message and returns its EPR before collecting required information to initialize the AA instance. The AA instance is in the initializing state at this moment and does not accept any operations except for Destroy operation.
The ACS client should be implemented assuming that the newly created AA instance may be in initializing state. The ACS client can check whether the initialization is successfully completed in the following ways:

· The ACS client attempts to access an arbitrary operation of the AA Instance except for Destroy. If it is in the initializing state or it has failed to be initialized, an error is returned to the client.

· The ACS client subscribes to the Implementation of the ACS repository so that it is notified when initialization of the AA Instance is completed or failed.

1 file upload

2.4 AA EPR

2.2 retrieve data

2.1 Create

internal repository

http server

ACS Repository

<acs-ari:Create>

 < acs-ari:AA transportType="discrete">

 <acs-ari:aad path="aad.xml" transportMethod="URI-http">

 <acs-ari:data>http://fileserver.org/aad.xml</acs-ari:data>

 </acs-ari:aad>

 <acs-ari:ac path="userdata.dat" transportMethod="URI-http">

 <acs-ari:data>http://fileserver.org/userdata.dat</acs-ari:data>

 </acs-ari:ac>

 ...

 </acs-ari:AA>

</acs-ari:Create>

ACS client

2.3 create new resource

� EPR may be substituted in the future by WS-Name that is being developed under the OGSA Naming WG.

author@email.address
1

